基因毒性杂质的控制
- 格式:ppt
- 大小:2.91 MB
- 文档页数:31
01、何为基因毒性杂质基因毒性杂质(或遗传毒性杂质,Genotoxic Impurity,GTI)是指能直接或间接损害DNA,引起DNA突变、染色体断裂、DNA重组及DNA 复制过程中共价键结合或插入,导致基因突变或癌症的物质(如卤代烷烃、烷基磺酸酯类等)。
潜在基因毒性杂质(Potential Genotoxic Impurity ,PGI)结构中含有与基因毒性杂质反应活性相似的基团(如肼类、环氧化合物、N-亚硝胺类等),通常也作为基因毒性杂质来评估。
基因毒性杂质主要来源于原料药合成过程中的起始物料、中间体、试剂和反应副产物。
此外,药物在合成、储存或者制剂过程中也可能会降解产生基因毒性杂质。
除此之外,有些药物通过激活正常细胞而产生基因毒性物质导致突变,如化疗药物顺铂等。
02、何为基因毒性杂质“警示结构”由于杂质结构的多样性,一般很难进行归类,因此,在缺乏安全性数据支持的情况下,法规和指导原则采用“警示结构”用来区分普通杂质和基因毒性杂质。
所谓“警示结构”,是指杂质中的特殊基团可能与遗传物质发生化学反应,诱导基因突变或者染色体断裂,因此具有潜在的致癌风险。
对于含有警示结构的杂质,应当进行(Q)SAR预测和体内外遗传毒性和致癌性研究,或者将杂质水平控制在毒理学关注阈值(TTC)之下。
但是含有警示结构并不能说明该杂质一定具有遗传毒性,而确认有遗传毒性的物质也不一定会产生致癌作用。
杂质自身性质和结构特点会对其毒性产生抑制或调节作用。
警示结构的重要性在于它提示了可能存在的遗传毒性和致癌性,为进一步的杂质安全性评价与控制指明方向。
(关于基因毒杂质警示结构的详细信息可参考欧盟发布的警示结构《Development ofstructure alerts for the in vivo micronucleus assay in rodents》)。
03、基因毒性杂质严格控制的必要性基因毒性杂质最主要的特点是在极低浓度时即可造成人体遗传物质的损伤,导致基因突变并促使肿瘤发生。
基因毒性杂质试题1)基因毒性杂质的控制合理限度:(1)<0.1% (2)<0.05% (3)<TTC 4)其他:2)Threshold of Toxicological Concern (TTC)的方法。
一个“ug/day”的TTC值,定量风险评估法:数据来源于大鼠致癌性分析,采用的风险概率为(一生即70 年暴露于该剂量杂质下,每万人有1 人死于癌症)。
3)按立卷审查要求基因毒性杂质研究策略为并订入研究未订入标准缺陷不研究不订入是缺陷4)有些结构基团具有较高致癌性,因此即使摄入量低于TTC水平,从理论上来说仍会导致可能的显著癌症风险。
这类具有较高致癌性的基团被称为“关注队列”,包括1、 2、3、 4、。
不适用TTC原则进行控制,需严控。
5)适用于基因毒性杂质研究法规:(1)ICH M7 (2)化学药物杂质研究技术指导原则(3)ICH Q3答案6)含基因毒性警示结构的:①酰氯R 应是除任何原子/基团②烷基苯磺酸酯R=C<的烷基包括卤代烷基,R1=除-OH-SH-O—S-之外的任何原子/基团④N-氧化芳香化合物应是任何芳香环或环2)有相同作用机制、结构相似的杂质,其含量的限度应该参考1.5微克/天的限量进行评估8)基因毒性杂质QBD策略(1)对于已知基因遗传毒性致癌物,首先考虑工艺中去除杂质,如除不去,则需进一步进行风险评估,如果通不过风险评估或风险无法估计,则应根据分期确定杂质阈值。
(2)已知基因毒性而致癌性未知的杂质,可根据风险程度,选择控制或者TTC 阈值控制。
(3)具有警示结构但与药物结构无关的基因毒性杂质,如无性数据确认无毒或实验无法证实无毒,则归入分类2杂质,按2类进行控制;如果DNA实验证实无毒,则按一般杂质控制策略进行控制。
(4)对于第四类具有警示结构且药物结构相关的遗传毒性杂质,可直接看药品是否有基因毒性,药品无毒按一般杂质策略进行控制,药品有毒,则要对药品上市的合理性进行再评估。
药物研发中基因毒性杂质的控制策略与方法探索进展摘要:本文简介了基因毒素杂质的概念,对药物制作过程中的潜在杂质进行简单的概述,并重点讨论的“避免-控制-清除”策略与方法。
关键词:药物研发;基因毒性杂质;控制策略;方法一、毒素门事件在制药行业中的影响2017年6月,在欧洲的药物检测中发现一些抗艾滋病药物中含有大量的基因毒素杂质,制药商决定召回所有的药物[1]。
2018年7月,花海制药的高血压药中被检测出含有微量的基因毒性杂质,全球市场被召回。
2018年8月印度制药公司检测出基因毒性杂质,相关的14批药物被公司召回。
毒素门事件不但给患者们带来了巨大的隐患,对企业也是一种巨大的经济损失,这件事情给整个制药行业带来了一个警告。
二、基因毒性杂质的基本概念基因毒素是一种能够直接将DNA破坏或者引起身体内大量基因突变的物质。
它能够使人类身体内的染色体断裂、插入或修饰复制中的DNA和使细胞发生突变。
三、可能具有基因毒性的警示结构图1展示出了一部分基因毒性的警示结构官能团,这些官能团都能够与DNA发生反应。
虽然这些官能团还不够详细,但是可以为基因毒素评估做出基本的评估。
还有很多其他的基因毒性官能团,它们在当前的一些商业软件中例如DERKK、Mcase等便能够做出基本的评估[2]。
由于基因毒性化合物例如芳香胺等作为原料制作药品时能够很大概率对药品成分带来基因毒性杂质污染,所以对GTI的检查、控制和预防一定要非常的严格。
四、基因毒性的控制策略与方法制药的过程中使用“避免”-“控制”-“清除”的策略(表4、表5)来控制基因毒性,这样能够发挥最大的能力减少药品原料中的基因毒性杂质[3]。
美国有的制药企业便规定必须按照如下规定来制作药品:(1)GTI或者PGI生成后保证至少还有四步才能得到最终产物,而且在每一步都要判断分析是否会清除PGI。
(2)当需要测试耐热性时,需要在分离纯化前添加足够的GTI或者PGI类似保证检验产品的纯度。
关于药物中的基因毒性杂质众所周知,药物并⾮纯净物质,其在⽣产贮运过程中常常会引⼊或产⽣“杂质”,⽽由于杂质的存在,⼜往往会带来潜在的安全性问题,所以科研⼈员通常需要在充分研究的基础上对杂质加以有效控制。
⽽基因毒性杂质危害性⼤,需要严格控制其在药物中的限度,保障⽤药安全。
基因毒性杂质的检测⾯临杂质种类多和化学性质活泼等问题,分析⽅法复杂多样,从⽽对药物中基因毒性杂质的检测⽅法提出了很⾼的要求。
⼀、基因毒性杂质基因毒性杂质( genotoxic impurity,GTI) 定义为“经过适当遗传毒性实验模型,如细菌基因突变( Ames) 实验,证实具有遗传毒性的杂质”。
其主要包括PGLS( potentially genotoxic impurities有潜在基因毒性的杂质)和GTLs( genotoxic impurities基因毒性杂质)两种。
基因毒性杂质可能从基因突变、染⾊体畸变、DNA 损伤与修复等⼏个⽅⾯同DNA 发⽣直接或间接的相互作⽤,从⽽改变DNA 结构与构象或引起DNA 的损伤,进⽽影响DNA的功能或改变其遗传特性,最终引起突变、癌变、畸变等遗传毒性。
新药合成、原料纯化、储存运输〔与包装物接触)等过程都可能产⽣基因毒性杂质,故⽽,近年来药审机构及研发⼈员对其愈发关注!各国药品监督管理部门对药物中基因毒性杂质的控制出台了⼀系列的指导⽂件,旨在严格控制该类杂质在药物中的限度。
⼆、有关基因性杂质的参考指南1.EMEA(欧洲药品管理局)2000年,欧洲监管机构率先开始关注基因毒性杂质,Pharm Europa发表了⼀篇⽂章,提到注意在成盐⼯艺中,磺酸在⼄醇溶液中形成磺酸酯的潜在风险。
2002年,专利药物委员会(CPMP,现为⼈⽤药物委员会CHMP)发布了⼀份关于基因毒性杂质的意见书,指南中将基因毒性杂质的限度根据有⽆阈值分为两类。
2006年⾸先颁布了《基因毒性杂质限度指南》,并⾃2007年1⽉1⽇起正式实施。
遗传毒性杂质控制指导原则遗传毒性杂质控制指导原则用于指导药物遗传毒性杂质的危害评估、分类、定性和限值制定,以控制药物中遗传毒性杂质潜在的致癌风险。
为药品标准制修订,上市药品安全性再评价提供参考。
一、总则遗传毒性(Genotoxcity)是指遗传物质中任何有害变化引起的毒性,而不考虑诱发该变化的机制,又称为基因毒性。
遗传毒性杂质(Genotoxic Impurities,GTIs)是指能引起遗传毒性的杂质,包括致突变性杂质和其它类型的无致突变性杂质。
其主要来源于原料药的生产过程,如起始原料、反应物、催化剂、试剂、溶剂、中间体、副产物、降解产物等。
致突变性杂质(Mutagenic Impurities)指在较低水平时也有可能直接引起DNA损伤,导致DNA突变,从而可能引发癌症的遗传毒性杂质。
本指导原则主要关注致突变机制的遗传毒性杂质,非致突变机制的遗传毒性杂质在杂质水平的剂量下,一般可忽略其致癌风险。
药品生产、药品标准提高及上市药品再评价过程中发现杂质后,可按本指导原则进行风险评估,确定其是否为遗传毒性杂质,尤其是致突变性杂质。
如果一个杂质被鉴定为具有潜在的致癌风险,应制定相应的限值。
在制订可忽略致癌风险的杂质限值时,应进一步分析生产工艺,兼顾安全性和质量风险管理成本两方面的因素,综合考虑制定合适的限值。
本指导原则包括危害评估方法、可接受摄入量计算方法和限值制定方法。
本指导原则中描述的对杂质潜在致突变性的评估方法不适用于以下类型的原料药和制剂:生物/生物技术制品、肽类、寡核苷酸、放射性药物、发酵产品、中药和动物或植物来源的粗制品。
也不适用于已上市药物中使用的辅料、调味剂、着色剂和香料,以及与药物包材相关的可浸出物。
本指导原则中对杂质潜在致突变性的评估方法不适用于用于晚期癌症适应症的原料药和制剂,以及用于其它适应症但本身在治疗剂量下就具有遗传毒性,且预计可能与癌症风险增加有关的原料药。
在这些情况下,致突变性杂质不会显著增加原料药的致癌风险。
遗传毒性杂质控制指导原则遗传毒性杂质控制指导原则用于指导药物遗传毒性杂质的危害评估、分类、定性和限值制定,以控制药物中遗传毒性杂质潜在的致癌风险。
为药品标准制修订,上市药品安全性再评价提供参考。
一、总则遗传毒性(Genotoxcity)是指遗传物质中任何有害变化引起的毒性,而不考虑诱发该变化的机制,又称为基因毒性。
遗传毒性杂质(Genotoxic Impurities,GTIs)是指能引起遗传毒性的杂质,包括致突变性杂质和其它类型的无致突变性杂质。
其主要来源于原料药的生产过程,如起始原料、反应物、催化剂、试剂、溶剂、中间体、副产物、降解产物等。
致突变性杂质(Mutagenic Impurities)指在较低水平时也有可能直接引起DNA损伤,导致DNA突变,从而可能引发癌症的遗传毒性杂质。
本指导原则主要关注致突变机制的遗传毒性杂质,非致突变机制的遗传毒性杂质在杂质水平的剂量下,一般可忽略其致癌风险。
药品生产、药品标准提高及上市药品再评价过程中发现杂质后,可按本指导原则进行风险评估,确定其是否为遗传毒性杂质,尤其是致突变性杂质。
如果一个杂质被鉴定为具有潜在的致癌风险,应制定相应的限值。
在制订可忽略致癌风险的杂质限值时,应进一步分析生产工艺,兼顾安全性和质量风险管理成本两方面的因素,综合考虑制定合适的限值。
本指导原则包括危害评估方法、可接受摄入量计算方法和限值制定方法。
本指导原则中描述的对杂质潜在致突变性的评估方法不适用于以下类型的原料药和制剂:生物/生物技术制品、肽类、寡核苷酸、放射性药物、发酵产品、中药和动物或植物来源的粗制品。
也不适用于已上市药物中使用的辅料、调味剂、着色剂和香料,以及与药物包材相关的可浸出物。
本指导原则中对杂质潜在致突变性的评估方法不适用于用于晚期癌症适应症的原料药和制剂,以及用于其它适应症但本身在治疗剂量下就具有遗传毒性,且预计可能与癌症风险增加有关的原料药。
在这些情况下,致突变性杂质不会显著增加原料药的致癌风险。