导数之一:导数求导与切线方程知识讲解
- 格式:doc
- 大小:237.50 KB
- 文档页数:5
函数的导数与曲线的切线与法线函数的导数是微积分中的核心概念之一,它与曲线的切线和法线密切相关。
本文将介绍导数的定义、计算方法以及如何利用导数求曲线的切线和法线。
一、导数的定义与计算方法导数表示函数在某一点上的变化率,可以理解为函数曲线在该点处的斜率。
定义如下:设函数f(x)在点x处有定义,则f(x)在该点处的导数为:f'(x) = lim [f(x + h) - f(x)] / h ,其中 h -> 0导数的计算方法有很多种,常见的包括利用基本导数公式、几何意义和导数的性质等。
以下将介绍几种常见的计算方法:1. 基本导数公式:常数的导数为零,幂函数的导数为幂次减一乘以系数,指数函数的导数为自身乘以自然对数的底数等。
2. 和、差、积、商法则:利用导数的性质,将函数分解后进行求导。
3. 高阶导数:指函数的导数再求导,可以重复多次。
4. 链式法则:用于求复合函数的导数,将复合函数分解为一层一层的函数,再利用导数的性质进行计算。
二、曲线的切线与法线曲线的切线是指曲线上某一点处与曲线最为接近的直线,而法线则是与切线垂直的直线。
在图像上,切线与曲线之间只有一个交点,而法线与曲线只有一个公共点。
曲线的切线方程可以通过导数求得。
对于函数f(x),若点(x0, f(x0))处的导数存在,则切线的斜率为f'(x0),通过点斜式或斜截式可以求得切线的方程。
曲线的法线方程可以通过切线方程和导数求得。
由于法线与切线垂直,故切线的斜率与法线的斜率的乘积为-1。
因此,法线的斜率为-1/f'(x0),通过点斜式或斜截式可以求得法线的方程。
三、利用导数求曲线的切线与法线利用导数求曲线的切线与法线的过程一般如下:1. 给定函数f(x)和点(x0, f(x0))。
2. 求导数f'(x)。
3. 计算f'(x0)的值,得到切线的斜率。
4. 利用切线的斜率和给定点(x0, f(x0)),使用点斜式或斜截式得到切线方程。
模块一:切线方程知识点一:导数的几何意义。
导数的几何意义:导数值等于原函数在该点处的切线斜率。
知识点二:直线的点斜式方程。
直线的点斜式方程:直线过点),(00y x ,直线的斜率为k ⇒直线的点斜式方程:)(00x x k y y -=-。
题型一:已知切点的横坐标,求解切线方程。
模型:已知:函数)(x f 的解析式。
求解:函数)(x f 在0x x =处的切线方程。
解法设计:第一步:求切点的纵坐标。
把0x x =代入函数)(x f 得到切点的纵坐标⇒)(0x f 切点))(,(00x f x 。
第二步:求导函数。
根据函数)(x f 的解析式计算导函数)('x f 。
第三步:求切线斜率。
根据导数的几何意义得到:把0x x =代入导函数)('x f 得到切线斜率)('0x f 。
第四步:求切线方程。
根据直线的点斜式方程得到:切点))(,(00x f x ,切线斜率为)('0x f ⇒切线方程:))((')(000x x x f x f y -=-。
例题:2020年高考理科数学新课标Ⅰ卷第6题:函数342)(x x x f -=的图像在点))1(,1(f 处的切线方程为()A、12--=x y B、12+-=x y C、32-=x y D、12+=x y 本题解析:第一步:求切点的纵坐标。
把1=x 代入函数342)(x x x f -=得到1121)1(34-=⨯-=f ⇒切点)1,1(-。
第二步:求导函数。
342)(x x x f -=2364)('x x x f -=⇒。
第三步:求切线斜率。
根据导数的几何意义得到切线斜率:21614)1('23-=⨯-⨯=f 。
第四步:求切线方程。
根据直线的点斜式方程得到:切点)1,1(-,切线斜率为2-⇒切线方程:12221)1(2)1(+-=⇒+-=+⇒--=--x y x y x y 。
跟踪训练一:2019年高考数学新课标Ⅰ卷理科第19题文科第19题:曲线xe x x y )(32+=在)0,0(处的切线方程为。
本章节知识提要考试要求1.导数概念及其几何意义(1)了解导数概念的实际背景; (2)理解导数的几何意义.2.导数的运算(1)能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =x 3,y =x1,y =x 的导数;(2)能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax +b )的复合函数)的导数.3.导数在研究函数中的应用(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次);(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).4.生活中的优化问题:会利用导数解决某些实际问题.5.定积分与微积分基本定理(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念;(2)了解微积分基本定理的含义导数〔1〕:求导与切线【知识点梳理】1. 求导公式与求导法则:0'=C ; 1)'(-=n n nx x ; x x cos )'(sin =; x x sin )'(cos -= xx 1)'(ln = ; x x e e =)'( a a a x x ln )'(= 2. 法则1 )(.))'(('=x f c x cf法则2 '''[()()]()()f x g x f x g x ±=±.法则3 [()()]'()()()'()f x g x f x g x f x g x '=+, [()]'()cf x cf x '= 法则4:'2()'()()()'()(()0)()()f x f x g x f x g x g x g x g x ⎛⎫-=≠ ⎪⎝⎭3.利用导数求曲线的切线方程:函数()y f x =在点0x 的导数的几何意义就是曲线()y f x =在点00(,)p x y 处的切线的斜率,也就是说,曲线()y f x =在点00(,)p x y 处的切线斜率是0()f x ',切线的方程为000()()y y f x x x '-=-曲线f (x )在A 〔m,n 〕处的切线方程求法:①求函数f (x )的导数f ′(x ).②求值:f ′(m )得过A 点的切线的斜率③由点斜式写出切线方程:y –n = f ′(m )(x-m)【精选例题】例1.求以下函数的导函数1. x x f =)(2.2)(e x f =3.y=2x+34.x x f =)( 5.y=x 2+3x-3 6. 1y x =7. x x x f ln 2)(= 8. 32)sin()(x x x f += 9. x x x x f 2ln )(+=例2:.求函数12+=x y 在-1,0,1处导数。
高一数学导数与曲线的切线与法线导数是微积分中的一个重要概念,它反映了函数在某一点的变化率。
在数学中,导数的应用领域非常广泛,其中之一就是用导数来求曲线的切线与法线。
本文将介绍高一数学导数与曲线的切线与法线的概念及计算方法。
一、导数的概念导数是函数在某一点的变化率,用极限表示。
若函数f(x)在点x=a处可导,则f'(a)表示函数f(x)在点x=a处的导数。
导数可以理解为函数图像上某一点处的切线斜率。
二、切线的概念在曲线上取一点P,过点P且与曲线仅有一个公共点的直线,称为切线。
切线的斜率等于曲线在该点的导数。
三、法线的概念在曲线上取一点P,过点P且与切线垂直的直线,称为法线。
法线的斜率等于切线的斜率的相反数。
四、求曲线的切线与法线的步骤1. 确定曲线上一点的坐标,记为(a,f(a))。
2. 求出函数f(x)在点x=a处的导数,记为f'(a)。
3. 利用导数f'(a)求出切线的斜率k。
4. 根据切线的斜率k和已知点(a,f(a))求出切线的方程。
5. 切线的方程即为所求。
五、示例假设有函数f(x) = 2x^2 + 3x + 1,我们来求曲线y = f(x)在点x = 2处的切线和法线。
解:1. 确定曲线上一点的坐标,此处是x = 2,代入函数f(x)得到y = f(2) = 2(2)^2 + 3(2) + 1 = 15。
2. 求导数f'(x) = 4x + 3,将x = 2代入得到f'(2) = 4(2) + 3 = 11。
3. 切线的斜率k = f'(2) = 11。
4. 根据切线的斜率k和已知点(2,15)求出切线的方程。
切线方程为y - 15 = 11(x - 2)。
5. 同理,法线的斜率为切线斜率的相反数,即-1/11。
过点(2,15)的法线方程为y - 15 = (-1/11)(x - 2)。
六、结论通过求导数,我们可以求出曲线上任意一点处的切线与法线。
利用导数求曲线的切线和公切线一. 求切线方程【例1】.已知曲线f(x)=x 3-2X12+1.(1) 求在点P( 1,0 )处的切线l i的方程;⑵ 求过点Q( 2,1 )与已知曲线f(x)相切的直线丨2的方程.提醒:注意是在某个点处还是过某个点!二. 有关切线的条数【解答】解:(I)由 f (x) =2x3- 3x 得f'( x) =6x2- 3,令f,( x) =0 得, x= - ■-或x= ■-,2 2•- f (-2) =- 10, f (-二)=",f ( = ) =- ", f (1) =- 1,••• f (x)在区间[-2, 1]上的最大值为二.(n)设过点P (1, t)的直线与曲线y=f (x)相切于点(X0, y°),则y o=2・” -3x。
,且切线斜率为k=6 :匚-3,•••切线方程为y-y o= (6:,二-3)(x -x o),••• t - y°= (6 :,二-3)( 1 - x o),即卩4- 6 . F +t+3=0,设g (x) =4x? - 6x?+t+3 , 则“过点P (1, t)存在3条直线与曲线y=f (x)相切”,等价于“ g (x)有3 个不同的零点”.T g'(x) =12x2- 12x=12x (x- 1),•g (0) =t+3是g (x)的极大值,g (1) =t+1是g (x)的极小值.•g (0)> 0 且g (1)v 0,即-3v t v- 1,•当过点过点P (1, t)存在3条直线与曲线y=f (x)相切时,t的取值范围是(-3,- 1).(rn)过点A (- 1, 2)存在3条直线与曲线y=f (x)相切;过点B (2, 10)存在2条直线与曲线y=f (x)相切;过点C (0, 2)存在1条直线与曲线y=f (x)相切.【作业1】.(2017?莆田一模)已知函数 f (x) =2x3- 3x+1, g (x) =kx+1 - Inx .(fM y<1(1)设函数hW二’、,当k v 0时,讨论h (x)零点的个数;g lx)』x^l(2)若过点P (a,- 4)恰有三条直线与曲线y=f (x)相切,求a的取值范围.三. 切线与切线之间的关系【例4】.(2018?绵阳模拟)已知a, b, c€ R,且满足b2+c2=1,如果存在两条互相垂直的直线与函数f (x) =ax+bcosx+csinx的图象都相切,则a+/HW:c 的取值范围是.解:f '(x) = a + b cos x—c sin x = a +c' cos(x + ^?) = a +cos(x + p)令H + e = 则码 + 0 =环巧+e = g. f\x) ~+dtj题意’存在x r x2E R使得厂(xj厂(兀)= T* 0p(a+cos^X fl + cos^)=_l»即关于。
导数与曲线的切线在数学中,导数是研究曲线变化率的重要概念。
它不仅可以用来衡量曲线在某一点的斜率,还可以帮助我们找到曲线上任意一点的切线方程。
本文将介绍导数的定义与性质,并探讨其与曲线切线的关系。
一、导数的定义导数是用来描述函数变化率的数值。
对于任意一个函数f(x),我们可以定义其导数为f'(x),也常用dy/dx或df(x)/dx表示。
导数表示了函数在某一点的瞬时变化率,也可以理解为函数在该点的切线斜率。
导数的定义可以使用极限的概念来表达:f'(x) = lim(h->0) [f(x+h) - f(x)] / h其中,h是一个无限接近于0的数。
这个定义意味着导数是通过求出函数在某一点邻近的两个值的斜率的极限来计算的。
二、导数的性质导数具有许多有用的性质。
下面列举了其中一些重要的性质:1. 常数函数的导数为0:对于任意的常数c,其导数f'(x) = 0。
这是因为常数函数在任意一点的变化率都是0。
2. 变量的幂函数的导数:对于幂函数f(x) = x^n,其中n是任意实数,则它的导数为f'(x) = nx^(n-1)。
这个性质可以用来求解多项式函数的导数。
3. 常见函数的导数:常用的函数如指数函数、对数函数和三角函数都有特定的导数公式。
例如,指数函数e^x的导数为e^x,对数函数ln(x)的导数为1/x,正弦函数sin(x)的导数为cos(x)等。
掌握这些导数公式可以帮助我们更轻松地计算复杂函数的导数。
三、导数与切线的关系导数与曲线的切线之间有着密切的联系。
事实上,函数在某一点的导数就是该点切线的斜率。
通过求解导数,我们可以得到曲线上任意一点的切线方程。
切线方程的一般形式为y = mx + c,其中m为切线的斜率,c为切线与坐标轴的交点。
给定一点(x0, y0)处的函数f(x)的导数f'(x0),我们就可以得到切线的斜率m。
此时,切线方程可以写为y = f'(x0)(x - x0) + y0。
高中数学知识点总结导数求切线导数与切线是高中数学中的重要概念,它们在解析几何和微积分中扮演着核心角色。
本篇文章将对高中数学中关于导数求切线的相关知识点进行详细总结。
一、导数的基本概念导数是描述函数在某一点处的瞬时变化率的概念。
对于函数f(x),其在点x处的导数,记为f'(x)或df/dx,表示当x的增量趋近于0时,函数f(x)增量与x增量之比的极限。
如果这个极限存在,我们就说函数f(x)在点x处可导,并称这个极限为f(x)在点x处的导数。
二、导数的几何意义导数的几何意义是表示函数图像在某一点处的切线斜率。
具体来说,如果函数y=f(x)在点P(x0, f(x0))处可导,那么该点处的导数f'(x0)即为通过点P的切线的斜率。
这意味着,当我们在坐标平面上画出函数y=f(x)的图像时,导数可以帮助我们找到与图像在特定点接触的直线,这条直线就是切线。
三、求导法则在高中数学中,学生需要掌握基本的求导法则,包括:1. 常数法则:对于任何常数c,(c)' = 0。
2. 幂法则:如果n是实数,那么(x^n)' = nx^(n-1)。
3. 和差法则:(u±v)'= u' ± v'。
4. 乘积法则:(uv)' = u'v + uv'。
5. 商法则:(u/v)' = (u'v - uv') / v^2,其中v≠0。
6. 链式法则:如果y=f(u)且u=g(x),那么y关于x的导数(dy/dx) = (dy/du) * (du/dx)。
四、导数的计算在高中数学中,学生需要学会计算常见函数的导数。
例如:1. 对于线性函数y=mx+b,其导数为y'=m。
2. 对于二次函数y=ax^2+bx+c,其导数为y'=2ax。
3. 对于指数函数y=a^x,其导数为y'=a^x * ln(a)。
高中数学知识点总结导数与曲线的切线与法线高中数学知识点总结:导数与曲线的切线与法线导数是高中数学中的重要概念之一,它与曲线的切线与法线有着密切的关系。
本文将对导数的基本概念进行总结,以及导数与曲线的切线与法线的求解方法进行介绍。
一、导数的基本概念导数是函数微分学的基础,它描述了函数在某一点的变化率。
对于函数y=f(x),若该函数在点x处的导数存在,记为f'(x)或dy/dx,则导数的定义为:\[ f'(x) = \lim_{\Delta x \to 0}\frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x} \]其中,Δx表示自变量x的增量,Δy表示函数值f(x)的增量。
导数可以理解为函数曲线在某一点处的瞬时斜率。
二、导数的性质与求导法则在求解导数时,可以利用一些常用的求导法则,如常数法则、幂函数求导法则、指数函数求导法则、对数函数求导法则、三角函数求导法则等。
这些法则可以简化导数的计算过程。
此外,导数还具有一些重要的性质,如导数与函数的增减性、导数与函数的极值、导数与函数的凹凸性等。
通过对导数的性质的研究,可以更深入地理解函数的特性。
三、曲线的切线与法线曲线的切线与法线是函数图像中与曲线相切的直线。
切线与曲线在切点处有相同的斜率,而法线与曲线在切点处的斜率互为相反数。
对于函数y=f(x),如果在点P(x0, f(x0))处存在切线或法线,那么切线的斜率为f'(x0),法线的斜率为-1/f'(x0)。
我们可以利用导数的概念来求解曲线的切线与法线。
四、求解曲线的切线与法线的步骤求解曲线的切线与法线的一般步骤如下:1. 求出函数f(x)在点P处的导数f'(x0);2. 计算切点P(x0, f(x0))处的切线斜率k,若求解法线则计算法线斜率k'(k'=-1/k);3. 根据切点和斜率,得出切线或法线的解析式。
导数第一讲:求导、切线、单调性、极值、最值例1.(1)求曲线21xy x =-,在点()1,1处的切线方程;(2)求过点()2,3的抛物线2y x =的切线方程.解:(1)()2121y x '=--,可知所求切线的斜率1k =-故所求切线的方程为()11y x -=--,即20x y +-=.(2)设切点坐标为()200,x x ,2y x '=,可知所求切线的斜率022k x =∵切线过点()2,3和点()200,x x ,∴2000322x x x -=-,解得01x =或03x =,∴切线的斜率为2或6故所求切线的方程为()322y x -=-或()362y x -=-,即210x y --=或690x y --=.练习1.已知函数()3233f x x x bx c =-++在=0x 处取得极大值1.(1)求函数()y f x =的图象在=1x -处的切线方程;(2)求过点()1,1-与曲线()y f x =相切的直线方程.解:(1)()3233f x x x bx c =-++,则()2363f x x x b '=-+,由题意可得()()03001f b f c ⎧'==⎪⎨==⎪⎩,解得01b c =⎧⎨=⎩,即()3231f x x x =-+,()236f x x x '=-,令()0f x ¢>,解得2x >或0x <,故()f x 在()(),0,2,-∞+∞上单调递增,在()0,2上单调递减,则()f x 在=0x 处取得极大值1,即0,1b c ==符合题意.∵()()13,19f f '-=--=,则切点坐标为()1,3--,切线斜率9k =,∴函数()y f x =的图象在=1x -处的切线方程为()391y x +=+,即960x y -+=.(2)由(1)可得:()3231f x x x =-+,()236f x x x '=-,设切点坐标为()32000,31x x x -+,切线斜率20036k x x =-,则切线方程为()()()322000003136y x x x x x x --+=--,∵切线过点()1,1-,则()()()32200000131361x x x x x ---+=--,整理得()3010x -=,即01x =,∴切线方程为()131y x +=--,即320x y +-=.例2.函数32()(1)31f x x a x x =+--+.(1)当1a =时,求函数()f x 的单调区间;(2)若过原点O 可作三条直线与()f x 的图像相切,求实数a 的取值范围.解:(1)当1a =时,3()31,R f x x x x =-+∈.由2()33f x x '=-,令()0f x '>,解得1x <-或1x >;令()0f x '<,解得11x -<<.所以()f x 的单调递增区间为(,1)-∞-和(1,)+∞,单调递减区间为(1,1)-.(2)易知原点O 不在函数()f x 的图像上,设切点为(,())(0)t f t t ≠.求导得2()32(1)3f x x a x =+--',则()()f t f t t =',即322(1)3132(1)3t a t t t a t t +--+=+--,整理得322(1)10t a t +--=,所以2112a t t -=-,令21()2(0)g t t t t =-≠,则32()2g t t =+',令()0g t '>,解得0t >或1t ≤-;令()0g t '<,解得10t -<<,所以函数()g t 在区间(,1)-∞-上单调递增,在(1,0)-上单调递减,在(0,)+∞上递增,故当0t <时,max ()(1)3g t g =-=-;当t →-∞时,()g t →-∞;0t →时,()g t →-∞,当0t >时,()g t 的取值范围为R .而过原点O 可作三条直线与()f x 的图像相切,则()()f t f t t='有三个不相等的实数根,也就是直线1y a =-与函数()y g t =的图象有三个交点,则有13a -<-,即4a >.练习2.已知函数()f x =e x ,()ln g x x =.()f x 的图象与()g x 的图象是否存在公切线?如果存在,有几条公切线,请证明你的结论.解:曲线y =f (x ),y =g (x )公切线的条数是2,证明如下:设公切线与g (x )=lnx ,f (x )=ex 的切点分别为(m ,lnm ),(n ,en ),m ≠n ,∵g ′(x )1x =,f ′(x )=ex ,可得11nne mlnm e m n m ⎧=⎪⎪⎨-⎪=⎪-⎩,化简得(m ﹣1)lnm =m +1,当m =1时,(m ﹣1)lnm =m +1不成立;当m ≠1时,(m ﹣1)lnm =m +1化为lnm 11m m +=-,由lnx 11x x +==-121x +-,即lnx ﹣121x =-.分别作出y =lnx ﹣1和y 21x =-的函数图象,由图象可知:y =lnx ﹣1和y 21x =-的函数图象有两个交点,可得方程lnm 11m m +=-有两个实根,则曲线y =f (x ),y =g (x )公切线的条数是2条.例3.已知函数()()()21ln 1R 2f x x ax a x a =+-+∈.(1)当2a =时,求函数()y f x =的极值;(2)求当0a >时,函数()y f x =在区间[1,e]上的最小值()Q a .解:(1)当2a =时,函数2()ln 3(0)f x x x x x =+->.1(21)(1)()23x x f x x x x--'=+-=,令()0f x '=,得1x =或12x =,当1(0,)2x ∈时,()0f x '>,()f x 在1(0,)2上单调递增,当1(,1)2x ∈时,()0f x '<,()f x 在1(,1)2上单调递减,当(1,)x ∈+∞时,()0f x '>,()f x 在(1,)+∞上单调递增,则()f x 在12x =处取得极大值,在1x =处取得极小值.极大值为15()ln 224f =--,极小值为(1)2f =-.(2)函数()f x 的定义域是[1,e],1()(1)1()(1)(0)a x x a f x ax a a x x--'=+-+=>.当0a >时,令()0f x '=有两个解,1x =或1x a=.当10ea <≤,即1e a ≥时,()0f x '≤,()f x ∴在[1,e]上单调递减,()f x ∴在[1,e]上的最小值是(e)f 211e (1)e 2a a =+-+,当11ea <<,即11e a <<时,当1(1,)x a ∈时,()0f x '<,()f x ∴在1(1,)a上单调递减,当1(,e)x a ∈时,()0f x '>,()f x ∴在1(,e)a 上单调递增,()f x ∴在[1,e]上的最小值是11()ln 12f a a a=---,当1a ≥,即101a<≤时,[1,e]x ∈,()0f x '≥,()f x ∴在[1,e]上单调递增,()f x ∴在[1,e]上的最小值是(1)f 112a =--.综上,2111e (1)e,02e 11()ln 1,12e 11,12a a a Q a a a a a a ⎧+-+<≤⎪⎪⎪=---<<⎨⎪⎪--≥⎪⎩.练习3.已知()()2,R f x x x c c =-∈.(1)若()f x 在2x =处有极大值,求c 的值;(2)若03c <<,求()f x 在区间[1]2,上的最小值.解:(1)由题知,()()()3f x x c x c =--',由题意,()()()2260f c c '=--=,得2c =或6c =,当2c =时,在()2,,2,3⎛⎫-∞+∞ ⎪⎝⎭上()0f x ¢>,在2,23⎛⎫ ⎪⎝⎭上()0f x '<,此时,()f x 在2x =处有极小值,不符题意;当6c =时,在()(),2,6,-∞+∞上()0f x ¢>,在()2,6上()0f x '<,此时,()f x 在2x =处有极大值,符合题意.综上,6c =.(2)令()0f x '=,得3cx =或x c =,由03c <<,则在(),,,3c c ∞∞⎛⎫-+ ⎪⎝⎭上()0f x ¢>,在,3c c ⎛⎫⎪⎝⎭上()0f x '<,即()f x 在(),,,3c c ∞∞⎛⎫-+ ⎪⎝⎭上单调递增,在,3c c ⎛⎫⎪⎝⎭上单调递减.由题意,13c <,当23c ≤<时,()f x 在区间[]1,2上单调递减,则()2min ()22(2)f x f c ==-,当12c <<时,()f x 在区间()1,c 上单调递减,在(),2c 上单调递增,则()min ()0f x f c ==,当01c <≤时,()f x 在区间[]1,2上单调递增,则()2min ()1(1)f x f c ==-,综上,()()()2min21,010,1222,23c c f x c c c ⎧-<≤⎪⎪=<<⎨⎪-≤<⎪⎩.例4.已知函数()()22ln f x x x a x a =-+∈R .(1)若()f x 的单调递减区间为13,44⎡⎤⎢⎥⎣⎦,求a 的值;(2)若0x 是()f x 的极大值点,且()2002f x x a <-恒成立,求a 的取值范围.解:(1)由题可知()f x 的定义域为()0,∞+,()22222a x x af x x x x-+'=-+=.()f x 的单调递减区间为13,44⎡⎤⎢⎥⎣⎦等价于()0f x '≤的解集为13,44⎡⎤⎢⎥⎣⎦,即2220x x a -+≤的解集为13,44⎡⎤⎢⎥⎣⎦.所以方程2220x x a -+=的两个根分别为14,34,由根与系数的关系可得13244a =⨯,所以38a =.(2)若0x 是()f x 的极大值点,定义域为()0+∞,,则()0f x '=至少有一正根,即方程2220x x a -+=至少有一正根.若0a =,则方程2220x x a -+=的正根为1x =,因为当01x <<时()0f x '<,当1x >时()0f x ¢>,所以此时()f x 只有极小值点1,不符合题意.若0<a ,则方程2220x x a -+=有一正根和一负根,设为α,β,且0α>,0β<,则()()2222x x a x x αβ-+=--.因为当0x α<<时,()0f x '<,当x α>时,()0f x ¢>,所以此时()f x 只有极小值点α,不符合题意.若0a >,由题可知方程2220x x a -+=应有两个不等的正根,设为1x ,2x ,其中12x x <,则Δ48002a a =->⎧⎪⎨>⎪⎩解得102a <<.所以()()()212222x x x x x x a f x x x ---+'==.列表如下:x()10,x 1x ()12,x x 2x ()2,x +∞()f x '+-+()f x 单调递增极大值单调递减极小值单调递增所以1x 是极大值点,2x 是极小值点,则01x x =.由120x x <<,且121x x =+,得110x 2<<.由题可知()22000002ln 2f x x x a x x a =-+<-,即00ln 220a x x a -+<当0102x <<时恒成立.令()ln 22h x a x x a =-+,102x <<,则()222a x a x h x x x ⎛⎫- ⎪-⎝⎭'==.因为102a <<,所以1024a <<.所以当02a x <<时,()0h x '>,当2ax >时,()0h x '<,所以()max ln 022a a h x h a a ⎛⎫==+< ⎪⎝⎭,解得20e a <<,又102a <<,所以此时a 的取值范围是10,2⎛⎫⎪⎝⎭.综上,实数a 的取值范围是102⎛⎫⎪⎝⎭,.练习4.设函数21()3ln ,2af x x x a R x=+-∈.(1)若函数()f x 是增函数,求实数a 的取值范围;(2)是否存在实数a ,使得1x =是()f x 的极值点?若存在,求出a ;若不存在,请说明理由.解:(1)23()a f x x x x=--',∵()f x 是增函数,∴23()0a f x x x x=--≥'对0x ∀>恒成立,∴()3min3a x x ≤-,令32()3,()33g x x x g x x '=-=-,令()01g x x '=⇒=且当01x <<时,()0g x '<,()g x 单调递减;当1x >时,()0g x '>,()g x 单调递增.∴min ()(1)2g x g ==-,∴2a ≤-,即a 的取值范围为(,2]-∞-.(2)若1x =是()f x 的极值点,则必有(1)1302f a a =--=⇒=-'(必要性)当2a =-时,322222332(1)(2)()0x x x x f x x x x x x -+-+=+-='=≥∴()f x 在(0,)+∞上单调递增,()f x 无极值点,故假设不成立,即不存在这样的a .练习5.已知函数()()=ln 3R f x a x ax a --∈(1)求函数()f x 的单调区间;(2)若函数()f x 的图像在点()()2,2f 处的切线斜率为12,设()()m g x f x x=-,若函数()g x 在区间[]1,2内单调递增,求实数m 的取值范围.解:(1)(1)()(0)a a x f x a x x x-=-=>'当0a >时,()f x 的单调增区间为()0,1,减区间为()1,+∞;当0a <时,()f x 的单调增区间为(1,)+∞,减区间为()0,1;当=0a 时,()f x 不是单调函数.(2)∵1(2)2f '=,∴12122a -⋅=,解得1a =-,∴()ln 3f x x x =-+-()()()ln 30m m g x f x x x x x x =-=-+-->,又()221()10m x g x x x x x x m-+'=-++=>()g x 要在区间[1,2]上单调递增,只需()0g x '≥在[]1,2上恒成立,即20x x m -+≥在[]1,2上恒成立,即()2maxm x x≥-,又在[1,2]上()2maxx x-=∴0m ≥.练习6.已知函数()(ln 1),R f x x x k k =--∈.(1)当1x >时,求函数()f x 的单调区间和极值;(2)若对于任意2e,e x ⎡⎤∈⎣⎦,都有()4ln f x x <成立,求实数k 的取值范围;解:(1)由题知,()()ln 1,R f x x x k k =--∈,所以1()ln 1ln ,0f x x k x x k x x'=--+⋅=->,当0k ≤时,因为1x >,所以()ln 0f x x k '=->,所以()f x 的单调增区间是(1,)+∞,无单调减区间,无极值,当0k >时,令ln 0x k -=,解得e k x =,当1e k x <<时,()0f x '<,当e k x >时,()0f x '>,所以()f x 的单调减区间是()1,e k ,单调增区间是()e ,k ∞+,极小值为()()e e 1e k k kf k k =⋅--=-,无极大值.(2)因为对于任意2e,e x ⎡⎤∈⎣⎦,都有()4ln f x x <成立,所以()4ln 0f x x -<,即问题转化为(4)ln (1)0x x k x --+<,对于2e,e x ⎡⎤∈⎣⎦恒成立,即(4)ln 1x x k x -+>,对于2e,e x ⎡⎤∈⎣⎦恒成立,令(4)ln ()x x g x x -=,所以24ln 4()x x g x x +-'=,令()24ln 4,e,e t x x x x ⎡⎤=+-∈⎣⎦,所以4()10t x x'=+>,所以()t x 在区间2e,e ⎡⎤⎣⎦上单调递增,所以()()min e e 44e 0t x t ==-+=>,所以()0g x '>,所以()g x 在区间2e,e ⎡⎤⎣⎦上单调递增,所以函数()()22max 8e 2eg x g ==-,要使(4)ln 1x x k x -+>,对于2e,e x ⎡⎤∈⎣⎦恒成立,只要max 1()k g x +>,所以2812e k +>-,即281e k >-,所以实数k 的取值范围为281,e ∞⎛⎫-+ ⎪⎝⎭;备选1.设a 为实数,已知函数()()32211932f x x a x =-++(1)讨论()f x 的单调性(2)若过点()0,10有且只有两条直线与曲线()32111132y x a x ax =-+++相切,求a 的值.解:(1)因为()()32211932f x x a x =-++,则()()221f x x a x '=-+,由()0f x '=可得10x =,212a x +=,①当102a +=时,即当1a =-时,对任意的x ∈R ,()0f x '≥且()f x '不恒为零,此时,函数()f x 的增区间为(),-∞+∞,无减区间;②当102a +<时,即当1a <-时,由()0f x '<可得102a x +<<,由()0f x ¢>可得12a x +<或0x >,此时,函数()f x 的减区间为1,02a +⎛⎫⎪⎝⎭,增区间为1,2a +⎛⎫-∞ ⎪⎝⎭、()0,∞+;③当102a +>时,即当1a >-时,由()0f x '<可得102a x +<<,由()0f x ¢>可得0x <或12a x +>,此时,函数()f x 的减区间为10,2a +⎛⎫ ⎪⎝⎭,增区间为(),0∞-、1,2a +⎛⎫+∞⎪⎝⎭.综上所述,当1a =-时,函数()f x 的增区间为(),-∞+∞,无减区间;当1a <-时,函数()f x 的减区间为1,02a +⎛⎫⎪⎝⎭,增区间为1,2a +⎛⎫-∞ ⎪⎝⎭、()0,∞+;当1a >-时,函数()f x 的减区间为10,2a +⎛⎫ ⎪⎝⎭,增区间为(),0∞-、1,2a +⎛⎫+∞⎪⎝⎭.(2)解:设切点为()3211,1132t t a t at ⎛⎫-+++ ⎪⎝⎭,对函数()32111132y x a x ax =-+++求导得()21y x a x a '=-++,所以,切线方程为()()()3221111132y t a t at t a t a x t ⎡⎤⎡⎤--+++=-++-⎣⎦⎢⎥⎣⎦,将点()0,10的坐标代入切线方程整理可得()322119032t a t -++=,即()0f t =,故关于t 的方程()0f t =有两个不等的实根,①当1a =-时,函数()f t 在R 上单调递增,则方程()0f t =至多一个实根,不合乎题意;②当1a <-时,则()()090f t f ==>极小值,故当12a t +>时,()0f t >,此时方程()0f t =至多一个实根,不合乎题意;③当1a >-时,则()()090f t f ==>极大值,则()()311910224a f t f a +⎛⎫==-+= ⎪⎝⎭极大值,解得5a =,合乎题意.综上所述,5a =.备选2.已知函数()22ln 2x af x x x-=-.(1)若()f x 在()0,∞+上单调递减,求实数a 的取值范围;(2)若1a =,试问过点()0,1向曲线()y f x =可作几条切线?解:(1)依题意,因为()22ln 2x af x x x-=-,所以()f x 的定义域为()0,∞+,()()()22222222112142x x x a x a f x x x x ⨯----+-'=-=,若()f x 在()0,∞+上单调递减,则有()0f x '≤在()0,∞+上恒成立,即()21120x a --+-≤恒成立,所以()22111a x ≥--+≥,解得12a ≥,所以实数a 的取值范围为:1,2⎡⎫+∞⎪⎢⎣⎭.(2)当1a =时,()22ln 2x f x x x -=-且点()0,1不在()f x 上,所以()()22112x f x x---'=,设切线方程的斜率为k ,切点为()00,P x y ,根据导数的几何意义,则有()2020112x k x---=,又切线过点()0,1,所以切线方程可设为1y kx =+,则有001y kx =+,200002ln 2x y x x -=-,所以()2002020002112ln 21x x x x x x --=---⨯+,整理得000ln 220x x x -+=,令()ln 22g x x x x =-+()0x >,则()ln 1g x x '=-,所以在x ∈()0,e 时,()0g x '<,()g x 单调递减;在()e,x ∈+∞,()0g x '>,()g x 单调递增;所以()g x 在e x =处取得最小值,又()10g =,所以()g x 在()0,e 有一零点,又因为()0e e 2g =-<,()2222eeln e 2e 220g =-+=>,由零点存在性定理可知,在()2e,e x ∈必有一个根0x ,使得000ln 220x x x -+=成立,综上,方程000ln 220x x x -+=有两个解,所以过点()0,1向曲线()y f x =可作2条切线.备选3.已知函数1()2ln f x a x x x ⎛⎫=-- ⎪⎝⎭,其中a R ∈.(1)若()f x 是定义在(0,)+∞上的单调函数,求实数a 的取值范围;(2)当0a >时,判断()f x 与()2g x x =的图象在其公共点处是否存在公切线?若存在,求满足条件的a 值的个数;若不存在,请说明理由.解:(1)222122()1ax x a f x a x x x -+⎛⎫'=+-= ⎪⎝⎭.当0a ≤时,()0f x '<,故()f x 在(0,)+∞上单调递减,满足题意;当0a >时,要使得()f x 在(0,)+∞上单调,则恒有()0f x '≥.∴2440a ∆=-≤,解得:1a ≥.综上,1a ≥或0a ≤(2)假设()f x ,()g x 的图象在其公共点()00,x y 处存在公切线,则()()()()2000200000200002212ln ax x ax x f x g x f x g x a x x x x ⎧-+=⎪⎧=⎪⎪⇒⎨⎨=⎛⎫⎪⎩⎪--= '⎪'⎪⎝⎭⎩①②由①可得:()()32200000220120x ax x a x x a -+-=⇔+-=,∴002x a=>.将02a x =代入②,则222ln 2224a a a --=,即:28ln 82a a-=.令28()182x xh x n -=-,则11()4h x x x '=-,故()h x 在()0,2上单调递减,在(2,)+∞上单调递增.又1(2)02h =-<,且当0x →,()h x →+∞;当x →+∞,()h x →+∞∴()h x 在(0,)+∞有两个零点,即方程28ln 82a a-=在(0,)+∞有两个不同的解.所以,()f x 与2()g x x =的图象在其公共点处存在公切线,满足条件的a 值有2个。
导函数切线方程的求法1. 什么是导函数?导函数是由一个函数的斜率所组成的函数。
也叫做一阶导数,常用符号为f’(x)。
导函数可以用来刻画函数的变化率和曲线在每一点的切线斜率。
2. 导函数的定义对于一个函数f(x),其导函数定义为:f’(x) = lim(h→0) [f(x+h) - f(x)] / h其中,lim表示极限,h表示x的增量。
导函数的定义可以简化为求函数f(x)的变化率。
3. 导函数的求法导函数的求法有一些常用的方法,以下是几个常见的方法:3.1 使用定义求导根据导函数的定义,可以通过对函数进行变化求极限的方法来求解导函数。
这种方法通常适用于比较简单的函数。
步骤: 1. 写出函数f(x)。
2. 根据导函数的定义,计算lim(h→0) [f(x+h) -f(x)] / h。
3. 化简得到导函数的表达式。
3.2 利用基本导数公式求导对于一些基本的函数,存在一些常用的导数公式,可以直接利用这些公式来求解导函数。
常见的导数公式: - 常数函数:f(x) = C,导函数为f’(x) = 0。
- 变量函数:f(x) = x,导函数为f’(x) = 1。
- 幂函数:f(x) = x^n,导函数为f’(x) =nx^(n-1)。
- 指数函数:f(x) = e^x,导函数为f’(x) = e^x。
- 对数函数:f(x) = ln(x),导函数为f’(x) = 1/x。
- 三角函数: - 正弦函数:f(x) =sin(x),导函数为f’(x) = cos(x)。
- 余弦函数:f(x) = cos(x),导函数为f’(x) = -sin(x)。
- 正切函数:f(x) = tan(x),导函数为f’(x) = sec^2(x)。
通过利用这些导数公式,可以将复杂的函数简化为基本的函数求导,再进行计算。
3.3 利用导数的基本性质求导导数具有一些基本的性质,可以通过利用这些性质来求解导函数。
常见的导数性质: - 和的导数性质:(f(x) + g(x))’ = f’(x) + g’(x)。
导数与函数的切线法在微积分中,导数是一个重要的概念,它研究了函数在某一点的瞬时变化率。
导数的应用非常广泛,其中之一就是函数的切线法。
一、导数的定义导数是函数的一种基本性质,表示函数在某一点上的变化率。
对于函数f(x),在点x处的导数表示为f'(x),或者写作dy/dx。
导数的定义如下:对于函数f(x),如果极限f'(x) = lim(delta x->0) (f(x+delta x) - f(x))/(delta x)存在,那么f(x)在点x处可导,且导数为f'(x)。
二、导数的意义导数可以被理解为函数f(x)在某一点x处的瞬时斜率。
换句话说,导数表示了函数在该点附近的变化趋势。
比如,当导数为正时,表示函数在该点上升;当导数为负时,表示函数在该点下降;当导数为零时,表示函数在该点取得极值。
三、切线法的概念切线法是一种利用导数的概念来研究函数性质的方法之一。
切线是曲线在某一点处与曲线相切的直线。
通过求解导数来获得函数曲线上某一点的切线斜率,从而进一步研究曲线的性质。
四、函数的切线方程已知函数f(x)在点x=a处可导,那么在该点处的切线方程可以通过以下步骤求解:1. 求解导数f'(a);2. 根据导数获得点(x-a, f'(a));3. 利用点斜式公式y-y1=f'(a)(x-x1),其中(x1, y1)为切点坐标,得到切线方程。
五、示例考虑函数f(x)=x^2,我们来求解在点x=2处的切线方程。
1. 求解导数f'(x):f'(x) = d/dx (x^2) = 2x2. 求解导数f'(2):f'(2) = 2*2 = 43. 获得切点坐标(x1, y1):x1 = 2y1 = f(2) = 2^2 = 44. 利用点斜式公式求解切线方程:y-4 = 4(x-2)化简后可得:y = 4x-4六、结论通过导数与函数的切线法,我们可以求解函数在特定点处的切线方程。
第10讲变化率与导数、导数的计算诊断-基础知识知识梳理1.2.导数的运算法则⑴[f(X)±(x)] f,(X)±,(x).⑵[f(x)g(x)],= f' (x)g(x) + f(x)g' (x).口xMxtK 2<jg, n二[gx]2 (g(x)工0).3.复合函数的导数设u = v(x)在点x处可导,y= f(u)在点u处可导,则复合函数f[v(x)]在点x处可导, 且f' (x) = f' (u) v v (x).[感悟提升]1•“过某点”与“在某点”的区别曲线y=f(x) “在点P(x o, y o)处的切线”与“过点P(x o, y o)的切线”的区别:前者P(x o, y o)为切点,如(6)中点(1,3)为切点,而后者P(x o, y o)不一定为切点.2.导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. 二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点,女口(4).三是复合函数求导的关键是分清函数的结构形式. 由外向内逐层求导,其导数为两层导数之积,如(9).以例求法举一反三x x 1 _ x — ?si n x ,2x + 1突破-高频考点考点一导数的计算【例1】 分别求下列函数的导数: X X(1)y = e c os x ; (2)y =x — sin qcos 2;ln (2x + 1 \⑶ y=——.解 (1)y '_ (e x )' cos x + ^(cos x)'_ e <cos x — e <sln x.[In 2x + 1 ] ' x — x ' In 2x + 1x2x +1 ' 2x , o , 2x +1 X-2+ 门 2x +1 — n2x + 门 _ 2 _ 2x x _ 2x —(2x + 1 )n (2x + 1 )= 2x +1 x 2 .规律方法(i )本题在解答过程中常见的错误有:①商的求导中,符号判定错误 ②不能正确运用求导公式和求导法则,在第 (3)小题中,忘记对内层函数 进行求导.(2)求函数的导数应注意:① 求导之前利用代数或三角变换先进行化简,减少运算量;1 1 — 2COS x.②根式形式,先化为分数指数幕,再求导.③复合函数求导先确定复合关系,由外向内逐层求导,必要时可换元处理.【训练1】(1)(2013江西卷改编)设函数f(x)在(0,+x)内可导,且f(e x)= x+ e x, 则f'(1) = ____________ .⑵若f(x) = ^/3^x + e2x,贝U f' (x) = ______ .解析(1)令e x= t,则x= In t,•'f(t) = In t +1, 即卩f(x) = In x+ x.1因此f' (x)= (In x+x)' = + 1,于是f' (1)= 1 + 1 = 2.x⑵若f(x)= a3+ 2ax—x2,则f' (x)= 3a2+ 2x.( x)(3) (教材习题改编)函数y= xcosx —sin x的导函数是y'= —xsin x. (V)⑷[f(ax+ b)] '= f' (ax+ b). (x )考点二导数的几何意义【例2】(1)(2013广东卷)若曲线尸kx+ In x在点(1, k)处的切线平行于x轴,则k= ________ .⑵设f(x) = xln x + 1,若f' (x o) = 2,贝U f(x)在点(x o, y o)处的切线方程为1解析(1)函数y= kx+ In x的导函数y' = k+ x,入由导数y'E仁0,得k+1 = 0,则k=— 1.(2)因为f(x) = xln x+ 1,1所以f' (x)= In x+x • = In x+ 1.x因为f' (x o) = 2,所以In x o+ 1 = 2, 解得x o= e,所以y o= e+ 1.由点斜式得,f(x)在点(e, e+ 1)处的切线方程为y—(e+ 1) = 2(x—e),即2x—y —e + 1 = o.答案(1)— 1 (2)2x—y —e+ 1 = o规律方法(1)导数f' (x o)的几何意义就是函数y= f(x)在点P(x o, y o)处的切线的斜率•第(1)题要能从“切线平行于x轴”提炼出切线的斜率为o,进而构建方程,这是求解的关键,考查了分析问题和解决问题的能力.⑵在求切线方程时,应先判断已知点Q(a, b)是否为切点,若已知点Q(a, b)不是切点,则应求出切点的坐标,利用切点坐标求出切线斜率,进而用切点坐标表示出切线方程.【训练2】(1)(2012新课标全国卷)曲线y=x(3ln x+ 1)在点(1,1)处的切线方程为(2)若函数f(x)= e x cos x,则此函数图象在点(1, f(1))处的切线的倾斜角为()•A •0 B •锐角C •直角D •钝角3解析(1)了= x(3ln x+ 1),.°y' = 3ln x+ 1 + x x= 3ln x+ 4,「k= y' |x= 1= 4, 入所求切线的方程为y—1= 4(x- 1),即4x-y-3 = 0.(2)f‘ (x) = e x cos x—e x sin x= e x(cos x—sin x),•■f' (1)= e(cos 1— sin 1).n n••2>1>4・而由正余弦函数性质可得cos 1<sin 1.•f (1)<0,即卩f(x)在(1, f(1))处的切线的斜率k<0,f •切线的倾斜角是钝角.答案(1)4x —y — 3 = 0 (2)D考点三导数运算与导数几何意义的应用In x 【例3】(2013北京卷)设I为曲线C: y=业在点(1,0)处的切线.X⑴求I的方程;(2)试证明:除切点(1,0)之外,曲线C在直线I的下方.导数几何意义审题路线⑴求f' (1) ——> 点斜式求直线I的方程转化运用导数⑵构建g(x) = x— 1 —f(x) --- >g(x)>0对x>0且X M 1恒成立------- >研究函数y =g(x)的性质一获得结论解⑴设f(x) = I:X,则f' (x)= 1 F x.1 —In 1 ••• f' (1)= 1= 1,即切线I的斜率k= 1.由I过点(1,0),得I的方程为y= x— 1.⑵令g(x) = x— 1 —f(x),贝U除切点之外,曲线C在直线I的下方等价于g(x)>0(?x>0, X M 1).2x —1 + In x g(x)满足g(1) = 0,且g' (x)二1—f' (x)二x2 .当0<x<1 时,x2—1<0, In x<0,••• g' (x)<0,故g(xx)在(0,1)上单调递减;当x>1 时,x—1>0, In x>0, g' (x)>0, g(x)单调递增.所以,g(x)>g(1)= 0(? x>0, X M 1).所以除切点之外,曲线C在直线I的下方.规律方法(1)准确求切线I的方程是本题求解的关键;第(2)题将曲线与切线I的ae 2+ ae 2—位置关系转化为函数g(x) = x — 1 — f(x)在区间(0,+x )上大于o 恒成立的问题, 进而运用导数研究,体现了函数思想与转化思想的应用.(2)当曲线y =f(x)在点P(x o , f(x o ))处的切线平行于y 轴(此时导数不存在)时,切线 方程为x = x o ;当切点坐标不知道时,应首先设出切点坐标,再求解 . 1【训练3】(2014济南质检)设函数f(x)= ae x + x + b(0<a<1).ae (1) 求f(x)在[0,+x )内的最小值;3(2) 设曲线y =f(x)在点(2,f(2))处的切线方程为y =㊁x ,求a 和b 的值. . , x 1 (ae —1( ae + 1)解(1)f (x) = ae — ae x =ae x. 1令 f ' (x) = 0,得 x = In >0.a 1当 0<x<ln 时,f ' (x)<0;a 1当 x>ln ,f ' (x)>0.a••• f(x)在0,In 1上递减,在lln a ,+^ '上递增. 从而f(x)在[0,+x )上的最小值f In a = 2+ b. 3⑵T y =f(x)在点(2,f(2))处的切线为y = 2x , 3••• f(2)= 3,且 f ' (2) = 3, 1ae 2+ b = 3 ae1 32 = ae 2 1 2解之得b = 2且 a = e 2.理解导数的概念时,要注意f'(X0), (f(X0))'与f' (x)的区别:f' (x)是函数y=f(x)的导函数,f' (x o)是f(x)在x= x o处的导数值,是常量但不一定为0, (f(x o))'是常数一定为0, 即(f(x o))' = 0.培养-解题能力教拣解邇提进能力易错辨析3――求曲线切线方程考虑不周【典例】(2014杭州质检)若存在过点0(0,0)的直线I与曲线f(x) = x3—3x2+ 2x 和y=x2+ a都相切,则a的值是().1A - 1 B.641 1c. 1或64 D - 1或—鬲[错解]V 点0(0,0)在曲线f(x) = x3—3x2+ 2x 上,•••直线I与曲线y=f(x)相切于点O.则k= f' (0) = 2,直线I的方程为y= 2x.又直线I与曲线y= x2+ a相切,•'x2+ a —2x= 0 满足△= 4 —4a= 0, a= 1,选A.[答案]A[错因](1)片面理解“过点O(0,0)的直线与曲线f(x) = x3—3x2+ 2x相切这里有两种可能:一是点O是切点;二是点O不是切点,但曲线经过点O,解析中忽视后面情况.(2)本题还易出现以下错误:一是当点0(0,0)不是切点,无法与导数的几何意义沟通起来;二是盲目设直线l的方程,导致解题复杂化,求解受阻.--K又203x 0 + 2, C . In 2[正解]易知点0(0,0)在曲线f(x) = X 3— 3X 2+ 2x 上, ⑴当0(0,0)是切点时,同上面解法.⑵当0(0,0)不是切点时,设切点为 P(X 0, y 0),则y ° = x 3— 3x 0 + 2x 0,且k = f '(X 0)=3x 0— 6x 0 + 2.由①,②联立,得X 0= 2(x 0= 0舍),所以k = — 4, 1•••所求切线I 的方程为y = — 4x.「 1出 y = — 4x , /曰 2 1 c 由 得 x + 4x + a = 0.I 2 | 4y = x + a ,1 1 1 依题意,16— 4a = 0,「a = §4.综上,a = 1 或 a = §4.[防范措施](1)求曲线的切线方程应首先确定已知点是否为切点是求解的关键, 分清过点P 的切线与在点P 处的切线的差异.(2)熟练掌握基本初等函数的导数,导数的运算法则,正确进行求导运算.【自主体验】1函数y = In x(x>0)的图象与直线y =2x + a 相切,贝U a 等于().A . 2ln 2B .In 2 + 1D .In 2 — 1y f I r p解析设切点为(x o, y o),且y' = X,.・. =X = 2,则x o= 2, y o= InX X0 212. 又点(2, In 2)在直线y=2x+ a上,1.n 2 = 2X2+ a,「a= In 2 —1.课时-题组训练_ 阶梯训擦竦出富分对应学生用书P247基础巩固题组(建议用时:40分钟)一、选择题1 •若函数f(x)= ax4+ bx2+ c满足f' (1) = 2,则f' (—1)等于().A1 B 2 C. 2 D . 0解析f' (x) = 4ax3+ 2bx,.f' (x)为奇函数且f' (1)= 2,.' (—1)= —2. 答案B2.y= —x+ 8,贝U f(5) + f' (5)=如图,C.—2 D . 4解析 ■•yx — 1 — x + 1X - 12212 ,y k=(X —1)—23=2 =3- 1 212,・•—a = 2,即解析 如图可知,f(5) = 3, f ' (5)=— 1,因此 f(5) + f ' (5) = 2. 答案 A3. (2014济南质检)设曲线 尸 在点(3,2)处的切线与直线ax + y + 1= 0垂直,X — 1 则 a =().A . 2B . — 21 1C .— 2 D.Q =—2. 答案 B1 2 14•已知曲线y = ^x 2— 3ln x 的一条切线的斜率为一刁则切点横坐标为(). A . — 2 B . 3 C . 2 或—3 D . 2I1 313 1 解析 设切点坐标为(x o , y o ),,.y ' = ?x — x ,: = 2x 0 — x 0 = — 2,即卩 x 0+x o — 6= 0,解得 x o = 2 或一 3(舍). 答案 D5. (2014湛江调研)曲线y = e —2x+ 1在点(0,2)处的切线与直线y = 0和y =x 围成 的三角形的面积为().A1 f 1A? B .1C.3 D .1解析y' |x=o= (—2e-2x)|x=o= —2,故曲线y= e"2x+ 1在点(0,2)处的切线方程为y= —2x+ 2,易得切线与直线y= 0和y=x的交点分别为(1,0), |,故围成1 2 1的三角形的面积为心1X 3二3.二、填空题6. _________________________________________________ 已知函数f(x) = f' J4C0S x+ sin x,则的值为_________________________________ .解析f (x)= —f' ;Sin x+ cos x,.f —f' ©sin :+ cos ;, f ©=\n n n2—1,--f4二(2—1)cos 4+ sin 4二1.答案17. (2013南通一调)曲线f(x)= f e1 e x—f(0)x+ 1x2在点(1, f(1))处的切线方程为________ .解析f‘(x)=f e1 e x—f(0)+x? f ' (1)=f j1 e1—f(0)+1? f(0) = 1.在函数f(x)D Df ' f 1 \ 1 1=e e x—f(0)x+ ?x2中,令x= 0,则得f ' (1)= e所以f(1)= e—?,所以f(x)在1 1(1, f(1))处的切线方程为y= e(x—1)+ f(1) = ex—?,即y= ex —1答案y= ex—28 .若以曲线y= Jx3+ bx2+ 4x+ c(c为常数)上任意一点为切点的切线的斜率恒为非负数,则实数b的取值范围是_____________ .2 2解析y ' = x + 2bx + 4 ,与'> 0 恒成立,二△二4b —16< 0,A-2< b< 2.答案[—2,2]g(X)min = g(2)=92,•a>9,a^ —1 2.、解答题9.已知函数f(x) = x3+ (1 -a)x2—a(a+ 2)x+ b(a, b€ R).⑴若函数f(x)的图象过原点,且在原点处的切线斜率为一3,求a, b的值;(2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围.解f' (x) = 3x2+ 2(1 —a)x—a(a + 2).⑴由题意得I0芒二+ 2 一3, 解得 b = 0, a= — 3 或 1.⑵•/曲线y=f(x)存在两条垂直于y轴的切线,•••关于x的方程f' (x) = 3x2+ 2(1 —a)x —a(a+ 2)= 0有两个不相等的实数根,•••4(1 —a)2+ 12a(a+ 2)>0,即4a2+ 4a + 1>0,10.已知函数f(x) = x3—ax2+ 10.(1)当a= 1时,求曲线y=f(x)在点(2, f(2))处的切线方程;(2)在区间[1,2]内至少存在一个实数x,使得f(x)<0成立,求实数a的取值范围. 解(1)当a= 1 时,f' (x) = 3x2—2x, f(2)= 14,曲线y=f(x)在点(2, f(2))处的切线斜率k=f'⑵=8,•曲线y= f(x)在点(2, f(2))处的切线方程为y—14= 8(x—2),即卩8x—y —2 = 0.3x3+ 10 10⑵由已知得a>x x2 = x+x0,入入设g(x) = x+ x0(1w x<2), g' (x) = 1—2;0,•/ 1< x< 2,•g' (x)v0,「. g(x)在[1,2]上是减函数.能力提升题组(建议用时:25分钟)•a的取值范围是一、选择题1. (2014北京西城质检)已知P, Q为抛物线x2= 2y上两点,点P, Q的横坐标分别为4,—2,过P, Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为().A. 1B. 3C.—4D. —8解析依题意,得P(4,8), Q( —2,2).2x由y= 2,得y,= x.•••在点P处的切线方程为y—8 = 4(x—4),即y= 4x —8.①在点Q处的切线方程为y—2= —2(x+ 2),即卩y= —2x—2•②联立①,②得点A(1,—4).答案C2. 已知f(x)= log a x(a>1)的导函数是f' (x),记A= f,(a), B = f(a+ 1)—f(a), C =f,(a+ 1),则().A. A>B>C B . A>C>BC. B>A>CD. C>B>Af(a+ 1)— f(a) 解析记M(a, f(a)), N(a+ 1, f(a+ 1)),则由于B= f(a+ 1)—f(a)= ,(a+ 1 —a表示直线MN的斜率,A= f,(a)表示函数f(x)= log a x在点M处的切线斜率;C=f,(a+ 1)表示函数f(x) = log a x在点N处的切线斜率.由图象得,A>B>C.答案A、填空题3. (2014武汉中学月考)已知曲线f(x) = x n + 1(n€ N*)与直线x= 1交于点P,设曲线y= f(x)在点P处的切线与X轴交点的横坐标为X n,贝U log2 013X1 + log2 013X2+… + lOg2 013X2 012 的值为 __________________ .解析f' (x)= (n+ 1)X n, k= f' (1) = n+ 1,点P(1,1)处的切线方程为y— 1 = (n+ 1)(x-1),1 n 阳n令y= 0,得x= 1 —= ,即X n= ,n+ 1 n+ 1 n+ 11 2 3 2 011 2 012 1•'X1 X2 … X2 012= 2X3X4^^X 2 012X2 013= 2 013,贝卩log2 013x1 + log2 013x2 + …+ lOg2 013X2 012=lOg2 013(X1X2 …X2 012) =—1.三、解答题4. (2013福建卷改编)已知函数f(x) = X—aln x(a€ R).(1) 当a=2时,求曲线y=f(x)在点A(1, f(1))处的切线方程;(2) 当实数a>0时,求函数f(x)的极值.a解函数f(x)的定义域为(0,+^), f' (x)= 1—.X2(1)当a=2 时,f(x) = x —2ln x, f' (x)= 1 —(x>0),X因而f(1)=1, f' (1) = —1,所以曲线y= f(x)在点A(1, f(1))处的切线方程为y—1 = —(x—1),即x+ y—2= 0.a x—a⑵由f' (x) = 1—x= x, x>0.令f' (x) = 0,得x= a>0.当x€ (0, a)时,f (x)<0;当x€ (a,+x)时,f (x)>0.从而函数f(x)在x= a处取得极小值,且极小值为f(a)= a —aln a,无极大值.。
导数的几何意义之求切线方程考点一:求切线方程【方法总结】求曲线切线方程的步骤(1)求曲线在点P (x 0,y 0)处的切线方程的步骤第一步,求出函数y =f (x )在点x =x 0处的导数值f ′(x 0),即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率;第二步,由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0).(2)求曲线过点P (x 0,y 0)的切线方程的步骤第一步,设出切点坐标P ′(x 1,f (x 1));第二步,写出过P ′(x 1,f (x 1))的切线方程为y -f (x 1)=f ′(x 1)(x -x 1);第三步,将点P 的坐标(x 0,y 0)代入切线方程,求出x 1;第四步,将x 1的值代入方程y -f (x 1)=f ′(x 1)(x -x 1)可得过点P (x 0,y 0)的切线方程.注意:在求曲线的切线方程时,注意两个“说法”:求曲线在点P 处的切线方程和求曲线过点P 的切线方程,在点P 处的切线,一定是以点P 为切点,过点P 的切线,不论点P 在不在曲线上,点P 不一定是切点.考点二:求切线方程曲线的公切线方程【方法总结】解决此类问题通常有两种方法(1)利用其中一曲线在某点处的切线与另一曲线相切,列出关系式求解;(2)设公切线l 在y =f (x )上的切点P 1(x 1,f (x 1)),在y =g (x )上的切点P 2(x 2,g (x 2)),则f ′(x 1)=g ′(x 2)=f (x 1)-g (x 2)x 1-x 2.注意:求两条曲线的公切线,如果同时考虑两条曲线与直线相切,头绪会比较乱,为了使思路更清晰,一般是把两条曲线分开考虑,先分析其中一条曲线与直线相切,再分析另一条曲线与直线相切,直线与抛物线相切可用判别式法.【例题选讲】1.曲线y =e xx +1在点1,e2 处的切线方程为( )A.y =e 4x B.y =e2xC.y =e 4x +e 4D.y =e 2x +3e4【答案】C【详解】设曲线y =e x x +1在点1,e2 处的切线方程为y -e2=k x -1 ,因为y =e xx +1,所以y=e x x +1 -e x x +1 2=xe x x +12,所以k =y x =1=e4所以y -e 2=e4x -1所以曲线y =e x x +1在点1,e 2 处的切线方程为y =e4x+e4.故选:C 2.若曲线y =x -12在点a ,a-12处的切线与两个坐标围成的三角形的面积为18,则a =( )A.64B.32C.16D.8【答案】A【详解】求导数可得y=-12x -32,所以在点a ,a -12 处的切线方程为:y =-12a -32x +32a -12,令x =0,得y =32a -12;令y =0,得x =3a .所以切线与两坐标轴围成的三角形的面积S =12×32a -12×3a =94a 12=18,解得a =64故选A .3.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A.3 B.2C.1D.12【答案】A【详解】设切点为x 0,y 0 ,x 0>0,由题知:y =12x -3x,所以12x 0-3x 0=12,解得:x 0=3或x 0=-2(舍去).故选:A4.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( )A.a =1,b =1 B.a =-1,b =1C.a =1,b =-1 D.a =-1,b =-1【答案】A【详解】由题意可知k =y |x =0=(2x +a )|x =0=a =1,又(0,b )在切线上,解得:b =1.故选:A .5.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a =A.2 B.12C.-12D.-2【答案】D【详解】y =x-1-(x+1)(x-1)2=-2(x-1)2,y |x=3=-2(3-1)2=-12,直线ax+y+1=0的斜率为-a.所以a=-2,故选D6.若直线l与曲线y=x和x2+y2=15都相切,则l的方程为( )A.y=2x+1B.y=2x+12C.y=12x+1D.y=12x+12【答案】D【详解】设直线l在曲线y=x上的切点为x0,x0,则x0>0,函数y=x的导数为y =12x,则直线l的斜率k=12x0,设直线l的方程为y-x0=12x0x-x0,即x-2x0y+x0=0,由于直线l与圆x2+y2=15相切,则x01+4x0=15,两边平方并整理得5x20-4x0-1=0,解得x0=1,x0=-1 5(舍),则直线l的方程为x-2y+1=0,即y=12x+12.故选:D.7.若曲线y=(x+a)e x有两条过坐标原点的切线,则a的取值范围是.【答案】-∞,-4∪0,+∞【详解】∵y=(x+a)e x,∴y =(x+1+a)e x,设切点为x0,y0,则y0=x0+ae x0,切线斜率k=x0+1+ae x0,切线方程为:y-x0+ae x0=x0+1+ae x0x-x0,∵切线过原点,∴-x0+ae x0=x0+1+ae x0-x0,整理得:x20+ax0-a=0,∵切线有两条,∴Δ=a2+4a>0,解得a<-4或a>0,∴a的取值范围是-∞,-4∪0,+∞,故答案为:-∞,-4∪0,+∞8.在平面直角坐标系xOy中,P是曲线y=x+4x(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是.【答案】4.【详解】当直线x+y=0平移到与曲线y=x+4x相切位置时,切点Q即为点P到直线x+y=0的距离最小.由y =1-4x2=-1,得x=2(-2舍),y=32,即切点Q(2,32),则切点Q到直线x+y=0的距离为2+3212+12=4,故答案为4.9.设曲线y=e x在点(0,1)处的切线与曲线y=1x(x>0)上点Ρ处的切线垂直,则Ρ的坐标为.【答案】(1,1)【详解】设P(x0,y0).对y=ex求导得y′=ex,令x=0,得曲线y=ex在点(0,1)处的切线斜率为1,故曲线y=1x(x>0)上点P处的切线斜率为-1,由y x=x0=-1x02=-1,得x0=1,则y0=1,所以P的坐标为(1,1).10.曲线y=ln|x|过坐标原点的两条切线的方程为,.【答案】y=1e x,y=-1e x【解析】法一:当x>0时y=ln x,设切点为x0,ln x0,由y=1x,所以y |x=x=1x,所以切线方程为y-ln x0=1x0x-x0,又切线过坐标原点,所以-ln x0=1x0-x0,解得x0=e,所以切线方程为y-1=1e x-e,即y=1e x;因为y=ln x 是偶函数,图象为:所以当x<0时的切线,只需找到y=1e x关于y轴的对称直线y=-1e x即可.法二:因为y=ln x ,当x>0时y=ln x,设切点为x0,ln x0,由y =1x,所以y |x=x=1x,所以切线方程为y-ln x0=1x0x-x0,又切线过坐标原点,所以-ln x0=1x0-x0,解得x0=e,所以切线方程为y-1=1e x-e,即y=1e x;当x<0时y=ln-x,设切点为x1,ln-x1,由y =1x,所以y |x=x1=1x1,所以切线方程为y-ln-x1=1x1x-x1,又切线过坐标原点,所以-ln-x1=1x1-x1,解得x1=-e,所以切线方程为y-1=1-e x+e,即y=-1e x;故答案为:y=1e x;y=-1e x.【趁热打铁】一、单选题1.函数f(x)=x4-2x3的图像在点(1,f(1))处的切线方程为( )A.y=-2x-1B.y=-2x+1C.y=2x-3D.y=2x+12.曲线y=4x-x3在点(-1,-3)处的切线方程是( )A.y=7x+4B.y=7x+2C.y=x-4D.y=x-23.曲线y=2sin x+cos x在点(π,-1)处的切线方程为( )A.x-y-π-1=0B.2x-y-2π-1=0C.2x+y-2π+1=0D.x+y-π+1=04.曲线y=x2x-1在点(1,1)处的切线方程为( )A.x-y-2=0B.x+y-2=0C.x+4y-5=0D.x-4y-5=05.曲线y=x3-2x+4在点(1,3)处的切线的倾斜角为( )A.30°B.45°C.60°D.120°6.曲线y=x3-2x+4在点1,3处的切线的倾斜角为( )A.30°B.45°C.60°D.135°7.曲线y=e x在点A(0,1)处的切线斜率为( )A.1B.2C.eD.1e8.曲线y=xe x-1在点(1,1)处切线的斜率等于( ).A.2eB.eC.2D.19.曲线y=e x在点2,e2处的切线与坐标轴所围三角形的面积为( )A.94e2B.2e2C.e2D.e2210.曲线y=13x3+x在点1,43处的切线与坐标轴围成的三角形面积为( )A.19B.13C.29D.2311.曲线y=e-2x+1在点0,2处的切线与直线y=0和y=x围成的三角形的面积为( )A.13B.12C.23D.112.曲线y=e12x在点(4,e2)处的切线与坐标轴所围三角形的面积为( )A.92e2B.4e2C.2e2D.e213.曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是( )A.-9B.-3C.9D.1514.已知曲线y=x24的一条切线的斜率为12,则切点的横坐标为( )A.1B.2C.3D.415.已知曲线y=ae x+x ln x在点1,ae处的切线方程为y=2x+b,则( )A.a=e,b=-1B.a=e,b=1C.a=e-1,b=1D.a=e-1,b=-116.已知直线y=x+1与曲线y=ln(x+a)相切,则α的值为( )A.1B.2C.-1D.-217.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=( )A.0B.1C.2D.318.已知曲线y=x4+ax2+1在点-1,a+2处切线的斜率为8,a=( )A.9B.6C.-9D.-619.若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为( )A.4x-y-3=0B.x+4y-5=0C.4x-y+3=0D.x+4y+3=020.设曲线y=ax2在点1,a处的切线与直线2x-y-6 =0平行,则a=( )A.-1B.1C.-12D.12二、填空题21.曲线y=cos x-x2在点0,1处的切线方程为.22.曲线y=3(x2+x)e x在点(0,0)处的切线方程为.23.曲线y=xe x+2x+1在点(0,1)处的切线方程为.24.曲线y=2x-1x+2在点-1,-3处的切线方程为.25.曲线y=x3在点(1,1)处的切线与x轴、直线x=2所围成的三角形的面积为26.曲线y=1x和y=x2在它们交点处的两条切线与x轴所围成的三角形面积是.27.曲线y=x3在点(a,a3)(a≠0)处的切线与x轴、直线x=a所围成的三角形的面积为16,则a=. 28.经过点P(-1,2)且与曲线y=3x2-4x+2在点M(1,1)处的切线平行的直线的方程是.29.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=.30.已知函数y=f x 的图像在点M1,f1处的切线方程是y=12x+2,则f1 +f 1 =.31.直线y=12x+b是曲线y=ln x,x>0的一条切线,则实数b=.32.已知曲线y=x+ln x在点1,1处的切线与曲线y= ax2+a+2x+1相切,则a=.33.曲线y=ax+1e x在点0,1处的切线的斜率为-2,则a=.34.已知a∈R,设函数f(x)=ax-ln x的图象在点(1,f(1))处的切线为l,则l在y轴上的截距为.35.过原点作曲线y=e x的切线,则切点的坐标为,切线的斜率为.36.已知直线x-y-1=0与抛物线y=ax2相切,则a=.【求导训练】1.求下列函数的导数:(1)y=x2+1x+x;(2)y=x sin x-x ln x;(3)y=sin x ln xx;(4)y=x x-11x+1;(5)y=e x tan x;(6)y=x2-1x+ln x;(7)y=x sin x+e x ln x-2;(8)y=x-x2x ln x;(9)y=3x+23;(10)y=sin2x;(11)y=4x-6;(12)y=ln4x+5.2.求下列函数的导数:(1)y=e-x+22x+15;(2)y=cos3x-1-ln-2x-1;(3)y=sin2x+cos2x;(4)y=2x-1x.3.写出下列函数的中间变量,并利用复合函数的求导法则分别求出函数的导数:(1)y=x+110;(2)y=e3x+1;(3)y=sin-2x+5;(4)y=ln3x-1;(5)y=32x-1;(6)y=tan-x+1.4.求下列函数的导数:(1)y=x2+3x+3e x+1(2)y=cos(2x+1)x(3)y=ln x1+2x(4)y=(x+1)(x+2)(x+3)(5)y=x ln x+x2-x+2(6)y=ln2+x3+e x-1e x5.写出下列函数的中间变量,并利用复合函数的求导法则分别求出函数的导数:(1)y=12x-12;(2)y=sin-x+1;(3)y=e-2x+1;(4)y=cos x+3.6.求下列函数的导数:(1)y=2x+310;(2)y=e2x+1;(3)y=ln3x-2.7.求下列函数的导数:(1)y=13x-1;(2)y=cos(1-2x).8.求下列函数的导数:(1)y=(2x-3)3;(2)y=ln(5x+1).9.求下列函数的导数:(1)y=(3x+5)3;(2)y=e-0.05x+1;(3)y=ln(2x-1).10.计算下列函数y=f x 的导数,其中:(1)f x =π2+sin-x;(2)f x =3x-1x3;(3)f x =12x-53-4x;(4)f x =cos xx2.。
方法技巧专题14导数与切线方程问题导数与切线方程问题是高中数学中的一个重要知识点,也是学习微积分的基础。
在解决导数与切线方程问题时,我们首先需要了解导数的概念与性质,然后通过求导以及代入坐标求解切线方程。
本文将详细介绍导数与切线方程问题的相关知识以及解题技巧。
一、导数的概念与性质导数是微积分中的一个重要概念,表示函数在其中一点处的变化率。
函数f(x)在x=a处的导数记作f'(a),它的定义式为:f'(a) = lim┬(h→0)〖(f(a+h)-f(a))/h〗导数的性质包括:1.导数存在的必要条件:函数在其中一点处可导,必须在该点的左右极限存在且相等;2.导数存在的充分条件:函数在其中一点处有连续的有限导数。
3.函数在其中一点处的导数存在,表明函数在该点存在切线。
二、切线方程的求解方法求取函数f(x)在其中一点处的切线方程,我们需要知道该点处的导数和函数值。
下面将介绍两种常见的方法。
1.用导数求切线方程例如,求函数f(x)=x^2在点a处的切线方程,可以按照以下步骤进行:(1)首先求取函数f(x)的导数,得到f'(x)=2x;(2)求得导数值f'(a)=2a,f(a)=a^2;(3)根据切线方程y = f'(a)(x-a) + f(a),代入导数值和函数值,得到切线方程为y = 2ax - a^22.用斜率求切线方程例如,求函数f(x)=x^2在点(a,f(a))处的切线方程,可以按照以下步骤进行:(1)首先求取函数f(x)的斜率,即导数f'(x)=2x;(2)求得导数值f'(a)=2a;(3)由于切线的斜率与函数在其上的任一点处的斜率相等,所以切线的斜率为2a;(4)根据斜率公式y-y₁=k(x-x₁),代入斜率和函数值,得到切线方程为y-f(a)=2a(x-a)。
三、解题技巧与注意事项在解决导数与切线方程问题时,需要注意以下几个问题:1.导数的求解:掌握各类函数的求导法则及公式是解题的基础,可以通过牛顿-莱布尼茨公式、链式法则、基本导数公式等方法进行计算。
本章节知识提要
考试要求1.导数概念及其几何意义(1)了解导数概念的实际背景; (2)理解导数的几何意义.
2.导数的运算
(1)能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =x 3,y =
x
1,y =x 的导数;
(2)能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax +b )的复合函数)的导数.
3.导数在研究函数中的应用
(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次);
(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).
4.生活中的优化问题:会利用导数解决某些实际问题.
5.定积分与微积分基本定理
(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念;
(2)了解微积分基本定理的含义
导数(1):求导与切线
【知识点梳理】
1. 求导公式与求导法则:
0'=C ; 1)'(-=n n nx x ; x x cos )'(sin =; x x sin )'(cos -= x
x 1)'(ln = ; x x e e =)'( a a a x x ln )'(= 2. 法则1 )(.))'(('=x f c x cf
法则2 '''
[()()]()()f x g x f x g x ±=±.
法则3 [()()]'()()()'()f x g x f x g x f x g x '=+, [()]'()cf x cf x '= 法则4:'2()'()()()'()(()0)()()f x f x g x f x g x g x g x g x ⎛⎫-=≠ ⎪⎝⎭
3.利用导数求曲线的切线方程:函数()y f x =在点0x 的导数的几何意义就是曲线()y f x =在点00(,)p x y 处的切线的斜率,也就是说,曲线()y f x =在点00(,)p x y 处的切线斜率是0()f x ',切线的方程为000()()y y f x x x '-=-
曲线f (x )在A (m,n )处的切线方程求法:
①求函数f (x )的导数f ′(x ).
②求值:f ′(m )得过A 点的切线的斜率
③由点斜式写出切线方程:y –n = f ′(m )(x-m)
【精选例题】
例1.求下列函数的导函数
1. x x f =)(
2.2)(e x f =
3.y=2x+3
4.x x f =
)( 5.y=x 2+3x-3 6. 1y x =
7. x x x f ln 2)(= 8. 32)sin()(x x x f += 9. x x x x f 2ln )(+=
例2:.求函数12+=x y 在-1,0,1处导数。
例3:已知曲线313y x =上一点P (2,38
),求点P 处的切线的斜率及切线方程?
例4:已知曲线31433
y x =+. (1) 求曲线在点(2,4)P 处的切线方程;(2)求曲线过点(2,4)P 的切线方程。
分析:“该曲线过点(2,4)P 的切线”与“该曲线在点(2,4)P 处的切线方程”是有区别的:过点(2,4)P 的切线中,点(2,4)P 不一定是切点;在点(2,4)P 处的切线中,点(2,4)P 是切点。
例5:曲线y =24y x =-平行的切线方程
分析:首先对y =2,再根据斜率等于2求出切点,再用直线的点斜式方程写出就得,
1.已知函数x x x f ln )(=,则=')(x f ( )
A 、12+x
B 、x ln x +1
C 、ln x + 1
D 、x +1
2.y=ln x
1, 则y ’ 等于( ) A.
x 1 B.-x C. 1
12-x D. -x 1 3..函数12+=ax y 的图象与直线x y =相切,则a 等于( ) A. 81 B. 41 C. 2
1 D. 1 4. 曲线122+=x y 在P(-1,3)处的切线方程为( )
A.14--=x y
B. 74--=x y
C. 14-=x y
D. 74-=x y
5.已知直线1+=kx y 与曲线b ax x y ++=3切于点(1,3)则b 的值为( )
A .3
B .-3
C .5
D .-5 6.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )
A .430x y --=
B .450x y +-=
C .430x y -+=
D .430x y ++=
7.若函数n m mx
y -=2的导数为3
4x y =',则m=__________,n=__________ 8.若曲线y=24x +x 过点P 的切线垂直于直线y=3
4-x ,求这条切线的方程
9.已知曲线313y x =
上一点P (2,38),求点P 处的切线的斜率及切线方程?
10.曲线22
3x y =上哪一点的切线与直线13-=x y 平行
11.已知曲线C:y=ax 4+bx 3+cx 2+dx+e 过点A(0,-1)且关于y 轴对称,若C 在x=1处的
切线方程2x+y -2=0,求曲线C 的方程。
12.若函数y =x 3-3x +4的切线经过点(-2,2),求此切线方程.
【解析】设切点为P (x 0,y 0),则由
y ′=3x 2-3得切线的斜率为k =3x 20-3.
所以函数y =x 3-3x +4在P (x 0,y 0)处的切线方程为
y -y 0=(3x 20-3)(x -x 0).
又切线经过点(-2,2),得
2-y 0=(3x 20-3)(-2-x 0
),① 而切点在曲线上,得y 0=x 30-3x 0+4, ②
由①②解得x 0=1或x 0=-2.
则切线方程为y =2 或 9x -y +20=0
13.设曲线y=x 3-3x 在点P 处的切线l 过点(0,16),试求l 的方程.。