生物化学第20章 柠檬酸循环
- 格式:ppt
- 大小:2.49 MB
- 文档页数:54
糖类代谢要点解答1.糖代谢各途径发生的场所、限速酶或关键酶、能量转换和生理意义2.三羧酸循环的生物学意义有哪些?三羧酸循环是糖有氧分解的重要途径,有着重要的生物学意义。
(1)三羧酸循环是有机体获得生命活动所需能量的最重要途径。
在糖的有氧分解中,每个葡萄糖分子通过糖酵解途径只产生6个或8个ATP,而通过三羧酸循环就可产生24个ATP,远远超过糖酵解阶段或葡萄糖无氧降解(生成2个ATP)所产生的ATP的数目。
此外,脂肪、氨基酸等其他有机物作为呼吸底物彻底氧化时所产生的能量也主要是通过三羧酸循环。
因此,三羧酸循环是生物体能量的主要来源。
(2)三羧酸循环是物质代谢的枢纽。
三羧酸循环具有双重作用,一方面,三羧酸循环是糖、脂肪和氨基酸等有机物彻底氧化的共同途径;另一方面,许多合成代谢都利用三羧酸循环的中间产物作为生物合成的前体,循环中的草酰乙酸、α-酮戊二酸、柠檬酸、琥珀酰CoA和延胡索酸等又是生物体合成糖(糖异生)、氨基酸、脂肪酸和卟啉等的原料。
因此,三羧酸循环可以看成新陈代谢的中心环节,起到物质代谢枢纽的作用。
3.在葡萄糖的有氧氧化过程中,哪些步骤进行脱氢反应?哪些步骤进行脱羧反应?1分子葡萄糖有氧氧化净产生多少分子ATP?葡萄糖的有氧氧化过程包括糖酵解的反应、丙酮酸氧化脱羧和乙酰CoA进入三羧酸循环的反应,脱氢、脱羧及ATP的变化总结如下:4.磷酸戊糖途径有何特点?该途径有何生理意义?磷酸戊糖途径的特点是:第一,该途径不经过EMP-TCA反应,直接在六碳糖的基础上脱羧,脱氢;第二,该途径以NADP+为氢的受体,产生还原力NADPH+H+。
该途径的生理意义:(1)提供生物体重要的还原剂NADPH。
无论动物还是植物,NADPH不能直接被呼吸链氧化。
NADPH的重要功能是在很多合成反应中作为还原剂。
例如,在脂肪酸和胆固醇合成中,在二氢叶酸还原为四氢叶酸等反应中,都是NADPH作为还原剂。
NADPH还可使还原型谷胱甘肽再生.从而保证细胞的抗氧化能力。
三羧酸循环三羧酸循环, 也称柠檬酸循环(CAC). 发生在线粒体基质中.柠檬酸循环的基本步骤1.由糖酵解来的乙酰CoA将碳单位转移到草酰乙酸上, 该步由柠檬酸合酶催化, 生成柠檬酸. 这是一步不可逆反应, 看来是一步高能降低能的反应i.不可逆反应总是调控位点. 对柠檬酸合酶的调控主要是别构调节. 细胞高能的指示剂如ATP, NADH, 琥珀酰CoA都可以做别构抑制剂. 而ADP作为别构激活剂. 柠檬酸本身也可以反馈抑制.2.柠檬酸异构为异柠檬酸, 由顺乌头酸酶催化, 该步可逆, 但由于下一步很快. 所以这一步也经常按正方向进行. 该步是必不可少的, 将底物变的更易氧化.(羟基从中间移至一侧)3.上述羟基被氧化, 异柠檬酸被氧化脱羧, 形成α-酮戊二酸, 由异柠檬酸脱氢酶催化. 该反应强烈放能, 也是不可逆反应.涉及氧化还原的反应往往有NAD+的参与. NAD+把异柠檬酸氧化.自己生成NADHi.植物对于它的调控有共价修饰. 动物中则多为别构调节. ATP是异柠檬酸脱氢酶的负别构效应物, 而ADP和钙离子是正别构效应物, 可能是因为钙离子代表了肌肉收缩的信号. NADH作为产物也可以竞争性反馈抑制.4.α-酮戊二酸氧化脱羧生成琥珀酰CoA, 由α-酮戊二酸脱氢酶系催化. 之后都不能再掉碳了. 同样涉及NAD+变为NADH, 这也是不可逆反应i.该酶系的调控是CAC的重要调控点,与丙酮酸脱氢酶系相似, 但少了共价修饰的调节. 它主要有别构调节和产物的竞争性反馈抑制. 钙离子和ADP可以别构激活, α酮戊二酸脱氢酶, 琥珀酰CoA和NADH分别作为产物竞争反馈抑制后两个酶.5.唯一一步底物水平磷酸化, 琥珀酰CoA推动GTP形成, 生成琥珀酸, 由琥珀酰CoA合酶催化. 该步可逆.6.琥珀酸脱氢生成延胡索酸, 由琥珀酸脱氢酶催化, 该酶在电子传递链中存在重要作用, 其就是复合体Ⅱ的主要成分(见电子传递链). 该步脱氢是用FAD做的.生成FADH27.延胡索酸生成苹果酸,由延胡索酸酶催化.8.苹果酸被氧化成草酰乙酸, 由苹果酸脱氢酶催化, 这个过程与苹果酸-天冬氨酸穿梭系统是一致的. NAD+变为NADH(见糖酵解)总的来说柠檬酸循环生成了3个线粒体的NADH, 1个FADH2, 1个GTP, 等同于10个ATP, 当然, 这只考虑了一个乙酰CoA, 而一个葡萄糖最后能形成两个乙酰CoA, 也就是等同于20个ATP.柠檬酸循环进来一个二碳单位, 同时途中掉过两次碳. 但这两个碳并不是进来的那个. CAC必须要有氧, 否则变化的NAD+, FAD无法再生.柠檬酸循环的回补反应CAC中的多种代谢产物可能被其他代谢通路用掉, 因此需要回补.1.草酰乙酸的回补.这是回补中最主要的途径, 由PEP被PEP羧化酶和生物素作用生成草酰乙酸, 或者由丙酮酸消耗1分子ATP被丙酮酸羧化酶和生物素反应, 生成草酰乙酸. 或者绕一圈, 由丙酮酸消耗NADPH, 变成苹果酸, 再生成一分子NADH 变成草酰乙酸. 这一步反应在后来的脂肪酸代谢也有重要的作用(见脂肪酸代谢)2.α-酮戊二酸的回补.谷丙转氨酶可以把谷氨酸转化成α-酮戊二酸.。
第23章柠檬酸循环三羧酸循环——糖的最后氧化途径三羧酸循环(tricarboxylic acid circle),又称柠檬酸循环,Krebs循环,简又称柠檬酸循环Krebs循环简写为TCA循环;是在有氧条件下,将酵解产生的丙酮酸氧化脱羧成乙酰C A再经系生的丙酮酸氧化脱羧成乙酰CoA,再经一系列氧化,脱羧,最终生成二氧化碳和水并产生能量的过程。
三羧酸循环•三羧酸循环的发现历史及实验依据1.发现历史2.实验依据•丙酮酸(C3)氧化脱羧生成乙酰CoA(C2)1.场所及酶2.不可逆的关键步骤。
•三羧酸循环的过程1.生成六碳三羧酸阶段(TCA1.mov)2.生成四碳二羧酸阶段(TCA2.mov)3.草酰乙酸的再生阶段(TCA3.mov)•丙酮酸经三羧酸循环化学物质变化的结算•葡萄糖完全氧化时能量变化的结算(TCA4.mov)羧酸循环的意义•三羧酸循环的生理意义三羧酸循环发现的历史(1)Albert Szent Gyorgyi观察用丙酮()酸与肌肉组织一起在有氧条件下保温,丙酮酸可以被彻底氧化,生成二氧化碳和水。
因此认为葡萄糖或糖原的有氧分解也循着糖酵解途径,有氧分解可以说是无氧分解的继续。
(2) H.Krebs通过总结大量的实验结果,认为糖的氧化过程不是直线进行的,而是以认为糖的氧化过程不是直线进行的而是以循环方式进行。
于是他1937年提出了三羧酸循环假设并用实验证明了三羧酸循环的存在。
循环假设并用实验证明了三羧酸循环的存在三羧酸循环的实验依据•1)Krebs首先证实六碳三羧酸(柠檬酸、顺乌头酸、异柠檬酸)和α-酮戊二酸,以及四碳二羧酸(琥珀酸、延胡索酸、苹)果酸、草酰乙酸)都能强烈刺激肌肉中丙酮酸氧化的活性,氧的消耗。
说明这些化合物都是丙酮酸氧化途径中的中间产合物是酸氧途中的中间产物。
•2)Krebs还发现在肌肉糜悬浮液加入丙二)酸,有抑制丙酮酸氧化的作用,而且在肌肉糜悬浮液有琥珀酸的积累。
说明丙二酸是琥珀酸脱氢酶的竞争性抑制剂。
19新陈代谢——指生物体内一些化学变化的总称,是生物体表现其生命活动的重要特征之一。
是由多种酶协同作用的化学反应网络。
从物质代谢来说,新陈代谢包括分解代谢和合成代谢。
分解代谢——生物大分子通过一系列的酶促反应步骤,转变为较小的、较简单的物质的过程。
合成代谢——生物体利用小分子或大分子的结构元件合成自身生物大分子的过程。
能量代谢——在生物体内,以物质代谢为基础,与物质代谢过程相伴随发生的,是蕴藏在化学物质中的能量转化,统称为能量代谢20机体内许多磷酸化合物,当其磷酰基水解时,释放出大量的自由能(一般水解时能释放出5kcal/mol以上的自由能)。
这类化合物称为高能磷酸化合物。
其释放高能量的化学键叫“高能键”,有符号“~”表示。
磷酸肌酸和磷酸精氨酸以高能磷酸基团的转移作为贮能物质统称为磷酸原21生物膜是构成细胞所有膜的总称,包括围在细胞质外围的质膜和细胞器的内膜系统。
被动运输 指物质从高浓度的一侧,通过膜运输到低浓度的一侧,物质顺浓度梯度的方向跨膜运输的过程。
不需要消耗代谢能的穿膜运输。
特点:物质的运送速率既依赖于膜两侧运送物质的浓度差;又与被运送物质的分予大小,电荷和在脂双层中的溶解性有关。
主动运输指物质逆浓度梯度的穿膜运输过程。
需消耗代谢能,并需专一性的载体蛋白。
特点:①专一性。
有的细胞膜能主动运输某些氨基酸,但不能运送葡萄糖。
有的则相反。
②运送速度可以达到“饱利“状态。
③方向性。
如细胞为了保持其内、外的K+、Na+的浓度梯度差以维持其正常的生理活动,细胞主动地向外运送Na+ ,而向内运送K+ 。
④选择性抑制。
各种物质的运送有其专一的抑制剂阻遏这种运送。
⑤需要提供能量。
如果一种物质的运输与另一种物质的运输相关而且方向相同,称为同向运输。
方向相反则称为反向运输,这二者又统称为协同运输。
Na+、K+-泵实际是分布在膜上的Na+、K+-ATP酶。
通过水解ATP提供的能量主动向外运输Na+,而向内运输K+ 。