分数裂项法求和
- 格式:ppt
- 大小:561.00 KB
- 文档页数:8
分数裂项求和方法总结一、简单分数裂项法:1.若分数的分母为n,则可将该分数表示为n等分之和,即如下形式:\(\frac{a}{n}=\frac{1}{n}+\frac{1}{n}+\frac{1}{n}+...+\frac{ 1}{n}\)这种情况下,裂项个数为分母的值。
2.若分数的分母为n,且分子a能被n整除,则可以将该分数表示为n等分之和,裂项个数为分子的值,即如下形式:\(\frac{a}{n}=\frac{a}{n}+\frac{a}{n}+...+\frac{a}{n}\)二、特殊分数裂项法:1.若分母为n(n≥2),分子为1,则可用连续的n-1个分数之和表示,如:\(\frac{1}{n}=\frac{1}{n+1}+\frac{1}{n(n+1)}\)若此时n=2,则该分数可表示为:\(\frac{1}{2}=\frac{1}{3}+\frac{1}{6}\)2.若分母为n(n≥3),分子为1,则可用连续的n-1个分数之和表示,如:\(\frac{1}{n}=\frac{1}{(n+1)(n+2)}+\frac{1}{n+1}\)若此时n=3,则该分数可表示为:\(\frac{1}{3}=\frac{1}{12}+\frac{1}{4}\)三、通用分数裂项法:1.若分数的分子是一个较大的整数a,分母是一个较小的整数b,则可以通过转换分母的形式,将该分数表示为分解后的两个分数之和,如:\(\frac{a}{b}=\frac{a+b}{b}+\frac{-b}{b}\)如将 \(\frac{7}{3}\) 进行裂项,可得:\(\frac{7}{3}=\frac{7+3}{3}+\frac{-3}{3}=\frac{10}{3}+\frac{-1}{3}\)2.若分数的分子是一个较大的整数a,分母是一个较小的整数b的平方,则可以通过转换分母的形式,将该分数表示为分解后的两个分数之和,如:\(\frac{a}{b^2}=\frac{a}{b^2}+\frac{a}{b^2}+...+\frac{a}{b^2}\)裂项的个数为分子的值。
六年级奥数-分数裂项裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
【例 1】111111223344556++++=⨯⨯⨯⨯⨯。
【巩固】111...... 101111125960 +++⨯⨯⨯【巩固】2222 109985443 ++++=⨯⨯⨯⨯【例 2】1111 11212312100 ++++++++++公式的变式1 1221+++=⨯-…n n n()例题精讲当n 分别取1,2,3,……,100时,就有 112121122231123234112342451121002100101=⨯+=⨯++=⨯+++=⨯+++=⨯ (1111211231)12100212223234299100210010121121231341991001100101211212131314199110011001101211101++++++++++=⨯+⨯+⨯++⨯+⨯=⨯⨯+⨯+⨯++⨯+⨯=⨯-+-+-++-+-=⨯-……………()()() =⨯==2100101200101199101求和公式推导: S1=1+2+3+4+5 + S1=5+4+3+2+1【例 3】 111113355799101++++=⨯⨯⨯⨯【巩固】 计算:1111251335572325⎛⎫⨯++++= ⎪⨯⨯⨯⨯⎝⎭【巩固】 2512512512512514881212162000200420042008+++++⨯⨯⨯⨯⨯【巩固】 计算:3245671255771111161622222929++++++=⨯⨯⨯⨯⨯⨯【例 4】 计算:11111111()1288244880120168224288+++++++⨯= 方法一:方法二:【巩固】11111111 612203042567290+++++++=_______【巩固】11111113610152128 ++++++=一项隔一项来拆项【巩固】计算:1111111112612203042567290--------=【巩固】11111104088154238++++=。
裂项求和法公式裂项求和法是数学中一种非常实用的求和方法,特别是在数列求和问题中经常能大展身手。
咱们先来说说什么是裂项求和法。
简单来讲,就是把一个数列的每一项拆分成两项的差,然后在求和的时候,很多项可以相互抵消,从而让求和变得简单。
比如说,对于数列 1/(1×2) + 1/(2×3) + 1/(3×4) +... ,咱们可以把每一项 1/(n×(n + 1)) 拆分成 1/n - 1/(n + 1) ,这样在求和的时候,中间的很多项就可以相互抵消啦。
我还记得之前给学生们讲这部分内容的时候,有个小同学瞪着大眼睛一脸懵地问我:“老师,这咋拆呀,拆完咋就能求和啦?”我笑着跟他说:“别着急,咱们一步步来。
”然后我就拿了一堆纸条,标上数字,给他演示。
比如说 1/2 - 1/3 ,我把一张纸条平均分成两份,取一份,再把另一张纸条平均分成三份,取两份,让他直观地看到这两个的差就是 1/6 ,也就是 1/(2×3) 。
咱们再深入点,常见的裂项求和公式有很多呢。
像 1/(n(n + k)) = 1/k × (1/n - 1/(n + k)) ,还有1/(√n + √(n + 1)) = √(n + 1) - √n 。
那裂项求和法有啥用呢?用处可大啦!比如说,遇到那种通项公式是分式形式,而且分子是常数,分母是两个连续整数乘积的数列,用裂项求和法简直不要太轻松。
我给大家举个例子哈。
求数列 1/(3×5) + 1/(5×7) + 1/(7×9) +... 的前 n 项和。
咱们按照裂项求和的方法,把每一项 1/((2n + 1)(2n + 3)) 拆分成1/2 × (1/(2n + 1) - 1/(2n + 3)) 。
然后求和的时候,你就会发现,第一项的后半部分和第二项的前半部分抵消了,第二项的后半部分和第三项的前半部分又抵消了,以此类推,最后剩下的就是第一项的前半部分和最后一项的后半部分。
裂项法公式
常见的裂项公式:1/n(n+1)=1/n-1/(n+1)。
裂项法,这是分解与组合思想在数列求和中的具体应用。
是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。
通项分解(裂项)倍数的关系。
通常用于代数,分数,有时候也用于整数。
数列(sequenceofnumber),是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。
数列中的每一个数都叫做这个数列的项。
排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。
、裂项法小学数学课本在讨论分数加减法时曾指出:两个分母不同的分数相加减,自然数,公分母正好是它们的乘积.把这个例题推广到一般情况,就有一个很有用的等式:下面利用这个等式,巧妙地计算一些分数求和的问题例1 计算:分析与解此题按常规方法先通分后再求和,显然计算起来十分繁杂是 1 ,而分母又都是相邻两个自然数的积,符合上面等式的要求.如果按上面等式把题目中的前12 个加数也分别写成两个单位分数之差的形式,就得到下面12 个等式:上面12 个式子的右面相加时,很容易看出有许多项一加一减正好相互抵消变为0,这一来问题解起来就十分方便了像这样在计算分数的加、减时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以相互抵消,从而使计算简化的方法,我们称为裂项法.例2 计算:分析与解这里的每一项的分子是1,分母不是相邻两个自然数的积,但都是从 1 开始的连续若干个自然数的和,这使我们联想到计算公式:1+当n分别取1,2,3,⋯,100时,就有即题目中的每一项都变成了一个分子为2、分母为相邻两个自然数乘积的形式,略加变形就得到例 1 的形式,仿照例 1 的方法便可求出解来分析与解猛一看,此题似乎无法下手,而且与裂项法也没关系.但小学数学课本上曾说过,减法是加法的逆运算.换句话说,任一加法算式都可以改为这个题的答案是否只有这一个呢?如果不只一个,怎样才能找出所有答案呢?为此,我们来讨论这类问题的一般情况.设n、x、y 都是自然数,且当t=1 时,x=7,y=42,当t=2 时,x=8,y=24,当t=3 时,x=9,y=18,当t=4 时,x=10,y=15,当t=6 时,x=12,y=12,当t=9 时,x=15,y=10,当t=12 时,x=18,y=9,当t=18 时,x=24,y=8,当t=36 时,x=42,y=7.故□和○所代表的两数和分别49、32、27、25.为例 4 已知A、B、C、D、E、F为互不相等的自然数,当A、B、C、D、E、F 各为什么数时,下面等式成立?当A=3 ,B=7,C=43,D=1807,E=3263443,F=10650056950806时,等式成立.即这方法计算量太大,我们试着找另外方便一些的解法在上面两种解法中,后面的解法明显比前面的解法简便.下面我们把后面的那种解题方法一般化.当A 有n个不同的约数a1,a2,a3,⋯,a n时练习一1.计算:2. 计算:4.当A、B、C、D、E、F各是什么不同的自然数时,下式成立?5. 计算:。
分数裂项求和方法总结(一)用裂项法求n(_i_)型分数求和1 1分析:因为------ -------n n 1n 1 n n(n 1)n(n 1)(n为自然数)n(n 1)所以有裂项公式:1 1 1n(n 1) n n 1【例1】10 11111 12的和。
59 601 110 60丄12(二)用裂项法求乔七型分数求和分析: 型。
(n,k均为自然数)n(n k)因为1(1所以【例2】n(nk)] n(n k)n(n k)")1计算5 7 9 11 11 13 13 151勺1(1 9 2'91 1、,1 1 )(丄(丄丄)2 11 131 1)(丄(1 1)2 5 7111-[( )( )( ,、 ,、2 5 7 7 9 9 11 11 13 13 152[515]丄15(三)用裂项法求—「型分数求和n(n k)分析:k- 型(n,k均为自然数)n(n k)1 1 _ n k n kn n k n(n k) n(n k) n(n k)所以k _ 11n(n k) n n k亠2 2 2 2【例3】求2的和1 3 3 5 5 7 97 99(四)用裂项法求仝型分数求和n(n k)(n 2k)分析:2k 均为自然数)分析:n(n k)(n (n,k2k)2k 1 1n(n k)( n 2k) n(n k) (n k)( n 2k)【例4】计算:-4 4 4 4 1 1 1 1(1 3)( ) (-3 5 5 1 1999899(1 1 ) ( 1 1 )(93 9595 97)(95 9797 99)1 1 1 、 “ 1 1 、“ 11 、、[( )()... ...(-)]3 1 2 32 3 4 2 3 4 3 4 5 17 18 19 18 19 20丄[1 1]3 1 2 3 18 19 201139 20520(五)用裂项法求1型分数求和n(n k)(n 2k)(n 3k) 分析:1(n,k 均为自然数)n(n k)( n 2k)(n 3k)1 1 1 n(n k)(n 2k)(n 3k) 3k (n(n k)( n 2k)1(n k)(n 2k)(n3k)【例5】1 1 计算:1234 2 3 4 5117 18 19 203k11n(n k)( n 2k)(n3k) n(n k)( n 2 k) (n k)( n 2k)(n 3k)【例6】计算:-3 3 3分析:(n,k 均为自然数)1 (1 3 1、( 1 1、 3 5) (3 5 5 7)111 3 97 99 32009603(六)用裂项法求 n(n k)(n 2k)(n 3k)型分数求和n(n k)(n 2k)(n 3k)(1 1 ) ( 1 1 )(1 2 3 2 3 4) (2 3 4 3 4 5)1 11 2 3 18 19 2011396840(七)用裂项法求复合型分数和(例题略)( 1 1 )(17 18 19 18 19 20)。
分数裂项求和方法总结一、分数裂项法的基本原理:1.基本思路:将一个分数拆分成多个分数的和,然后对每一项求和。
2.裂项方法:根据需要选择合适的方法进行裂项,常见的裂项方法有:a)定比裂项法:将分数中的分子或分母按照一个固定比例分割成两个数相加或相减的形式。
b)等差裂项法:将分数中的分子或分母按照等差数列递增或递减的方式分割成多个数相加或相减的形式。
3.求和方法:根据裂项后的分数的性质,利用求和公式或其他方法对每一项进行求和。
二、定比裂项法:1.定比裂项法的基本原理:将分数的分子或分母按照一个固定的比例进行分割。
2.定比裂项法的应用:a)对于有限和的求和,可以将分数的分子或分母按照1/n的比例进行分割,其中n为有限和的个数。
b)对于无限和的求和,可以将分数的分子或分母按照a^n的比例进行分割,其中a为分式的基数。
3.定比裂项法的求和公式:a)有限和的求和公式:分子或分母的分割比例为1/n时,求和公式为S=(n-1)/n*a+(n-1)/n*b,其中a和b为分子或分母的每一项的值。
b)无限和的求和公式:分子或分母的分割比例为a^n时,求和公式为S=a/(1-a)*(a*a+a*b+b*b+...),其中a和b为分子或分母的每一项的值。
三、等差裂项法:1.等差裂项法的基本原理:将分数的分子或分母按照等差数列的递增或递减方式进行分割。
2.等差裂项法的应用:a)对于有限和的求和,可以将分数的分子或分母按照等差数列的递增或递减方式进行分割,然后利用等差数列的求和公式对每一项进行求和。
b)对于无限和的求和,可以将分数的分子或分母按照等差数列的递增或递减方式进行分割,然后利用等差数列的求和公式对每一项进行求和,并根据求和结果的特点进行变换。
四、其他注意事项:1.确定裂项方法时需考虑分子或分母的性质,选择合适的裂项方法。
2.在裂项后进行求和时,注意运算次序,避免出现错误。
3.裂项求和方法在计算复杂分式求和时能够大大简化计算过程,但应注意运算的准确性和精确度。
裂项法解分式方程
在解分数的加减时,常常会遇到一些数值非常大但又不好解得分数,然而有时他们却拥有着特性,例如:分母是两个正整数的乘积,分子是那两个正整数的差1/n(n+1)=1/n - 1/n+1
裂项法的思想是将数列中的每项分解,然后重新组合,使之能消去一些项,最终达到求和的目的。
但当分母不是两个相邻的数的乘积时,结果先找出两个正整数相差几,再用几分之一去乘,然后用算式的首项减去尾项。
对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:
⎪⎪⎭
⎫ ⎝⎛+⨯+-+⨯=+⨯+⨯)2()1(1)1(121)2()1(1n n n n n n n ⎪⎪⎭
⎫ ⎝⎛+⨯+⨯+-+⨯+⨯=+⨯+⨯+⨯)3()2()1(1)2()1(131)3()2()1(1n n n n n n n n n n
解分式方程:
例1:
1/30=1/n - 1/n+1
这种时候就可以利用裂项法,将30拆成5*6,两个积数的差是它的分子。
通过裂项法来解得n=5
例2:
1/40=1/3(1/n-1/n+k)
解:这道题可以用裂项法中的
由1/3可知40需要拆成两个差为3的积数,所以代入公式n 为5。
一、裂项法小学数学课本在讨论分数加减法时曾指出:两个分母不同的分数相加减,自然数,公分母正好是它们的乘积.把这个例题推广到一般情况,就有一个很有用的等式:下面利用这个等式,巧妙地计算一些分数求和的问题.例1计算:分析与解此题按常规方法先通分后再求和,显然计算起来十分繁杂.是1,而分母又都是相邻两个自然数的积,符合上面等式的要求.如果按上面等式把题目中的前12个加数也分别写成两个单位分数之差的形式,就得到下面12个等式:上面12个式子的右面相加时,很容易看出有许多项一加一减正好相互抵消变为0,这一来问题解起来就十分方便了像这样在计算分数的加、减时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以相互抵消,从而使计算简化的方法,我们称为裂项法.例2 计算:分析与解这里的每一项的分子是1,分母不是相邻两个自然数的积,但都是从1开始的连续若干个自然数的和,这使我们联想到计算公式:1+当n分别取1,2,3,…,100时,就有即题目中的每一项都变成了一个分子为2、分母为相邻两个自然数乘积的形式,略加变形就得到例1的形式,仿照例1的方法便可求出解来.分析与解猛一看,此题似乎无法下手,而且与裂项法也没关系.但小学数学课本上曾说过,减法是加法的逆运算.换句话说,任一加法算式都可以改为这个题的答案是否只有这一个呢?如果不只一个,怎样才能找出所有答案呢?为此,我们来讨论这类问题的一般情况.设n、x、y都是自然数,且当t=1时,x=7,y=42,当t=2时,x=8,y=24,当t=3时,x=9,y=18,当t=4时,x=10,y=15,当t=6时,x=12,y=12,当t=9时,x=15,y=10,当t=12时,x=18,y=9,当t=18时,x=24,y=8,当t=36时,x=42,y=7.故□和○所代表的两数和分别为49、32、27、25.例4 已知A、B、C、D、E、F为互不相等的自然数,当A、B、C、D、E、F各为什么数时,下面等式成立?当A=3,B=7,C=43,D=1807,E=3263443,F=10650056950806时,等式成立.即这方法计算量太大,我们试着找另外方便一些的解法.在上面两种解法中,后面的解法明显比前面的解法简便.下面我们把后面的那种解题方法一般化.当A有n个不同的约数a1,a2,a3,…,a n时练习一1.计算:2.计算:4.当A、B、C、D、E、F各是什么不同的自然数时,下式成立?5.计算:。
裂和裂差公式
裂差和裂和的公式包括1/n(n+1)=1/n-1/(n+1)、
1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]等。
而裂差和裂和都是裂项运算之一,裂项是分解与组合思想在数列求和中的具体应用,同时也将数列中的每项(通项)分解,然后重新组合,使之能消去一些项。
裂差的公式是:1/n(n+1)=1/n-1/(n+1)=n/(n+1)。
裂项分为两种:分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
裂差型裂项的三大关键特征:
1、分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。
2、分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”。
3、分母上几个因数间的差是一个定值。
裂项相消法公式求和公式在数学中,求和公式是一个非常基础的概念,它用于将一系列的数值相加,得到它们的总和。
裂项相消法是求和公式的一种常见方法,在这种方法中,我们通过将相邻的项相减,以消去一些项,从而简化求和公式。
本文将详细介绍裂项相消法的公式和使用方法。
裂项相消法公式裂项相消法公式是一个非常重要的求和公式,它可以用来求解一些较为复杂的求和问题。
这个公式的具体形式如下:$$\sum_{i=1}^{n}a_i=\frac{1}{2}\left[\sum_{i=1}^{n}(a_i+a_{n-i+1})-\sum_{i=1}^n(a_i-a_{n-i+1})\right]$$这个公式看起来比较复杂,但实际上它非常简单。
其中,$\sum_{i=1}^{n}a_i$表示从1到n的所有$a_i$的和,而$\sum_{i=1}^{n}(a_i+a_{n-i+1})$和$\sum_{i=1}^{n}(a_i-a_{n-i+1})$分别表示将$a_i$和$a_{n-i+1}$相加和相减后的总和。
根据裂项相消法的原理,这两个总和相减后,可以得到原始的$a_i$的和。
使用裂项相消法求和使用裂项相消法求和的具体方法非常简单,只需要按照公式进行计算即可。
以下是一个具体的例子:$$\sum_{i=1}^{5}i^3$$我们可以使用裂项相消法来计算这个求和式。
首先,我们可以将这个求和式写成两个总和的形式:$$\begin{aligned}\sum_{i=1}^{5}i^3&=\frac{1}{2}\left[\sum_{i =1}^{5}(i^3+(6-i)^3)-\sum_{i=1}^{5}(i^3-(6-i)^3)\right]\\&=\frac{1}{2}\left[\sum_{i=1}^{5}(i^3+(6-i)^3)-\sum_{i=1}^{5}(2i^3-3i^2\times6+3i\times36-2\times6^3)\right]\end{aligned}$$然后,我们可以使用简单的代数运算来计算这两个总和:$$\begin{aligned}&\sum_{i=1}^{5}(i^3+(6-i)^3)=2\times\sum_{i=1}^{5}(i^3+108-18i^2)\\=&2\times(\sum_{i=1}^{5}i^3+540-18\sum_{i=1}^{5}i^2)\\=&2\times(1^3+2^3+3^3+4^3+5^3 +540-18\times(1^2+2^2+3^2+4^2+5^2))\\=&2\times(1+8+27+6 4+125+540-18\times55)\\=&2\times(775)=1550\end{aligned}$$$$\begin{aligned}&\sum_{i=1}^{5}(2i^3-3i^2\times6+3i\times36-2\times6^3)=2\times\sum_{i=1}^{5}(2i^3-18i^2+108i-216)\\=&2\times(2\times1^3-18\times1^2+108\times1-216+2\times2^3-18\times2^2+108\times2-216+2\times3^3-18\times3^2+108\times3-216\\&+2\times4^3-18\times4^2+108\times4-216+2\times5^3-18\times5^2+108\times5-216)\\=&2\times(-740)=-1480\end{aligned}$$然后,我们将这两个总和相减并除以2,即可得到答案:$$\frac{1550-(-1480)}{2}=1515$$因此,$\sum_{i=1}^{5}i^3=1515$。
分数裂项相消法公式一、分数裂项相消法的基本类型及公式。
(一)分母为两个连续自然数相乘的形式。
1. 裂项公式。
- 对于(1)/(n(n + 1)),可以裂项为(1)/(n)-(1)/(n + 1)。
- 例如:(1)/(2×3)=(1)/(2)-(1)/(3),(1)/(3×4)=(1)/(3)-(1)/(4)等。
2. 证明。
- (1)/(n)-(1)/(n + 1)=(n+1 - n)/(n(n + 1))=(1)/(n(n + 1))。
(二)分母为两个相差d(d为常数)的自然数相乘的形式。
1. 裂项公式。
- 对于(1)/(n(n + d)),可以裂项为(1)/(d)((1)/(n)-(1)/(n + d))。
- 例如:当d = 2时,(1)/(3×5)=(1)/(2)((1)/(3)-(1)/(5))。
2. 证明。
- (1)/(d)((1)/(n)-(1)/(n + d))=(1)/(d)×(n + d - n)/(n(n + d))=(1)/(n(n + d))。
(三)分母为三个连续自然数相乘的形式。
1. 裂项公式。
- 对于(1)/(n(n + 1)(n+2)),可以裂项为(1)/(2)[(1)/(n(n + 1))-(1)/((n + 1)(n+2))]。
- 例如:(1)/(1×2×3)=(1)/(2)((1)/(1×2)-(1)/(2×3))。
2. 证明。
- (1)/(2)[(1)/(n(n + 1))-(1)/((n + 1)(n + 2))]=(1)/(2)×((n + 2)-n)/(n(n +1)(n+2))=(1)/(n(n + 1)(n+2))。
二、分数裂项相消法的应用示例。
(一)求和。
1. 例1:求S=(1)/(1×2)+(1)/(2×3)+(1)/(3×4)+·s+(1)/(99×100)的值。
知识点分数裂项()
介绍一下分数裂项的基本公式。
一般在分数求和时,利用分数的裂项把一个分数拆成两个分数的差,这样可以消去中间项,只剩下前一项和后一项,达到简化计算的目的。
例如:1/(2×3)+1/(3×4)+1/(4×5)+1/(5×6)
=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6
=1/2-1/6=1/3
分数裂项最基础的是下面这种分母是连续两个自然数的乘积
(一)1/n(n+1)=1/n - 1/(n+1)
下面视频中讲解公式的推导方法,有助于我们理解或者记忆公式,要弄清楚分母中的两个数的差与分子的关系,然后拓展到1/n(n+m)。
把分母扩展到三个数的乘积
(二)1/n(n+1)(n+2)=1/2 (1/n(n+1) - 1/(n+1)(n+2))
例如1/(2×3×4)+1/(3×4×5)+1/(4×5×6)
=1/2 (1/(2×3)-1/(3×4)+1/(3×4)-1/(4×5)+1/(4×5)-1/(5×6))
=1/2 (1/6-1/30)=1/15
以上两种都是裂差,即分成两个分数的差,上节课我们还讲过把分数拆分成两个分数单位的和,例如5/6=1/2+1/3,7/12=1/3+1/4等等,如果题目中有减法,有时可以利用裂和消去中间项。