用导数求切线方程的四种类型(精品)
- 格式:doc
- 大小:206.50 KB
- 文档页数:3
利用导数的几何意义求切线方程江南中教研组曲线y f x =()在点x 0的导数)( 0x f '就是曲线在该点的切线的斜率,我们通常用导数的这个几何意义来研究一些与曲线的切线有关的问题。
对于利用导数的几何意义求切线方程我们要把握三个等量关系:1. 曲线y f x =()在点x 0的导数)( 0x f '就是曲线在该点的切线的斜率,有)(0x f k '=;2.切点在曲线y f x =()上,有)(00x f y = 3. 切点在切线上,有切线方程)(00x x k y y -=-最基础的题型就是已知切点求斜率、切线方程。
例一:曲线221y x =+在x=1的切线方程为 ; 解析:直接利用等量关系得到切点的坐标、切线的斜率;由题意可知,切点的坐标为(1,5)又∵x y 4=',∴切线的斜率为4,∴切线的方程为y -5 = 4(x -1),即y=4x +1。
利用导数的几何意义求切线方程的关键是要理解导数的几何意义,熟悉等量关系。
另有一种题型是先知道切线的斜率,求切点坐标、切线方程。
例二:曲线2y x =的一条切线的斜率是4-,求切线方程。
解析:先设出切点的坐标,再利用等量关系由待定系数法求出切点坐标,进而求切线方程;设切点的坐标为(200,x x )∵x y 2=',∴切线的斜率为02x ,∴02x = -4,∴20-=x ∴切点的坐标为(-2,4)∴切线的方程为y =-4x -4解这种题型的关键问题就是不能忽视切点在曲线上的这个关系。
再有一种题型求过曲线外一点的切线的方程。
例三:曲线2x y -=的切线过点(0,4)求切线的方程。
解析:同样设切点坐标,充分利用等量关系,由待定系数法求出切点坐标,进而求切线方程;设切点坐标为()00y x P ,,∵x y 2-='则在点P 处的切线方程为:()0002x x x y y --=-∵过点()4,0P ,且200x y -=()002002)(4x x x --=--∴ 20=∴x 或20-=x当20=x 时,切点为)4,2(-,此时切线方程为y=-4x +4,当20-=x 时,切点为()4,2--P ,此时切线方程为y=4x +4,∴过点(0,4)的切线方程为: y=-4x +4, y=4x +4。
知识回顾:导数的几何意义:函数/■(%)在X =兀0处的导数/'(观)就是:曲线y = / (兀)在点F(兀。
J (兀。
))处的切线PT的斜率。
即£二/ (兀0),在点尸处的切线方程为y —北=广(兀0)(兀一兀0)四种常见的类型及解法.•类型一:已知切点,求曲线的切线方程•此类题较为简单,只须求出曲线的导数,并代入点斜式方程即可.例1・已经曲线C:歹=兀3—兀+ 2和点A(152)O求曲线C在点A处的切线方程?类型二已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2与直线2—y + 4 = 0 的平行的抛物线y = x2的切线方程是 --------------- 评注:此题所给的曲线是抛物线,故也可利用A法加以练习:若曲线C上一点P处的切线恰好平行于直线y=11x—1,则P点坐标为(2,8)或(一 2, -伞)切线方程为1 ix— y—14 = +18 = 0类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.•例3求过曲线yr3-2兀上的点(1, -1)的切线方程.类型四:已知过曲线外一点,求切线方程 此类题可先设切点,再求切点,即用待定切点法 来求解.练习已知函数y"—3/过点4(0,16)作曲线 『 = /(励切线,求此切线方程.例6.已知曲线C:F 二4y,直线/:兀-y-4 = 0,在曲线C 上 求一点P,使P 到直线/的距离最短,并求出最小值。
例4・求过点(2,0)且与曲线 直线方程. 1y = — 相切的Xr2 1h —罕—41 i(x-2)2 + 34 _ 4(1)解析一:设P(x,务);〃二72 近当兀=2时,即点P坐标为⑵1)时,〃斷=攀(2)解析二:设与直线/平行的直线r与曲线c相切于尸(兀°,= ^ = l,x0=2.-. P(2,l)血=12~^4'=芈巩固练习:l.y = 3x2— 4x + 2在点JT = 1 处的切线方程是:2x-y-1 = °2 •在曲— x3 + 3x2 + 6x +10的切线斜率最小的切线方程是3x-y + 9 = 03.曲线y = lnjv上的点到直线兀―y + 3 = 0 的最短距离是空迈。
利用导数求三角函数切线方程的三种问题类型导数是微积分中的重要概念,可以用来求解三角函数的切线方程。
在这份文档中,我们将介绍三种利用导数求三角函数切线方程的问题类型。
问题类型一:给定函数和点,求切线方程在这种类型的问题中,我们已知一个三角函数及其定义域上一点的坐标,需要求解该函数在该点处的切线方程。
解决这类问题的关键是求解该点处的导数。
对于三角函数而言,我们可以利用基本导数公式来求解。
例如,对于sin(x)函数,其导数是cos(x);对于cos(x)函数,其导数是-sin(x)。
一旦我们求得了函数在给定点处的导数,我们可以使用切线方程的一般形式y = f'(x0)(x - x0) + f(x0)来求解。
其中,f'(x0)表示函数在x0处的导数值,f(x0)表示函数在x0处的函数值。
问题类型二:给定函数和切线斜率,求切点坐标在这种类型的问题中,我们已知一个三角函数及其切线的斜率,需要求解切线与该函数的交点坐标。
解决这类问题的关键是找到切点的x坐标。
我们可以使用导数和斜率的关系来求解。
具体而言,由于导数就是切线的斜率,我们可以将斜率与导数相等来列方程。
然后,通过求解方程,我们可以得到切点的x坐标。
一旦我们获得了切点的x坐标,我们可以将该坐标代入三角函数的方程中,得到切点的y坐标。
问题类型三:给定函数和切点,求切线斜率在这种类型的问题中,我们已知一个三角函数及其切线的切点坐标,需要求解切线的斜率。
解决这类问题的关键是求解切点的导数。
我们可以使用导数的定义来求解。
具体而言,我们可以将切点的坐标代入三角函数的导数公式中,然后求导得到切点的导数。
一旦我们求得了切点的导数,即可得到切线的斜率。
通过掌握这三种问题类型的解决方法,我们可以有效地利用导数来求解三角函数的切线方程。
这有助于我们更好地理解三角函数的性质和导数的应用。
用导数求切线方程的四种类型用导数求切线方程是导数的重要应用之一。
求曲线的切线方程的关键在于求出切点P(x,y)及斜率。
设P(x,y)是曲线y=f(x)上的一点,则以P的切点的切线方程为:y-y=f'(x)(x-x)。
若曲线y=f(x)在点P(x,f(x))的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为x=x。
下面例析四种常见的类型及解法。
类型一:已知切点,求曲线的切线方程这类题较为简单,只需求出曲线的导数f'(x),并代入点斜式方程即可。
例如,曲线y=x^3-3x^2+1在点(1,-1)处的切线方程为y-(-1)=-3(x-1),即y=-3x+2.类型二:已知斜率,求曲线的切线方程这类题可利用斜率求出切点,再用点斜式方程加以解决。
例如,与直线2x-y+4=0平行的抛物线y=x^2的切线方程为2x-y-1=0.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法。
例如,求过曲线y=x^3-2x上的点(1,-1)的切线方程。
设想P(x,y)为切点,则切线的斜率为y'|(x=x)=3x^2-2.故所求切线方程为y-(1-2)=(3-2)(x-1),或5x+4y-1=0.类型四:已知两曲线的交点,求切线方程这类题一般需先求出两曲线在交点处的导数,再代入点斜式方程加以解决。
例如,已知曲线y=x^3-x和y=2x-x^2的交点为(1,0),求它们在该点的切线方程。
两曲线在交点处的导数分别为1和-1.故所求切线方程为y-(0)=1(x-1),或y-(0)=-1(x-1),即y=x-1或y=-x+1.类型四:已知过曲线外一点,求切线方程对于这类问题,我们可以先设定切点,再求解切点,使用待定切点法来解决。
例4:求过点(2,0)且与曲线$y=x/(1+x^2)$相切的直线方程。
解:设P(x,y)为切点,则切线的斜率为$y'=\frac{1-x^2}{(1+x^2)^2}$。
利用导数求切线的方程求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可.例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A .34y x =-B .32y x =-+C .43y x =-+D .45y x =-类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( )A .230x y -+=B .230x y --=C .210x y -+=D .210x y --=类型三:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例3 求过点(20),且与曲线1y x=相切的直线方程.例4 求过点(00),且与曲线ln y x =相切的直线方程.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.类型四:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例6 求过曲线321y x x x =--+上的点(1),0的切线方程.例7 求过曲线32y x x =-上的点(11)-,的切线方程.。
导数求切线方程的步骤求切线方程的步骤如下:第一步:求导数首先,我们需要求出给定函数的导数。
导数表示了函数在给定点上的斜率,也就是该点函数曲线的切线斜率。
求导数的过程根据函数的不同而有所差异,下面将以几种不同类型的函数为例进行解释。
1.1.常数函数:常数函数的导数为零,因为它的斜率在任何点都是零。
例如,函数f(x)=3的导数为f'(x)=0。
1.2.幂函数:幂函数的导数可以使用幂函数规则求导得到。
幂函数的一般形式是f(x)=x^n,其中n是一个实数。
根据幂函数的规则,导数f'(x)=n*x^(n-1)。
例如,对于函数f(x)=x^2,它的导数为f'(x)=2*x^(2-1)=2x。
1.3.指数函数:指数函数的导数可以使用指数函数规则求导得到。
指数函数的一般形式是f(x) = a^x,其中a是一个正实数且a≠1、根据指数函数的规则,导数f'(x) = ln(a)*a^x。
例如,对于函数f(x) = e^x,它的导数为f'(x) = ln(e)*e^x = e^x。
1.4.对数函数:对数函数的导数可以使用对数函数规则求导得到。
对数函数的一般形式是f(x) = loga(x),其中a是一个正实数且a≠1、根据对数函数的规则,导数f'(x) = 1/(x*ln(a))。
例如,对于函数f(x) = log3(x),它的导数为f'(x) = 1/(x*ln(3))。
第二步:确定切点切线是曲线上其中一点上的切线,因此我们需要确定曲线上的切点。
根据题目给出的条件,我们可以确定切点的横纵坐标。
第三步:计算斜率在给定点上,切线的斜率等于该点的导数值。
所以我们将给定点的横坐标代入到导数函数中,得到该点的导数值。
第四步:确定切线方程切线方程的一般形式是y = mx + b,其中m为切线的斜率,b为切线在横轴上的截距。
在给定点上,我们已经确定了斜率m,并且通过给定点的坐标,可以将x和y代入切线方程。
用导数求切线方程的四种类型在微积分中,切线是曲线上某一点的切线。
通过使用导数,我们可以求解给定曲线上某一点的切线方程。
在本文中,我们将探讨四种使用导数求解切线方程的常见类型。
1. 曲线方程已知的情况首先,我们考虑的是当曲线方程已知时求解切线方程的情况。
假设我们有一个曲线y=f(x),其中f(x)是一个可导函数。
要求解曲线上某一点(x1,y1)处的切线方程,我们可以执行以下步骤:1.计算函数f(x)在点(x1,y1)处的导数f′(x1)。
2.使用点斜式或一般式等方程形式得到切线方程。
点斜式切线方程的一般形式为y−y1=m(x−x1),其中m是斜率。
一般式切线方程的一般形式为ax+by=c,其中a,b,c是常数。
2. 给定两个点的情况其次,我们考虑的是当曲线上两个点已知时求解切线方程的情况。
与上一种情况不同,我们不知道曲线的具体方程,但我们已知曲线上的两个点(x1,y1)和(x2,y2)。
为了求解这种情况下的切线方程,我们可以按照以下步骤进行:1.使用点斜式求解斜率。
2.写出点斜式的一般方程形式y−y1=m(x−x1)。
3.将另一个点(x2,y2)替代初始点(x1,y1)。
4.解方程得出切线方程。
3. 已知切线方程的情况接下来,我们讨论已知切线方程的情况。
假设我们已经知道了曲线上某一点处的切线方程,我们的目标是求解曲线方程。
我们可以按照以下步骤进行操作:1.确定切线方程的斜率m。
2.使用导数的定义f′(x)=m来设置方程。
3.解方程以获得曲线方程。
4. 求解切线与坐标轴的交点最后,我们研究切线与坐标轴相交的情况。
为了求解切线与x轴和y轴的交点,我们可以按照以下步骤进行:1.求解切线与x轴的交点:将y值设为0,然后解方程得到x坐标的值。
2.求解切线与y轴的交点:将x值设为0,然后解方程得到y坐标的值。
通过上述四种类型的方法,我们可以使用导数来求解切线方程。
这些方法在解决微积分问题以及实际问题中的应用非常广泛。
导数求切线方程的四种类型试题
仅供学习与交流,如有侵权请联系网站删除 谢谢2
用导数求切线方程的四种类型
类型一:已知切点,求曲线的切线方程
此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可.
例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+
D.45y x =-
类型二:已知斜率,求曲线的切线方程
此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( )
A.230x y -+=
B.230x y --=
C.210x y -+=
D.210x y --=
类型三:已知过曲线上一点,求切线方程
过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.
例3 求过曲线32y x x =-上的点(11)-,的切线方程.
类型四:已知过曲线外一点,求切线方程
此类题可先设切点,再求切点,即用待定切点法来求解. 例4 求过点(20),且与曲线1
y x
=相切的直线方程.
仅供学习与交流,如有侵权请联系网站删除 谢谢3
例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.。
导数求切线方程的练习题及答案精品文档导数求切线方程的练习题及答案类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数f?,并代入点斜式方程即可( 例1 曲线y?x3?3x2?1在点处的切线方程为 ,(y?3x?4,(y??3x?,(y?4x?5类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解( 例求过点且与曲线y?例已知函数y?x3?3x,过点A作曲线y?f的切线,切线方程(1x相切的直线方程(,(y??4x?3类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决(例与直线2x?y?4?0的平行的抛物线y?x的切线方程是2,(2x?y?3?0 ,(2x?y?1?0,(2x?y?3?0 ,(2x?y?1?01 / 6精品文档类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法(例求过曲线y?x3?2x上的点的切线方程(高二数学第1页共2页高二数学第2页共2页学校数学学科导学案编制人: 审核人: 授课日期: 月日姓名: 班级: 编号:第周号运用导数求切线方程的专项训练11.对任意x,有f?=4x3,f=,1,则此函数为A.f=x4,2C.f=x3B.f=x4+D.f=,x42.如果质点A按规律s=2t3运动,则在t=s时的瞬时速度为A. B.1C.5 D.813(曲线y=x3,3x2+1在点处的切线方程为A.y=3x,4B.y=,3x+2C.y=,4x+D.y=4x,54.函数f=的导数是A.x2,x+1B.C.3xD.3x2+15.曲线y=f在点)处的切线方程为3x+y+3=0,则A. f?>0B. f? 6. 曲线y?x在点?1,1?处的切线方程为2x?12 / 6精品文档A. x?y?2?0B. x?y?2?0C.x?4y?5?0D. x?4y?5?07. 在平面直角坐标系xoy中,点P在曲线C:y?x?10x?3上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为.8. 曲线f?lnx?x在点处的切线的倾斜角为_______.9(曲线y?xe?2x?1在点处的切线方程为。
用导数求切线方程的四种种类求曲线的切线方程是导数的重要应用之一,用导数求切线方程的要点在于求出切点P(x,y)及斜率,其求法为:设P(x,y)是曲线yf(x)上的一点,则以P的切点的切线方程为:yy0f(x)(x x).若曲线f(x)在点P(x0,f(x0))的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为xx.下边例析四种常有的种类及解法.种类一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数f(x),并代入点斜式方程即可.例1曲线yx33x21在点(1,1)处的切线方程为()A.y3x 4B.y3x 2C.y4x3D.y4x51解:由f(x)3x26x则在点(1,1)处斜率k f(1)3,故所求的切线方程为y(1)3(x1),即y3x2,因此选B.练习:1.设f′(x0)=0,则曲线A.不存在C.与x轴垂直y=f(x)在点(x0,f(x0))处的切线(B.与x轴平行或重合D.与x轴斜交)答案B2.已知函数y=f(x)的图像如右图所示,则f′(xA )与f′(xB)的大小关系是()A.f′(x A)>f′(x B)B.f′(x A)<f′(x B)C.f′(x A)=f′(x B)D.不可以确立答案B2.曲线y=-2x2+1在点(0,1)处的切线的斜率是()A.-4B.0C.4D.不存在答案B10.已知曲线y=2x3上一点A(1,2),则A处的切线斜率等于()A.2B.42D.6C.6+6·Δx+2·(Δx)答案D4.函数y=sin2x的图像在π1处的切线的斜率是() 6,4答案D剖析将函数y=sin2x看作是由函数y=u2,u=sinx复合而成的.分析∵y′=2sinxcosx,πππ3∴y′|x =6=2sincos=2661在点7)处切线的倾斜角为()2.曲线y=x3-2(-1,-33A.30°B.45°C.135°D.60°答案B6.y=x3的切线倾斜角的范围为________.π答案[0,2)分析k=y′=3x2≥0.8.设点P是曲线y=x3- 3x+23上的随意一点,点P处切线倾斜角为α,则角α的取值范围是()∪5π,π26∪π,π3π答案D分析由y′=3x2-3,易知y′≥-3,即tanα≥-3.20≤α<2或3π≤α<π.14.已知曲线C:y=x3,求在曲线C上横坐标为1的点处的切线方程.分析将x=1代入曲线C的方程得y=1,∴切点P(1,1).Δy x+Δx3-x3∵y′=lim=limΔxΔxΔx→0Δx→0πlim3x2Δx+3xΔx2+Δx3ΔxΔx→0lim[3x2+3xΔx+(Δx)2]=3x2,Δx→0y′|x=1=3.∴过P点的切线方程为y-1=3(x-1),即3x-y-2=0.114.求曲线y=sinx在点A(6,2)处的切线方程.分析∵y=sinx,∴y′=cosx.ππ331y′|x=6=cos6=2,k=2.3π∴切线方程为y-2=2(x-6).化简得6 3x-12y+6-3π=0.x6.曲线y=x-2在点(1,-1)处的切线方程为()A.y=x-2B.y=-3x+2C.y=2x-3D.y=-2x+1答案D例3求曲线y=1在点(4,1)处的切线方程.x2-3x2【思路剖析】将函数变形为y=(x2-3x)-12,将其看做是由函数y=u-12、u=x2-3x复合而成.【分析】∵y=1=(x2-3x)-1,x2-3x2∴y′=-1(x2-3x)-3·(x2-3x)′22=-1(x2-3x)-3·(2x-3).2211∴曲线y=在点(4,)处的切线斜率为x2-3x21 (4235k=y′|x=4=--3×4)-·(2×4-3)=-.22161∴曲线在点(4,2)处的切线方程为15y-2=-16(x-4),即5x+16y-28=0.研究3本题不要将函数y=1看做是由y=1,u=v,vx2-3xu=x2-3x三个函数复合而成的,这样求导就麻烦了.思虑题3(1)曲线y=3x2+1在点(1,2)处的切线方程为__________________.【答案】3x-2y+1=01的水平切线方程是________.(2)y=1-x2【分析】令y′=0,得x=0,∴y=1.12.求曲线y=2x-x3在点(-1,-1)处的切线的方程及此切线与x轴、y轴所围成的平面图形的面积.答案x+y+2=0;21x8.曲线y=e2在点(4,e2)处的切线与坐标轴所围三角形的面积为()e2B.4e2C.2e2D.e2答案D11x分析∵y′=·e2,2∴切线的斜率k=y′|x=4=12e2.1∴切线方程为y-e2=2e2(x-4).∴横纵截距分别为2,-e2,∴S=e2,应选D.111.已知函数y=f(x)的图像在点M(1,f(1))处的切线方程是y=2x+2,则f(1)+f′(1)=________.答案3分析f′(1)=1,f(1)=1×1+2=5,∴f(1)+f′(1)=3.2225.如图是函数f(x)及f(x)在点P处切线的图像,则f(2)+f′(2)=________.9 答案 28分析由题图知,切线方程为4x +错误!=1,9f(2)=·(1-4)=4,f′(2)=-错误!=-错误!.9 9 9∴f(2)+f′(2)=4-8=8.种类二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2与直线2x y40的平行的抛物线y x 2的切线方程是() A.2xy30B.2xy30C.2xy10D.2xy1 02解:设P(x0,y0)为切点,则切点的斜率为y|xx 0 2x 0 2.∴x 0 1.由此获得切点(11),.故切线方程为y12(x 1),即2x y1 0,应选D. 评注:本题所给的曲线是抛物线,故也可利用法加以解决,即设切线方程为y2x b,代入y x2,得x22xb0,又因为0,得b1,应选D.练习:3.曲线y=x3在点P处的切线斜率为3,则点P的坐标为() A.(-2,-8)B.(1,1),(-1,-1)C.(2,8)11 D.(-,-)28答案B13.若曲线y=2x3上某点切线的斜率等于6,求此点的坐标.2x0+Δx3-2x30分析∵y′|x=x0=lim=6x 20,Δx→06x20=6.∴x0=±1故.(1,2),(-1,-2)为所求.3.已知曲线y=x2-3lnx的一条切线的斜率为1,则切点的横坐42标为()A.3B.2C.1答案A分析1x-31131 y′=x,由x-=.22x2得x=3或x=-2.因为x>0,因此x=3.3.已知曲线y=f(x)在点P(x0,f(x0))处的切线方程为2x+y+1=0,那么() A.f′(x0)=0B.f′(x0)<0C.f′(x0)>0D.f′(x0)不可以确立答案B5.假如曲线y=f(x)在点(x0,f(x0))处的切线方程为x+2y-3=0,那么()A.f′(x0)>0B.f′(x0)<0C.f′(x0)=0D.f′(x0)不存在答案B7.在曲线y=x2π上切线的倾斜角为的点是()4A.(0,0)B.(2,4)11)11)C.(,16D.(,424答案D2.若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为()A.4x-y-3=0B.x+4y-5=0C.4x-y+3=0D.x+4y+3=0答案A分析∵l与直线x+4y-8=0垂直,∴l的斜率为4.∵y′=4x3,∴由切线l的斜率是4,得4x3=4,∴x=1.∴切点坐标为(1,1).∴切线方程为y-1=4(x-1),即4x-y-3=0.应选A.11.已知P(-1,1),Q(2,4)是曲线y=x2上的两点,则与直线PQ平行的曲线y=x2的切线方程是________.答案4x-4y-1=04-1分析k=2--1=1,又y′=2x,令2x=1,得1x=2,从而1y=4,∴切线方程为y-14=1·(x-12),即4x-4y-1=0.13.假如曲线y=x2+x-3的某一条切线与直线y=3x+4平行,求切点坐标与切线方程.答案切点坐标为(1,-1),切线方程为3x-y-4=013.曲线y=x3+3x2+6x-10的切线中,斜率最小的切线方程为______________.答案3x-y-11=0分析y′=3x2+6x+6=3(x+1)2+3≥3,当且仅当x=-1时取等号,当x=-1,时y=-14.∴切线方程为y+14=3(x+1),即3x -y-11=0.19.设直线y=2x+b是曲线y=lnx(x>0)的一条切线,则实数b的值为________.答案ln2-14.设曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a等于()A.11C.-2D.-1答案A14.设曲线y=e ax在点(0,1)处的切线与直线x+2y+1=0垂直,则a=________.答案2分析由题意得y′=ae ax,y′|x ==ae a×0=2,a=2.10.函数f(x)=asinax(a∈R)的图像过点P(2π,0),而且在点P处的切线斜率为4,则f(x)的最小正周期为()A.2πB.π答案B分析22πa. f′(x)=acosax,∴f′(2=π)acos2又asin2πa=0,∴2πa=kπ,k∈Z.f′(2=π)a2coskπ=4,∴a=±2.2π∴T=|a|=π.6.曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短距离是() B.25C.3 5D.0答案A2分析y′=2x-1=2,∴x=1.∴切点坐标为(1,0).由点到直线的距离公式,得d=|2×1-0+3|=5.22+1219.曲线y=x(x+1)(2-x)有两条平行于y=x的切线,则两切线之间的距离为________.16答案272分析y=x(x+1)(2-x)=-x3+x2+2x,y′=-3x2+2x+2,令-3x2+2x+2=1,得1x1=1或x2=-3.114∴两个切点分别为(1,2)和(-3,-27).切线方程为x-y+1=0和x-y-275=0.5|1+|2d=2=27.27种类三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.6.以下说法正确的选项是()A.曲线的切线和曲线有交点,这点必定是切点B.过曲线上一点作曲线的切线,这点必定是切点C.若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处无切线D.若曲线y=f(x)在点(x0,f(x0))处有切线,则f′(x0)不必定存在答案D例3求过曲线yx32x上的点(1,1)的切线方程.3解:假想P(x0,y0)为切点,则切线的斜率为y|x x03x022.∴切线方程为yy0(3x22)(x x).y(x32x)(3x22)(xx0).又知切线过点(1,1),把它代入上述方程,得1(x032x)(3x22)(1x).解得1.x1,或x02故所求切线方程为y (12)(32)(x1),或y1132x1,842即xy20,或5x4y10.评注:能够发现直线 5x 4y 10其实不以(1,1)为切点,其实是经过了点(1,1)且以 1 7为切点的直线.这说明过曲线上一点的切线,, 2 8该点未必是切点,解决此类问题可用待定切点法. 练习:种类四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例4求过点(2,0)且与曲线y1相切的直线方程. x4解:设P(x0,y0)为切点,则切线的斜率为 y|xx 0 1.x 20 ∴切线方程为yy 0 1(x x 0) ,即 y 1 1(xx 0) .x 0 2 x 0 x0 2又已知切线过点(2,0),把它代入上述方程,得 1 1x0 2(2x 0).x0 解得x 01,y 0 1 1,即xy20.x 0评注:点(2,0)其实是曲线外的一点,但在解答过程中却无需判 断它确实切地点,充足反应出待定切点法的高效性例5 已知函数yx 33x ,过点A(016), 作曲线yf(x)的切线,求此切线方程.5解:曲线方程为yx 33x ,点A(016),不在曲线上.设切点为M(x 0,y 0),则点M 的坐标知足y 0x033x 0.因f(x 0)3(x2 1),故切线的方程为yy 03(x21)(x x0).点A(016),在切线上,则有16(x 0 3 3x 0) 3(x0 2 1)(0x 0).化简得x 038,解得x0 2.因此,切点为M(2,2),切线方程为9x y 160.评注:此类题的解题思路是,先判断点A能否在曲线上,若点A在曲线上,化为种类一或种类三;若点A不在曲线上,应先设出切点并求出切点.练习:17.已知曲线方程为y=x2,求过A(3,5)点且与曲线相切的直线方程.分析解法一设过A(3,5)与曲线y=x2相切的直线方程为y-5k(x-3),即y=kx+5-3k.y=kx+5-3k由y=x2,得x2-kx+3k-5=0.k2-4(3k-5)=0,整理得(k-2)(k-10)=0.k=2或k =10.所求的直线方程为2x-y-1=0,10x-y-25=0.解法二设切点P的坐标为(x0,y0),由y=x2,得y′=2x.y′|x=x0=2x0.5-y0=2x0.又y0=2x0,代入上式整理,得x0=1或x0=由已知kPA=2x0,即3-x05.18.已知曲线S:y=3x-x3及点P(2,2),则过点P可向S引切线,其切线条数为()A.0B.1 C.2D.3答案D分析明显P不在S上,设切点为(x0,y0),由y′=3-3x2,得y′|x=x0=3-3x20.切线方程为y-(3x0-x30)=(3-3x20)(x-x0).P(2,2)在切线上,2-(3x0-x30)=(3-3x20)(2-x0),即x30-3x20+2=0.(x0-1)(x20-2x0-2)=0.由x0-1=0,得x0=1.由x20-2x0-2=0,得x0=1±3.∵有三个切点,∴由P向S作切线能够作3条.综合练习:10.已知f(x)=x2+2xf′(1),则f′(0)等于()A.0B.-4C.-2D.2答案B分析f′(x)=2x+2f′(1),令x=1,得f′(1)=2+2f′(1),∴f′(1)=-2.f′(0)=2f′(1)=-4.12.设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线的斜率为()1A.4B.-41C.2D.-2答案A分析依题意得f′(x)=g′(x)+2x,f′(1)=g′(1)+2=4,选A.15.(1)求过曲线y=e x上点P(1,e)且与曲线在该点处的切线垂直的直线方程;(2)曲线y=15x5上一点M处的切线与直线y=-x+3垂直,求此切线方程.分析(1)∵y′=e x,∴曲线在点P(1,e)处的切线斜率是y′|x=1=e.1∴过点P且与切线垂直的直线的斜率为k=-e.1∴所求直线方程为y-e=-e(x-1),即x+ey-e2-1=0.(2)∵切线与y=-x+3垂直,∴切线斜率为 1.又y′=x4,令x4=1,∴x=±1.∴切线方程为5x-5y-4=0或5x-5y+4=0.4.y=ax2+1的图像与直线y=x相切,则a=()D.1答案B分析由已知{y =ax 2+1,y =x 有独一解,即x =ax 2+1,ax 2-x +1=0有独一解,1∴Δ=1-4a =0,∴a =4.15.点P 在曲线y =f(x)=x 2+1上,且曲线在点P 处的切线与曲线y =-2x 2-1相切,求点P 的坐标.分析 设P(x 00 2 +1. 00,y),则y =x0 x 0+Δx 2+1- x 02+1 =2x 0. f′(x)=lim ΔxΔx→0因此过点P 的切线方程为y -y0=2x0(x -x0),即y =2xx +1-x 2.00而此直线与曲线y =-2x 2-1相切,因此切线与曲线y =-2x 2-1只有一个公共点.由{ y =2x 02 2 0 y =-2x -1, 得x +1-x ,2 22x +2x0x +2-x0=0.2 2即=4x 0-8(2-x)=0.±23 7解得x 0= 3 ,y0=.3因此点P 的坐标为(23,7 )或(- 2 3 3,7 ).3 3 3 17.若直线y =kx 与曲线y =x 3-3x 2+2x 相切,求k 的值.分析 设切点坐标为(x 0 0 0 20 0,y),y′|x=x =3x -6x +2=k.若x 0 0 0 0y0 .=0,则k =2.若x ≠0,由y =kx ,得k = x ∴3x 02-6x 0+2=y,x0即3x0203203x-3x+2x000-6x+2=x0.解之,得x=2.3231∴k=3×(-6×+2=-4.2)2综上,k=2或k=-1.416.已知函数f(x)=2x3+ax与g(x)=bx2+c的图像都过点P(2,0),且在点P处有公共切线,求f(x)、g(x)的表达式.分析∵f(x)=2x3+ax的图像过点P(2,0),a=-8.∴f(x)=2x3-8x.∴f′(x)=6x2-8.关于g(x)=bx2+c的图像过点P(2,0),则4b+c =0.又g′(x)=2bx,∴g′(2)=4b=f′(2)=16.b=4.∴c=-16.∴g(x)=4x2-16.综上可知,f(x)=2x3-8x,g(x)=4x2-16.1.已知直线l1为曲线y=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1⊥l2.(1)求直线l1,l2的方程;(2)求由直线l1,l2和x轴所围成的三角形的面积.剖析(1)求曲线在某点处的切线方程的步骤:先求曲线在这点处的导数,这点对应的导数值即为过此点切线的斜率,再用点斜式写出1直线方程;(2)求面积用S=2a·h即可达成.分析(1)因为y′=2x+1,则直线l1的斜率k1=2×1+1=3,则直线l1的方程为y=3x-3,设直线l2过曲线y=x2+x-2上的点B(x0,y0),因为l1⊥l2。
用导数求切线方程的四种类型浙江 曾安雄求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可.例1 曲线3231y x x =-+在点(11)-,处的切线方程为( )A.34y x =- B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( )A.230x y -+= B.230x y --= C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x xy x ='==|.01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.例3求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x xy x ='=-|. ∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--.解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例4 求过点(20),且与曲线1y x=相切的直线方程.解:设00()P x y ,为切点,则切线的斜率为0201x xy x ='=-|.∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得02011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=.评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.解:曲线方程为33y x x =-,点(016)A ,不在曲线上.设切点为00()M x y ,, 则点M 的坐标满足30003y x x =-.因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--.化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.在初中数学中,曲线的切线没有一般的定义。
题目:导数法求切线方程的三种题型求曲线的切线方程是导数的重要应用之一。
用导数求切线方程的关键在于清楚导数的几何意义:切线的斜率就是函数y=f(x)在切点处的导数。
下面举出长建的题型及解法:题型一:已知切点,求曲线的切线方程。
例1:求函数y=f(x)=2x3在x=1处的切线方程。
解:先求y’=f’(x)=6x2f’(1)=6×1=6=k当x=1时y=2∴切点为(1,2)y-2=6(x-1)y=6x-4题型二:已知曲线外一点,求曲线的切线方程。
例2:已知函数f(x)=x3-3x,过点A(0,16)做曲线y=f(x)的切线,求切线方程。
解:带入可知点A不在曲线上。
设切点M(x0,y0),且点M位于曲线上,满足y0=x03-3x0①f’(x)=3x2-3f’(x0)=3x02-3=k ②又有k=(Y0-16)/(x0-0) ③①带入③,且②=③,得到3x02-3=(x03-3x0)/x0解得x0=-2 ∴y0=-2∴M坐标为(-2,-2)K=3×(-2)2-3=9∴y+2=9(x+2)Y=9x+16题型三:弄清“过某点的切线”与“在某点的切线”例3:(1)求曲线y=x3-2x在点A(1,-1)处的切线方程。
(2)求过曲线y=x3-2x上的点A(1,-1)处的切线方程。
解:(1)做法仿照例1可得切线方程为x-y-2=0(2)设切点为(x0,y0),则有y0=x03-3x0f’(x0)=3x02-23x02-2=k=(y0+1)/(X0-1)3x02-2= (x03-3x0+1)/ (X0-1)解得x0=1或x0=-1/2当x0=1时y0=-1 切点为(1,-1)此时切线方程为x-y-2=0当x0=-1/2时y0=7/8 切点为(-1/2,7/8) 对结果进行分析可知:“在点A处”实际是指A点就是切点,而“过点A”包括了A点是切点和A点不是切点两种情况。
以上就是主要的三种题型,我们发现求切线方程最关键的就是求出切点,利用切线的斜率等于切点处函数的导数,但若函数在(x0,y0)处的导数不存在时,该切线方程为y= y0。
用导数求切线方程方法谈
车树勤
【期刊名称】《数理化解题研究:高中版》
【年(卷),期】2011(000)003
【摘要】求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点P(x_0,y_0)及斜率.下面例析四种常见的类型及解法.一、已知斜率,求曲线的切线方程例1求与直线x+8y-3=0垂直的抛物线y=2x2+1的切线方程.分析此类题可利用斜率求出切点,再用点斜式方程加以解决.
【总页数】2页(P1-2)
【作者】车树勤
【作者单位】江苏省连云港市锦屏高级中学,222021
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.利用导数求曲线的切线方程 [J], 陈泉清
2.例析用导数求切线方程的几种类型 [J], 马涵坤
3.例析用导数求切线方程的几种类型 [J], 马涵坤;
4.偏导数在初等数学求切线方程中的应用 [J], 钟彩容;刘海鸿;
5.利用导数求切线方程 [J], 黄春华
因版权原因,仅展示原文概要,查看原文内容请购买。
用导数求切线方程的四种类型
浙江 曾安雄
求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线
方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.
下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程
此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =-
B.32y x =-+ C.43y x =-+
D.45y x =-
解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.
类型二:已知斜率,求曲线的切线方程
此类题可利用斜率求出切点,再用点斜式方程加以解决.
例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+= B.230x y --= C.210x y -+=
D.210x y --=
解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|. 01x =∴.
由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.
评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.
类型三:已知过曲线上一点,求切线方程
过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3 求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|.
∴切线方程为2000(32)()y y x x x -=--.
320000(2)(32)()y x x x x x --=--.
又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--.
解得01x =,或012
x =-.
故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛
⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝
⎭,即
20x y --=,或5410x y +-=.
评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫
- ⎪⎝⎭
,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.
类型四:已知过曲线外一点,求切线方程
此类题可先设切点,再求切点,即用待定切点法来求解.
例4 求过点(20),且与曲线1
y x
=相切的直线方程.
解:设00()P x y ,为切点,则切线的斜率为020
1
x x y x ='=-|.
∴切线方程为00
201()y y x x x -=-
-,即02
0011
()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得0200
11
(2)x x x -=--. 解得000
1
11x y x ==
=,,即20x y +-=. 评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.
例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程. 解:曲线方程为33y x x =-,点(016)A ,不在曲线上. 设切点为00()M x y ,,
则点M 的坐标满足30003y x x =-. 因200()3(1)f x x '=-,
故切线的方程为20003(1)()y y x x x -=--.
点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--. 化简得308x =-,解得02x =-.
所以,切点为(22)M --,,切线方程为9160x y -+=.
评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.。