第4章 抗震等级 验算 荷载效应组合.
- 格式:ppt
- 大小:2.39 MB
- 文档页数:51
高层建筑结构设计广西大学土木建筑工程学院贺盛第四章结构设计基本规定4.6 舒适度验算4.7 抗震设防类别4.8 抗震等级4.9 变形缝设置4.1 适用最大高度及高宽比4.2 结构布置的规则性4.3 承载力验算4.4 荷载效应组合4.5 变形验算本章重点➢掌握各类房屋的适用最大高度及高宽比➢掌握各类结构布置原则及规则性判别方法➢掌握荷载效应组合及承载力验算方法➢掌握变形验算方法➢了解舒适度验算方法➢掌握各类建筑抗震等级确定方法➢熟悉各种变形缝的类型及设置原则4.1 适用最大高度及高宽比结构设计首先需根据房屋高度、抗震设防、设防烈度等因素,确定一个与之匹配的、经济且合理的结构体系,以使结构效能得到充分发挥,材料强度得到充分利用。
《建筑结构抗震设计规范》GB50011-2010(以下简称《抗规》)、《高层建筑混凝土结构技术规程》JGJ3-2010(以下简称《高混规》)及《高层民用建筑钢结构设计规程》JGJ-2015(以下简称《高钢规》)规定了钢筋混凝土结构、钢结构及混合结构房屋建筑的最大适用高度。
将钢筋混凝土结构房屋划分为A与B级。
当房屋高度满足下表时,为A级。
当钢筋混凝土结构房屋高度不满足上表,但满足下表时,为B级。
当房屋高度不满足下表时,为超限高层建筑。
民用钢结构房屋的最大适用高度如下表所示。
表中筒体不包括钢筋混凝土筒。
混合结构房屋的最大适用高度如下表所示。
4.1.2 房屋建筑适用的高宽比房屋建筑适用的高跨比,是对结构刚度、整体稳定承载能力及经济合理性的宏观控制指标。
当结构设计满足承载力、稳定、抗倾覆、变形及舒适度等基本条件之后,仅从结构安全角度考虑,高宽比限值不是必须满足的。
高宽比主要影响结构设计的经济性。
钢筋混凝土结构房屋建筑的适用高宽比如下表。
4.1.2 房屋建筑适用的高宽比钢结构房屋建筑的适用高宽比如下表。
混合结构房屋建筑的适用高宽比如下表。
4.2 结构布置的规则性建筑平面可分为板式和塔式两大类。
第四章4.1 承载力验算和水平位移限制为什么是不同的极限状态?这两种验算在荷载效应组合时有什么不同?答:(1)高层建筑结构设计应保证结构在可能同时出现的各种外荷载作用下,各个构件及其连接均有足够的承载力。
我国《建筑结构设计统一标准》规定构件按极限状态设计,承载力极限状态要求采用由荷载效应组合得到的构件最不利内力进行构件截面承载力验算。
水平位移限制是正常使用极限状态,主要原因有:要防止主体结构开裂、损坏;防止填充墙及装修开裂、损坏;过大的侧向变形会使人有不舒适感,影响正常使用;过大的侧移会使结构产生附加内力(P-Δ效应)。
(2)承载力验算是极限状态验算,在内力组合时,根据荷载性质的不同,荷载效应要乘以各自的分项系数和组合系数。
对于水平位移限制验算,要选择不同方向的水平荷载(荷载大小也可能不同)分别进行内力分析,然后按不同工况分别组合。
4.2 为什么高而柔的结构要进行舒适度验算?答:因为高而柔的结构抗侧刚度较小,在风荷载作用下会产生较大的侧向加速度,使人感觉不舒适,因此要进行舒适度验算,按重现期为10年的风荷载计算结构顶点加速度,或由风洞试验确定顺风向与横风向结构顶点最大加速度,使其满足规范要求。
4.3 P-△效应计算与结构总体稳定的含义有何不同?答:P-△效应是指在水平荷载作用下,出现侧移后,重力荷载会产生附加弯矩,附加弯矩又增大侧移,这是一种二阶效应。
在高层建筑结构设计中,一般所说的考虑P-△效应即是进行结构的整体稳定验算,但结构的整体稳定验算还包括结构仅在重力作用下,出现的丧失稳定问题,不过这种情况出现的很少。
4.4 延性和延性比是什么?为什么抗震结构要具有延性?答:(1)延性是指构件和结构屈服后,具有承载能力不降低或基本不降低、且有足够塑性变形能力的一种性能,一般用延性比表示延性,即塑性变形能力的大小。
(2)当结构设计成延性结构时,由于塑性变形可以耗散地震能量,结构变形虽然会加大,但结构承受的地震作用(惯性力)不会很快上升,内力也不会再加大,因此具有延性的结构可降低对结构承载力的要求,也可以说,延性结构是用它的变形能力(而不是承载力)抵抗罕遇地震作用;反之,如果结构的延性不好,则必须有足够大的承载力抵抗地震,则必须有足够大的承载力抵抗地震。
结构设计组合系数规范规定与设计使用表前言实际工作中广大设计人员往往忽略了结构设计组合系数的规定,认为软件已经考虑了规范规定,而不知其中的特殊规定,在设计相关结构时没能很好调整软件的组合系数,存在一定的安全隐患,本人详细查阅了有关规范并整理如下:第一章《建筑结构荷载规范》GB 50009― 2001中有关规定3.2.3 对于基本组合,荷载效应组合的设计值S 应从下列组合值中取最不利值确定:1)由可变荷载效应控制的组合:n S=γGSGk+γQ1SQ1k+∑γQiyciSQiki=2式中γG―永久荷载的分项系数,应按第3.2.5 条采用;γQi―第i 个可变荷载的分项系数,其中γQ1 为可变荷载Q1 的分项系数,应按第3.2.5 条采用;SGK―按永久荷载标准值Gk 计算的荷载效应值;SQik―按可变荷载标准值Qik 计算的荷载效应值,其中SQ1k 为诸可变荷载效应中起控制作用者;Ψci―可变荷载Qi 的组合值系数,应分别按各章的规定采用;n―参与组合的可变荷载数。
2)由永久荷载效应控制的组合:n S=γGSGk+∑γQiyciSQiki=1注:1 基本组合中的设计值仅适用于荷载与荷载效应为线性的情况。
2 当对SQ1k 无法明显判断时,轮次以各可变荷载效应为SQ1k,选其中最不利的荷载效应组合。
3 当考虑以竖向的永久荷载效应控制的组合时,参与组合的可变荷载仅限于竖向荷载。
3.2.4 对于一般排架、框架结构,基本组合可采用简化规则,并应按下列组合值中取最不利值确定:1)由可变荷载效应控制的组合:S=γGSGk+γQ1SQ1knS=γGSGk+0.9∑γQiSQiki=12)由永久荷载效应控制的组合仍按公式(3.2.3-2)式采用。
3.2.5 基本组合的荷载分项系数,应按下列规定采用:1 永久荷载的分项系数:1)当其效应对结构不利时―对由可变荷载效应控制的组合,应取1.2;―对由永久荷载效应控制的组合,应取1.35;2)当其效应对结构有利时―一般情况下应取1.0;―对结构的倾覆、滑移或漂浮验算,应取0.9。
效应组合作用效应组合总体原则:可能与最不利!!!可能1-1:无地震时,由可变荷载效应控制的组合,且:ψQ=1.0;ψW=0.6/γL=1.0(γG=1.2,γQ=1.4,γW=1.4)永久荷载+楼面可变荷载+风荷载(1.0;0.6)S=γGSGK+γLψQγQSQK+ψWγWSWK =1.2SGK+1.0×1.4×SQK+0.6×1.4×SWK可能1-2:无地震时,由可变荷载效应控制的组合,且:ψQ=0.7;ψW=1.0/γL=1.0(γG=1.2,γQ=1.4,γW=1.4)永久荷载+楼面可变荷载+风荷载(0.7;1.0)S=γGSGK+γLψQγQSQK+ψWγWSWK=1.2×SGK+0.7×1.4×SQK+1.0×1.4×SWK可能2:无地震时,由永久荷载效应控制的组合,且:γG=1.35;ψQ=0.7/γL=1.0(根据GB50009第3.2.3条注3,水平风荷载不参与组合)(γG=1.35,γQ=1.4)永久荷载+楼面可变荷载S=γGSGK+γLψQγQSQK=1.35×SGK+0.7×1.4×SQK可能3:有地震时,即重力荷载与水平地震作用的组合(γG=1.2,γEh=1.3)重力荷载+水平地震作用S=γGSGE+γEhSEhk=1.2×SGE+1.3×SEhk可能4:有地震时,即重力荷载与水平地震作用及风荷载的组合(60米以上的高层建筑考虑,且ψW=0.2)(γG=1.2,γEh=1.3,γW=1.4)重力荷载+水平地震作用+风荷载S=γGSGE+γEhSEhk+ψWγWSWK=1.2×SGE+1.3×SEhk+0.2×1.4×SWK可能5:有地震时,即重力荷载与竖向地震作用的组合(9度抗震设计时考虑,大跨、水平长悬臂结构8、9度抗震设计时考虑)(γG=1.2,γEv=1.3)重力荷载+竖向地震作用S=γGSGE+γEvSEvk=1.2×SGE+1.3×SEvk可能6:有地震时,即重力荷载、水平地震作用与竖向地震作用的组合(9度抗震设计时考虑;大跨、水平长悬臂结构7度0.15g、8、9度抗震设计时考虑)(γG=1.2,γEh=1.3,γEv=0.5)重力荷载+水平地震作用+竖向地震作用S=γGSGE+γEhSEhk +γEvSEvk=1.2×SGE+1.3×SEhk +0.5×SEvk可能7:有地震时,即重力荷载、水平地震作用、竖向地震作用及风荷载的组合(60米以上的高层建筑,9度抗震设计时考虑;大跨、水平长悬臂结构7度0.15g、8、9度抗震设计时考虑,且ψW=0.2)(γG=1.2,γEh=1.3,γEv=0.5,γW=1.4)重力荷载+水平地震+竖向地震+风载S=γGSGE+γEhSEhk +γEvSEvk+ψWγWSWK=1.2×SGE+1.3×SEhk +0.5×SEvk+0.2×1.4SWK可能6:新高规5.6.4(γG=1.2,γEh=1.3,γEv=0.5)重力荷载+水平地震作用+竖向地震作用S=γGSGE+γEhSEhk +γEvSEvk=1.2×SGE+1.3×SEhk +0.5×SEvk可能6:新抗规5.4.1(γG=1.2,γEh=1.3,γEv=0.5)重力荷载+水平地震作用+竖向地震作用S=γGSGE+γEhSEhk +γEvSEvk=1.2×SGE+1.3×SEhk +0.5×SEvkS=γGSGE+γEhSEhk +γEvSEvk=1.2×SGE+0.5×SEhk +1.3×SEvk可能7:新抗规5.4.1重力荷载+水平地震+竖向地震+风载S=γGSGE+γEhSEhk +γEvSEvk+ψWγWSWK=1.2×SGE+1.3×SEhk +0.5×SEvk+0.2×1.4SWKS=γGSGE+γEhSEhk +γEvSEvk+ψWγWSWK=1.2×SGE+0.5×SEhk +1.3×SEvk+0.2×1.4SWK可能7:新高规5.6.4重力荷载+水平地震+竖向地震+风载S=γGSGE+γEhSEhk +γEvSEvk+ψWγWSWK=1.2×SGE+1.3×SEhk +0.5×SEvk+0.2×1.4SWK特别的:水平长悬臂结构和大跨度结构,7度0.15g、8度、9度抗震设计时需要同时考虑下面组合!S=γGSGE+γEhSEhk +γEvSEvk+ψWγWSWK=1.2×SGE+0.5×SEhk +1.3×SEvk+0.2×1.4SWK注:(1)进行承载力计算时,各分项系数按上述说明取值;但当重力荷载效应对结构构件有利时,γG≤1.0。
版权说明:本课件仅供用于非赢利教育目的第4章设计要求及荷载效应组合PPT: soilfoundation@ (password:foundation)周葆春土木工程学院Email:zhoubcxynu@14.1 承载力验算4.2 侧移限制4.3 舒适度要求4.4 稳定和抗倾覆4.5 抗震结构延性要求和抗震等级4.6 荷载效应组合及最不利内力24.1 承载力验算持久状况:在结构使用过程中一定出现,其持续期很长的状况。
持续期一般与设计使用年限为同一数量级;短暂状况:在结构施工和使用过程中出现概率较大,而与设计使用年限相比,持续期很短的状况,如施工和维修等;3理论上讲,由于反复荷载作用下承载力的降低,对于同一构件,地震作用下的承载力应低于无地震作用下的承载力。
但考虑到地震是一种偶然作用,作用时间短,通过引入承载力抗震调整来提高其承载力。
系数γRE此外,对轴压比小于0.15的偏心受压柱,因柱的变形能力与梁相近,故其承载力抗震调整系数与梁相同。
44.2 水平位移限制4.2.1 弹性位移验算高层建筑层数多、高度大,应对其层间位移加以控制。
这个控制实际上是对构件截面大小、刚度大小控制的一个相对指标。
目的是为了保证高层结构在多遇地震作用下基本处于弹性受力状态,以及填充墙、隔墙和幕墙等非结构构件基本完好。
考虑到层间位移控制是一个宏观的侧向刚度指标,为便于应用,可采用层间最大位移与层高之比△u/h,即层间位移角θ作为控制指标。
5674.2.2 弹塑性位移限值和验算震害表明,如果存在薄弱层,结构薄弱部位将产生较大的弹塑性变形,导致结构构件严重破坏甚至引起房屋倒塌。
8910楼层屈服强度系数ξy 按下式计算:ξy =Vy /V eV y :按构件实际配筋和材料强度标准值计算的楼层受剪承载力;V e :按罕遇地震作用计算的楼层弹性地震剪力。
1112131415静力弹塑性分析(Push-over Analysis)方法也称为推覆法,是一种介于弹性分析和动力弹塑性分析之间的方法。