第五讲:卡尔曼滤波
- 格式:pptx
- 大小:1.66 MB
- 文档页数:64
贝叶斯滤波(五)卡尔曼滤波算法推导贝叶斯滤波和卡尔曼滤波是两种常用的滤波算法,用于对系统状态进行估计和预测。
本文将从理论推导的角度,介绍贝叶斯滤波和卡尔曼滤波的基本原理和推导过程。
贝叶斯滤波是一种基于贝叶斯定理的滤波算法,通过将先验知识和观测数据相结合,对系统状态进行更新和预测。
贝叶斯滤波的基本思想是将系统状态表示为一个概率分布,并通过观测数据来更新这个概率分布。
贝叶斯滤波的核心是贝叶斯定理,即后验概率等于先验概率乘以似然函数除以归一化常数。
卡尔曼滤波是一种线性高斯滤波算法,用于对线性系统进行状态估计。
卡尔曼滤波的基本原理是通过对系统状态和观测数据的线性组合,得到对系统状态的最优估计。
卡尔曼滤波分为两个步骤,即预测步骤和更新步骤。
在预测步骤中,通过系统模型和先验知识对系统状态进行预测;在更新步骤中,通过观测数据对系统状态进行修正。
下面我们将从贝叶斯滤波开始,推导出卡尔曼滤波的基本原理。
考虑一个连续时间的线性动态系统,其状态方程和观测方程可以表示为:状态方程:x(t) = A(t)x(t-1) + w(t)观测方程:z(t) = H(t)x(t) + v(t)其中,x(t)表示系统在时刻t的状态,z(t)表示在时刻t的观测数据,A(t)和H(t)分别表示状态转移矩阵和观测矩阵,w(t)和v(t)分别表示过程噪声和观测噪声。
为了简化推导过程,我们假设过程噪声和观测噪声都是高斯分布,并且相互独立。
即w(t)∼N(0,Q(t)),v(t)∼N(0,R(t))。
根据贝叶斯滤波的基本原理,我们需要求解后验概率分布P(x(t)|z(1:t)),即给定观测数据z(1:t),求解系统状态x(t)的概率分布。
根据贝叶斯定理,后验概率可以表示为:P(x(t)|z(1:t)) = P(z(t)|x(t),z(1:t-1))P(x(t)|z(1:t-1)) / P(z(t)|z(1:t-1))其中,P(z(t)|x(t),z(1:t-1))表示给定状态x(t)和之前观测数据z(1:t-1)的条件下,观测数据z(t)的概率分布;P(x(t)|z(1:t-1))表示给定之前观测数据z(1:t-1)的条件下,状态x(t)的概率分布;P(z(t)|z(1:t-1))表示给定之前观测数据z(1:t-1)的条件下,观测数据z(t)的概率分布。
卡尔曼滤波原理
卡尔曼滤波是一种用于估计系统状态的递归滤波器。
它可以通过组合系统的测量值和模型的预测值来提供对状态的最优估计。
卡尔曼滤波器首先利用系统的数学模型预测下一个状态,并计算预测值与实际测量值之间的差异。
然后,通过加权这些差异,卡尔曼滤波器可以生成对当前状态的最佳估计。
卡尔曼滤波的核心原理是“最小均方误差”。
它假设系统状态和观测都是高斯分布,然后尝试寻找最小均方误差的估计值。
通过选择合适的权重,卡尔曼滤波器可以在预测值和测量值之间找到一个平衡,从而提供最佳的估计结果。
卡尔曼滤波器由两个主要步骤组成:预测和更新。
在预测步骤中,卡尔曼滤波器使用系统模型和先前的状态估计来预测下一个状态。
然后,在更新步骤中,卡尔曼滤波器将测量值与预测值进行比较,并使用加权平均法来更新状态估计。
通过周期性地重复这两个步骤,卡尔曼滤波器可以连续地提供对系统状态的估计。
卡尔曼滤波器在估计问题中广泛应用,特别是在传感器融合、航空航天和导航系统中。
它能够有效地处理噪声和不确定性,并在给定系统模型和测量信息的情况下提供最优的状态估计。
卡尔曼滤波的原理与应用一、什么是卡尔曼滤波卡尔曼滤波是一种用于估计系统状态的算法,其基本原理是将过去的观测结果与当前的测量值相结合,通过加权求和的方式进行状态估计,从而提高对系统状态的准确性和稳定性。
二、卡尔曼滤波的原理卡尔曼滤波的原理可以简单概括为以下几个步骤:1.初始化:初始状态估计值和协方差矩阵。
2.预测:使用系统模型进行状态的预测,同时更新预测的状态协方差矩阵。
3.更新:根据测量值,计算卡尔曼增益,更新状态估计值和协方差矩阵。
三、卡尔曼滤波的应用卡尔曼滤波在很多领域都有广泛的应用,下面列举了几个常见的应用场景:•导航系统:卡尔曼滤波可以用于航空器、汽车等导航系统中,实时估计和优化位置和速度等状态参数,提高导航的准确性。
•目标追踪:如在无人机、机器人等应用中,利用卡尔曼滤波可以对目标进行状态估计和跟踪,提高目标追踪的鲁棒性和准确性。
•信号处理:在雷达信号处理、语音识别等领域,可以利用卡尔曼滤波对信号进行滤波和估计,去除噪声和提取有效信息。
•金融预测:卡尔曼滤波可以应用于金融市场上的时间序列数据分析和预测,用于股价预测、交易策略优化等方面。
四、卡尔曼滤波的优点•适用于线性和高斯性:卡尔曼滤波适用于满足线性和高斯假设的系统,对于线性和高斯噪声的系统,卡尔曼滤波表现出色。
•递归性:卡尔曼滤波具有递归性质,即当前状态的估计值只依赖于上一时刻的状态估计值和当前的测量值,不需要保存全部历史数据,节省存储空间和计算时间。
•最优性:卡尔曼滤波可以依据系统模型和观测误差的统计特性,以最小均方差为目标,进行最优状态估计。
五、卡尔曼滤波的局限性•对线性和高斯假设敏感:对于非线性和非高斯的系统,卡尔曼滤波的性能会受到限制,可能会产生不理想的估计结果。
•模型误差敏感:卡尔曼滤波依赖于精确的系统模型和观测误差统计特性,如果模型不准确或者观测误差偏差较大,会导致估计结果的不准确性。
•计算要求较高:卡尔曼滤波中需要对矩阵进行运算,计算量较大,对于实时性要求较高的应用可能不适合。
卡尔曼滤波一、卡尔曼滤波的起源谈到信号的分析与处理,就离不开滤波两个字。
通常,信号的频谱处于有限的频率范围内,而噪声的频谱则散布在很广的频率范围内,为了消除噪声,可以把FIR滤波器或者IIR滤波器设计成合适的频带滤波器,进行频域滤波。
但在许多应用场合,需要直接进行时域滤波,从带噪声的信号中提取有用信号。
虽然这样的过程其实也算是对信号的滤波,但其所依据的理论,即针对随机信号的估计理论,是自成体系的.人们对于随机信号干扰下的有用信号不能“确知”,只能“估计”.为了“估计",要事先确定某种准则以评定估计的好坏程度.最小均方误差是一种常用的比较简单的经典准则。
对于平稳时间序列的最小均方误差估计的第一个明确解是维纳在1942年2月首先给出的.当时美国的一个战争研究团体发表了一个秘密文件,其中就包括维纳关于滤波问题的研究工作,这项研究是用于防空火力控制系统的.维纳滤波器是基于最小均方误差准则的估计器。
为了寻求维纳滤波器的冲激响应,需要求解著名的维纳–霍夫方程。
这种滤波理论所求的是使均方误差最小的系统最佳冲激响应的明确表达式。
从维纳–霍夫方程来看,维纳滤波算法是十分低效的。
这种算法要求设置大量的存储器来保存过去的测量数据,一个新的数据到来后,要进行刷新,重新计算自相关和互相关序列。
再者,求解这个方程需要耗费大量时间对高阶矩阵求逆。
因此,维纳滤波算法难以运用于实时处理中,尤其是无法用于军事、航空航天等领域。
为此,许多科技工作者进行了多方探索,但在解决非平稳过程的滤波问题时,能给出的方法很少。
到20世纪50年代中期,随着空间技术的发展,要求对卫星轨道进行精确地测量,这种方法越来越不能满足实际应用的需要。
为此,人们将滤波问题以微分方程表示,提出了一系列适应空间技术应用的精炼算法。
1960年和1961年,卡尔曼(R. E. Kalman)和布西(R. S。
Bucy)提出了递推滤波算法,成功的将状态变量引入到滤波理论中来,用消息与干扰的状态空间模型代替了通常用来描述它们的协方差函数,将状态空间描述与离散数间刷新联系起来,适于计算机直接进行计算,而不是去寻求滤波器冲激响应的明确公式。