遥感数字图像处理-第8章 图像增强
- 格式:ppt
- 大小:4.07 MB
- 文档页数:20
遥感图像解译中的图像增强和分类技术介绍概述:遥感图像解译是指通过对遥感数据进行处理和解析,来获取地理信息的过程。
在这一过程中,图像增强和分类技术是至关重要的工具,可以提高图像质量和准确度。
本文将介绍遥感图像解译中的图像增强和分类技术的原理和应用。
一、图像增强技术图像增强技术是指通过对原始遥感图像进行处理,改善图像质量的方法。
1. 直方图均衡化直方图均衡化是通过变换图像的灰度级分布,增强图像的对比度和亮度。
该方法适用于单一场景中的图像。
通过对原始图像中每个像素的像素值进行统计,可以得到图像的灰度级分布。
根据统计分布,可以将原始图像中的灰度级重新映射,使得图像的灰度级分布更均匀。
这样可以增强图像的对比度,使得图像中的目标更加清晰可见。
2. 滤波技术滤波技术通过对图像进行空域或频域的滤波处理,来改善图像的质量。
常用的滤波方法包括线性滤波和非线性滤波。
线性滤波方法包括均值滤波、中值滤波等,主要用于降噪和平滑图像。
非线性滤波方法包括边缘增强滤波、退化滤波等,主要用于增强图像的边缘信息。
3. 多尺度分析多尺度分析是一种基于图像的不同尺度表示,来提取图像不同层次特征的方法。
常用的多尺度分析方法包括小波变换、尺度空间分析等。
通过对不同尺度下的图像进行处理和分析,可以获得更全面的图像信息。
这些信息可以用于图像分类和目标检测等应用。
二、图像分类技术图像分类技术是将遥感图像中的像素点或图像区域划分为不同的类别的过程。
图像分类是遥感图像解译的关键步骤,它可以帮助我们理解和分析图像中的地物信息。
1. 监督分类监督分类是一种通过人工标签指定不同类别的样本进行训练的分类方法。
在监督分类过程中,我们首先需要选择一种合适的分类算法,如支持向量机(SVM)、决策树、人工神经网络等。
然后,根据已标注的样本,使用分类算法进行训练和分类预测。
监督分类方法适用于有充足样本且具有明显特征的图像。
2. 无监督分类无监督分类是一种不依赖于人工标签的分类方法。
遥感图像的增强处理一、实验目的通过上机操作,了解空间增强、辐射增强、光谱增强几种遥感图像增强处理的过程和方法,加深对图像增强处理的理解。
二、实验内容对下图进行卷积增强处理;直方图均衡化;主成分变换;色彩变换三、实验过程ERDAS IMAGE图像解译模块主要包括了图像的空间增强、辐射增强、光谱增强、高光谱工具、傅立叶变换、地形分析以及其他实用功能。
1、卷积增强(Convolution)空间增强技术是利用像元自身及其周围像元的灰度值进行运算,达到增强整个图像之目的。
卷积增强(Convolution)是空间增强的一种方法。
卷积增强(Convolution)时将整个像元分块进行平均处理,用于改变图像的空间频率特征。
卷积增强(Convolution)处理的关键是卷积算子——系数矩阵的选择。
该系数矩阵又称卷积核(Kernal)。
ERDAS IMAGINE将常用的卷积算子放在一个名为default.klb的文件中,分为3*3,5*5,7*7三组,每组又包括“Edge Detect/Low Pass/Horizontal/Vertical”等七种不同的处理方式。
具体执行过程如下:ERDAS图标面板菜单条:Main→Image Interpreter→Spatial enhancement→convolution→convolution对话框。
图3-1 Convolution对话框几个重要参数的设置:边缘处理方法:(Handle Edges by):Reflection卷积归一化处理:Normalize the KernelKernel:3*3EdgeDetcetInput File(*.hdr): C\data\nj.hdr type:ENVI*.hdrOutput File(*.img): C\11.imgOutput: Unsigned 8 bit2、直方图均衡化(Histogram Equalization)直方图均衡化实质上是对图像进行非线性拉伸,重新分配图像像元值,是一定灰度范围内的像元数量大致相同。
第一章数字图像处理根底1数字图像处理:将图像转换成一个数字矩阵存放在图像存储器中,然后利用计算机对图像信息进行数字运算和处理,以提高图像质量或者提取所需要的信息2数字图像获取:把客观场景发射或者发射的电磁波信息首先利用光学成像系统生成一副模拟图像,然后通过模数转换将模拟图像转换为计算机可以存储的离散化数字图像。
3采样:即图像空间坐标或位置的离散化,也就是把模拟图像划分为假设干图像元素,兵赋予它们唯一的地址。
;离散化的小区域就是数字图像的根本单元,称为像元也称像素。
量化:即电磁辐射能量的离散化,也就是把像元内的连续辐射亮度中离散的数字值来表示,这些离散的数字值也称灰度值,,因为它们代表了图像上不同的亮暗水平。
4遥感数字图像获取特征参数质量特征:⑴空间分辨率:数字图像上能被详细区分的最小单元的尺寸或大小⑵辐射分辨率传感器探测原件在接受光谱信号时,所能分辨的最小辐射度差信息量特征:⑴光谱分辨率:传感器探测元件在接收目标地物辐射能量时所用的波段数目⑵时间分辨率:对同一区域进行重复观测的最小时间间隔。
5模拟图像:在图像处理中通过某种物理量的强弱变化来记录图像亮度信息的图像6数字图像:把连续的模拟图像离散化成规那么网格并用计算机以数字的模式记录图像上各网格点亮度信息的图像7数字图像特性:①空间分布特性:1空间位置:数字图像以二维矩阵的结构的数据来描述物体,矩阵按照行列的顺序定位数据,所以物体的位置也是用行列号表示。
2形状:点状线状和面状3大小:线状物体的长度或面状物体的面积,表现为像元的集聚数量4空间关系:包含,相邻,相离三种拓扑关系②数值统计特性:对图像的灰度分布进行统计分析。
图像的灰度直方图:用来描述一幅数字图像的灰度分布,横坐标为灰度级,纵坐标为灰度级在图中出现8直方图的用途:1图像获取质量评价2边界阙值的选择3噪声类型的判断9遥感数字图像的输出特征参数:1输出分辨率:屏幕分辨率和打印的分辨率2灰度分辨率:指输出设备能区分的最小灰度差3颜色空间模型:RGB 模型CMYK模型HSI颜色模型10数字图像种类:1.黑白图像:二值数字图像,0表示黑色1表示白色;2.灰度图像:单波段图像每个像元的灰度值的取值范围由灰度量决定;3.伪彩色图像:把单波段图像的各灰度值按照一定规那么映射到颜色空间中某一对应颜色;4.彩色图像:由红绿蓝3个颜色通道的数字层组成的图像第二章数字图像存储1比特序:一个字节中8个比特的存储顺序称为比特序。