16[1].柠檬酸循环
- 格式:pdf
- 大小:4.26 MB
- 文档页数:67
柠檬酸循环名词解释柠檬酸循环,也被称为三羧酸循环(TCA循环)或克恩循环,是一种在细胞线粒体中进行的重要代谢途径。
它是生物体中将葡萄糖、脂肪和蛋白质等有机物转化为能量的关键步骤之一。
柠檬酸循环的名字来源于其中的一种中间产物柠檬酸。
该循环包括一系列的化学反应,最终将有机物转化为二氧化碳、ATP 能量和电子传递物质NADH和FADH2。
这些电子传递物质会水平地释放高能电子,进而参与线粒体内的呼吸链过程,最终转化为更多的ATP能量。
具体来说,柠檬酸循环是由一系列化学反应构成的,其中包括以下步骤:1. 脱羧:某些有机物经过脱羧反应生成较低的羧酸,其中最著名的是将脂肪酸代谢产生的乙酰辅酶A转化为柠檬酸。
2. 转移:柠檬酸经过一系列酶的催化下发生迅速的反应,最终产生脱羧产品和一种新的五碳化合物,即柠檬酸循环的再生产物。
柠檬酸循环还与其他代谢途径相互作用,例如糖异生途径、脂肪酸合成和脂肪酸代谢等。
葡萄糖、脂肪酸和蛋白质都可以通过不同途径生成柠檬酸循环的中间产物,并被进一步代谢为能量。
柠檬酸循环在生物体中具有重要的功能:1. 产生能量:柠檬酸循环可以将有机物转化为能量,产生ATP。
在有氧条件下,每个转化为柠檬酸循环的葡萄糖分子可以生成大约36个分子的ATP,为细胞提供丰富的能量供应。
2. 提供中间物质:柠檬酸循环产生的中间产物可以作为其他代谢途径的底物,参与细胞内的合成反应,例如核苷酸的合成和氨基酸的合成等。
3. 产生电子传递物质:柠檬酸循环产生的NADH和FADH2可以作为电子传递物质,参与细胞内的呼吸链过程,最终产生更多的ATP。
总之,柠檬酸循环是一种在细胞线粒体中进行的重要代谢途径,将有机物转化为能量,并提供中间产物和电子传递物质参与其他代谢过程。
它对于维持细胞内能量平衡和有机物代谢具有重要的功能。
16 柠檬酸循环习题与答案习题1. 丙酮酸脱氢酶复合物包括多少种酶?这些酶的作用分别是什么?2. 尽管 02没有直接参与柠檬酸循环,但没有02的存在,柠檬酸循环就不能进行,为什么? 3. 通过将乙酰CoA 乙酰基上的两个C 原子进行14C 标记来进行柠檬酸循环的研究。
请问 14C02 放射性强度比率如何。
(假设在第二次和第三次循环中加入的乙酰 CoA 不带任何放射性) 4. (a )假如将甲基碳用14C 标记的丙酮酸添加到线粒体的悬浮液中,那么一轮柠檬酸循环后, 14C 出现在草酰乙酸的什么位置? (b) 为了使所有14C 以14CO 2释放掉,需要进行多少轮柠檬酸循环(除了第一轮丙酮 酸是标记的以外,以后进入柠檬酸循环的丙酮酸都不是标记的)? 5. 如果各反应物浓度为:[NAD j/[NADH] = 8, [ a -酮戊二酸]=0.1mmol?L -1,[异柠檬 酸]=0.02mmol?L -1。
CO ?为标准状态,△ G °"=- 7.1 kJ?mol -1。
计算在 25C 、pH7.0 时, 异柠檬酸脱氢酶催化反应的△ G /。
6.虽然在标准状态下,由苹果酸脱氢酶催化的苹果酸氧化生成草酰乙酸是个吸能反应 (△ G °/= + 29.2 kJ?mol -1),但该反应在生理条件下容易进行。
(a) 说明反应容易进行的道理。
(b)如果[NAD +]/[NADH] = 8, 25C 、pH7时能够使反应向草酰乙酸方向进行的[苹果酸]/[ 草酰乙酸 ]最低比值为多少? 7. 用捣碎的肌肉组织进行的早期实验表明,柠檬酸循环是需氧途径,通过此循环代谢 的物质最终氧化成 C02。
但是加入循环中间产物会导致消耗比预期多的氧气。
当琥珀酸、苹2)是否可能通过在肝脏组织匀浆液中加入草酰乙酸的方法来降低丙二酸对琥珀酸 脱氢酶的抑制效应?9、在不消耗柠檬酸循环中的任一成分的情况下,丙酮酸可以转换为转换中的平衡反应式,并给出辅助因子和需要的酶。
简述柠檬酸循环的特点及生理意义
柠檬酸循环是生物体内进行糖类、脂肪和蛋白质代谢过程的关键环节,其主要特点包括:
1. 需要氧气参与:柠檬酸循环是一个氧化代谢过程,需要氧气的参与产生能量。
2. 产生ATP:柠檬酸循环通过产生能量分子ATP来满足生物体各种生理代谢的需求。
3. 产生NADH和FADH2:柠檬酸循环产生的还包括还原型辅酶NADH和FADH2,它们是线粒体呼吸链中的重要电子供体。
4. 呈逆时针回路:柠檬酸循环是一个由6个酶和多种辅因子参与的逆时针回路,使得该循环能够不断工作,并不断地产生新的柠檬酸,同时将代谢物在各个环节进行逐步氧化降解,最终转换成二氧化碳和水。
5. 也能参与新陈代谢:柠檬酸循环除了是能源合成的过程,同时某些代谢活性物质的生物合成也涉及到该循环中某些中间体的合成,程序复杂,还需要调节。
总之,柠檬酸循环是一种高度调控的、能量供应的过程,在生物
体的新陈代谢和能量供应方面具有重要作用。
生理意义:
这个循环的存在是生物能够适应干旱,高温的环境。
像一些沙漠当中的植物就用这种方法,白天进行光合作用,晚上进行暗反应固定二氧化碳。
晚上二氧化碳通过气孔进入植物,经过一系列的变化,形成柠檬酸,储存在液泡当中。
白天柠檬酸在分解释放出二氧化碳。
进行完整的光合作用。
这样就避免了白天气孔打开以后水分的蒸发。
减少了水分的散失,但是又不影响光合作用。
1.糖的有氧氧化.:指在机体氧供充足时,葡萄糖彻底氧化成CO2和H2O ,并释放出能量的过程。
是机体主要供能方式。
反应部位:胞浆及线粒体糖的有氧氧化过程第一阶段:酵解途径第二阶段:丙酮酸的氧化脱羧第三阶段:三羧酸循环第四阶段:氧化磷酸化2.糖的有氧氧化第一阶段:葡萄糖循糖酵解途径分解为丙酮酸此阶段与无氧分解的过程相似,不同的是3-磷酸甘油醛脱氢生成NADH+H+的去向不同。
无氧的情况下,NADH+H+在细胞浆中将丙酮酸还原生成乳酸;在有氧的情况下,NADH+H+经穿梭作用进入线粒体,氧化成水和能量(3 or 5 ATP)。
第二阶段:丙酮酸进入线粒体氧化脱羧生成乙酰CoA此阶段1分子Glu生成2分子NADH+H+ , 5分子ATP。
TPP丙酮酸————————→乙酰CoA丙酮酸脱氢酶系丙酮酸脱氢酶系包括三种酶和六种辅助因子:三种酶——E1-丙酮酸脱氢酶组分;E2-二氢硫辛酰转乙酰基酶;E3-二氢硫辛酸脱氢酶六种辅助因子——TPP、硫辛酸、CoA-SH、FAD、NAD+、Mg2+多酶复合体位于线粒体内;原核细胞在胞液中TPP的作用:脱羧酶辅酶,将底物移入(出)脱羧酶的活性中心。
此阶段反应特点:_ 反应速度快并且为不可逆反应。
_ 反应中生成的NADH+H+直接进入电子传递链进行氧化磷酸化生成水,产生2.5 ATP。
_ 生成的乙酰辅酶A进入三羧酸循环,CO2可由肺呼出或参与机体内代谢。
分步反应:① O E1CH3-C-COOH + TPP——→羟乙基TPP + CO2② E2羟乙基TPP + 硫辛酸——→乙酰硫辛酸+ TPP③ E2乙酰硫辛酸+ HS~CoA ——→乙酰-CoA + HS-L-HS④ E3HS-L-HS + FAD ——→硫辛酸 + FADH 2⑤ E3FADH2 + NAD+ ——→FAD + NADH+H+砷化物对硫辛酸的毒害作用,砷化物抑制丙酮酸脱氢酶复合体的机制也表现在对α-酮戊二酸脱氢酶复合体的抑制上。
柠檬酸循环的双重作用名词解释
柠檬酸循环,也称为三羧酸循环或Krebs循环,是细胞内发生的一系列化学反应,用于将有机物质氧化成二氧化碳和水,并产生能量供细胞使用。
该循环被称为“双重作用”源于以下两个方面:
1. 氧化代谢:柠檬酸循环在细胞线粒体的基质中进行。
首先,乙酰辅酶A (Acetyl-CoA)与氧合合成柠檬酸,接着通过一系列酶催化的反应,将柠檬酸逐步分解成可释放能量的碳酸、赖氨酸和尿素等物质。
这个过程产生了丰富的电子供体NADH和FADH2,它们通过电子传递链(ETC)释放出的能量,进一步转化为细胞合成大量ATP(细胞的能量储备分子)的化学能。
2. 有机合成:除了从碳源中释放能量,柠檬酸循环还为细胞合成许多重要分子提供了碳原子。
通过柠檬酸循环,合成物质如电子供体NADH和FADH2,并可进一步在其他代谢途径中参与生物合成反应。
例如,柠檬酸循环产生的某些中间产物可用于生物合成胆固醇、脂肪酸、氨基酸和其他重要细胞组分。
总结来说,柠檬酸循环具有双重作用。
一方面,它将有机物质氧化成二氧化碳和水,释放出能量供细胞使用;另一方面,它还提供碳原子,用于合成细胞中的重要有机分子。
这个循环在细胞代谢中发挥着重要作用,使生物体能够从食物中获得能量,并维持生命的正常运转。
第一部分:糖酵解(glycolysis,EMP):是将葡萄糖降解为丙酮酸并伴随着ATP生成的一系列反应,是生物体内普遍存在的葡萄糖降解的途径。
该途径也称作Embden-Meyethof途径。
柠檬酸循环(citric acid cycle,tricarboxylic acid cycle,TCA cycle):也叫三羧酸循环,又叫做TCA循环,是由于该循环的第一个产物是柠檬酸,它含有三个羧基,故此得名。
乙酰辅酶A与草酰乙酸缩合成六碳三羧酸即柠檬酸,经过一系列代谢反应,乙酰基被彻底氧化,草酰乙酸得以再生的过程称为三羧酸循环。
生物氧化(biological oxidation):糖类、脂肪、蛋白质等有机物质在细胞中进行氧化分解生成CO2和H2O并释放出能量的过程称为生物氧化,其实质是需氧细胞在呼吸代谢过程中所进行的一系列氧化还原反应过程,所以又称为细胞氧化或细胞呼吸。
质子梯度(gradients of protons):化学渗透学说认为,电子传递释放的自由能驱动H+从线粒体基质跨过内膜进入到膜间隙,从而形成跨线粒体内膜的H+电化学梯度即质子梯度。
这个梯度的电化学势驱动ATP合成。
Fe -S蛋白:(简写为Fe-S)是一种与电子传递有关的蛋白质,它与NADH Q还原酶的其它蛋白质组分结合成复合物形式存在。
它主要以(2Fe-2S) 或(4Fe-4S) 形式存在。
(2Fe-2S)含有两个活泼的无机硫和两个铁原子。
铁硫蛋白通过Fe3+ Fe2+ 变化起传递电子的作用。
细胞色素(cytochrome):是一类含有血红素辅基的电子传递蛋白质的总称。
因为有红颜色,又广泛存在于生物细胞中,故称为细胞色素。
血红素的主要成份为铁卟啉。
根据吸收光谱分成a、b、c三类,呼吸链中含5种(b、c、c1、a和a3)。
Q循环:是指在线粒体内膜中电子传递链上QH2分别传递一个电子到细胞色素中,即共使2个细胞色素得到电子,从而被氧化。
电子传递链(eclctron transfer chain):线粒体基质是呼吸底物氧化的场所,底物在这里氧化所产生的NADH和FADH2将质子和电子转移到内膜的载体上,经过一系列氢载体和电子载体的传递,最后传递给O2生成H2O。
柠檬酸循环柠檬酸循环是生物体内一种重要的代谢途径,也被称为三羧酸循环或克雷布循环。
它是在细胞内进行的一系列反应,主要负责将食物中的营养成分转化为细胞能量。
柠檬酸循环作为细胞内氧化还原反应的主要途径之一,发挥着至关重要的作用。
循环过程柠檬酸循环共包含八个不同的反应步骤,涉及七种不同的酶。
整个循环过程如下:1.乳酸脱氢酶反应:将乳酸转化为丙酮酸。
2.乙醛脱氢酶反应:将乙醛转化为乙酰辅酶A。
3.异戊二烯辅酶A合成酶反应:将乙酰辅酶A转化为柠檬酸。
4.柠檬酸合成酶反应:将柠檬酸转化为顺丁烯二酸。
5.异戊二烯辅酶A合成酶反应:将异戊二烯辅酶A转化为异丁酰辅酶A。
6.丁二酸合成酶反应:将异丁酰辅酶A转化为丙二酸。
7.丙二酸合成酶反应:将丙二酸转化为丙酮酸。
8.加氢酶反应:将丙酮酸转化为草酰辅酶A,同时还释放出二氧化碳。
生物学意义柠檬酸循环是细胞内产生三羧酸的关键途径之一,也是呼吸链中的前体。
通过柠檬酸循环,生物体将葡萄糖、脂肪酸和氨基酸等营养物质转化为能量。
此外,柠檬酸循环还与胆固醇、叶酸等生物合成过程密切相关。
另外,柠檬酸循环还与体内的氧化还原反应联系紧密。
细胞在进行柠檬酸循环时,共同参与了一系反应,这些反应将有机物氧化为能量,同时还合成了ATP分子。
柠檬酸循环还参与了许多生理过程,例如体内酸碱平衡的调节,以及代谢的调控等。
总结柠檬酸循环是生物体内非常重要的代谢途径之一,它在细胞内转化食物成分为细胞能量的过程中扮演了重要作用。
通过这个循环,生物体增加了ATP的合成量,提高了能量利用效率,并参与了很多重要的生理过程。
柠檬酸循环的研究也有助于人们更深入地了解生物体细胞内代谢的复杂机制。
柠檬酸循环的名词解释柠檬酸循环是生物体内的一种重要代谢途径,它也被称为三羧酸循环或克雷布循环。
该循环起始于葡萄糖分子的氧化,被认为是细胞呼吸过程中必不可少的一环。
柠檬酸循环的重要性主要体现在其为细胞提供能量的同时还能合成重要的有机分子。
柠檬酸循环是在细胞的线粒体中进行的,包含了一系列复杂的化学反应。
首先,葡萄糖分子被分解成丙酮酸和谷氨酸。
然后,这些分子进入循环中,通过一系列酶催化的氧化还原反应,最终生成柠檬酸。
在这一过程中,产生的氢离子和电子被捕获,转移到辅酶NAD+或辅酶FAD上,形成辅酶NADH或辅酶FADH2。
这些还原辅酶将进一步参与细胞内能量合成的反应。
柠檬酸循环的一个重要特点是其能够为细胞提供能量。
在柠檬酸循环中,氢离子和电子的转移被耗费在负氧化还原反应中,产生的能量转化为三磷酸腺苷(ATP),从而提供给细胞进行各种生命活动。
这是维持细胞生存的基本能量来源之一。
同时,柠檬酸循环还参与合成一系列重要的有机分子。
通过柠檬酸循环,葡萄糖分子最终可以合成氨基酸、脂肪酸和胆固醇等生物大分子。
这些分子在维持生物体生命活动中起着重要的作用。
举例来说,氨基酸是蛋白质的构成单元,脂肪酸和胆固醇则是构成细胞膜的主要组成部分。
因此,柠檬酸循环在细胞代谢中的意义不可忽视。
柠檬酸循环的进行需要一系列辅酶和酶的参与。
这些辅酶和酶的合成与体内各种维生素的供应密切相关。
例如,维生素B1参与合成辅酶硫辛酸(辅酶A的组成部分),而维生素B2则是辅酶FAD的组成部分。
这些维生素的缺乏会影响到柠檬酸循环的顺利进行,进而导致细胞能量供应不足和一系列代谢紊乱。
总而言之,柠檬酸循环是生物体内一种重要的代谢途径,为细胞提供能量的同时还能合成重要的有机分子。
它参与维持细胞生存和各种生物过程的进行。
了解柠檬酸循环对于深入理解细胞代谢和生命活动的机理具有重要的意义。
柠檬酸循环的化学总结算
(一)柠檬酸循环的化学总结算
TCA总反应为:
CH3COSCoA + 3NAD+ + 2H2O + GTP + Pi + FAD→2CO2 + 3NADH + FADH2 + GTP + 2H+ + CoA SH
乙酰CoA经TCA产生3个NADH,1个FADH2和1个GTP(ATP)。
两个碳以CO2形式离开,4个氢原子形成3分子NADH,1分子FADH2。
柠檬酸循环只能在有氧条件下进行,因为产生的3个NADH和1个FADH2只能经电子传递链被氧化成NAD+和FAD而再生。
经电子传递链NADH被氧化产生2.5ATP,FADH2被氧化产生1.5ATP。
3个NADH,1个FADH2共产生3×2.5 + 1.5 = 9个ATP,再加上1个GTP共产生9 + 1 = 10个ATP。
从丙酮酸脱氢开始计算,每分子丙酮酸氧化脱羧产生1个NADH,合2.5个ATP,所以从丙酮酸开始TCA一次循环共产生12.5个ATP。
从葡萄糖开始,经酵解,1分子葡萄糖产生2分子丙酮酸,2个ATP及2个NADH,再经柠檬酸循环共产生12.5×2 = 25个ATP。
所以1分子葡萄糖经酵解,TCA及氧化磷酸化共产生ATP分子数为:25 + 7 =32个ATP。
柠檬酸循环的名词解释介绍柠檬酸循环(Krebs cycle),也称为三羧酸循环(tricarboxylic acid cycle)或卡尔文循环(Calvin cycle),是生物体内进行细胞呼吸的关键代谢途径之一。
它在有氧条件下通过氧化葡萄糖产生能量,并生成二氧化碳、水和能量富集的还原辅酶。
循环过程柠檬酸循环是一系列复杂的生化反应,涉及多个底物和酶的参与。
以下是柠檬酸循环的主要步骤:1.乳酸脱氢酶反应–乳酸通过乳酸脱氢酶转化为丙酮酸,同时产生NADH。
2.丙酮酸变羧化反应–丙酮酸通过丙酮酸脱羧酶的作用,变羧化为柠檬酸,并释放出二氧化碳。
3.柠檬酸异构反应–柠檬酸经过柠檬酸异构酶的作用,转化为异柠檬酸。
4.异柠檬酸变羧化反应–异柠檬酸通过异柠檬酸脱羧酶的作用,变羧化为α-酮戊二酸,并释放出二氧化碳。
5.α-酮戊二酸脱氢反应–α-酮戊二酸通过α-酮戊二酸脱氢酶的作用,产生NADH和脱羧产物。
6.脱羧产物再生–脱羧产物在多次反应中生成辅酶A,再经过复杂的反应路径得到柠檬酸。
7.总反应方程式–以上反应综合在一起,得到柠檬酸循环的总反应方程式:乳酸 + NAD+ + CoA-SH + ADP + Pi → Acetyl-CoA + NADH + H+ + ATP +H2O + CO2。
循环中的产物柠檬酸循环在每一次循环过程中产生以下重要的产物:1.ATP:通过底物级磷酸化反应(substrate-level phosphorylation),柠檬酸循环每循环一次可以产生1个ATP。
2.NADH和FADH2:在柠檬酸循环中,通过NAD+和FAD接受氢原子的转移,产生NADH和FADH2,这些将在后续的细胞呼吸过程中发挥重要的作用。
3.CO2:柠檬酸循环中产生的二氧化碳是细胞释放掉的废物,它将在呼吸过程中通过肺部排出体外。
循环调控柠檬酸循环的调控对于维持正常的细胞呼吸过程至关重要。
以下是柠檬酸循环的调控机制:1.NADH和ATP浓度:高浓度的NADH和ATP会抑制柠檬酸循环的进行,这是因为细胞内能源和氧气供应充足,不需要继续产生更多的能量。