管涌与流砂
- 格式:ppt
- 大小:6.74 MB
- 文档页数:37
流沙和管涌的区别与联系流沙和管涌的区别与联系:一、流沙渗流力:地下水在土体中流动时,由于受到土粒的阻力作用,而引起水头损失,从作用力与反作用力的原理可知,水流经过时必定对土颗粒施加一种渗流作用力。
在向上的渗流力作用下,粒间有效应力为零时,颗粒群发生悬浮、移动的现象称为流砂,或流土现象。
这种现象多发生在颗粒级配均匀的饱和细、粉砂和粉土层中。
它的发生一般是突发性的,对工程危害极大,流砂现象的产生不仅取决于渗流力的大小,同时与土的颗粒级配、密度及透水性等条件相关。
流砂的防治原则是:① 减小或消除水头差,如采用基坑外的井点降水法降低地下水位,或采取水下挖掘;② 增长渗流路径,如打板桩;③ 在向上渗流出口处地表用透水材料覆盖压重以平衡渗流力;④ 土层加固处理,如冻结法,注浆法等。
二、管涌在渗流作用下,途中的细颗粒在粗颗粒形成的孔隙中移动以致流失;随着土的孔隙不断扩大,渗透速度不断增加,叫粗颗粒也相继被水流逐渐带走,最终导致土体内形成贯通的渗流管道,造成土体塌陷,这种现象称为管涌。
可见管涌破坏一般有个时间发展过程,是一种渐进性质的破坏。
在自然界中,在一定条件下同样会发生上述渗透破坏作用,为了与人类工程活动所引起的管涌区别,通常称之为潜蚀。
潜蚀作用有机械和化学的两种。
机械潜蚀是指渗流的机械力将细土冲走而形成洞穴;化学潜蚀是指水流溶解了土中的易溶盐或胶结物使土变松散,细土粒被水冲走而形成洞穴,这两种作用往往是同时存在的。
土是否发生管涌,首先取决于土的性质,管涌多发生在砂性土中,其特征是颗粒大小差别大,往往缺少某种粒径,孔隙直径大且相互连通。
无粘性土产生管涌必须具备的两个条件:1.几何条件:土中颗粒所构成的孔隙直径必须大与细颗粒的直径,这是必要条件,一般不均匀系数>10的土才会发生管涌,2.水利条件:渗流力能够带动细颗粒在孔隙间滚动或移动是发生管涌的水力条件,可用管涌的水力梯度来表示。
但管涌临界水力梯度的计算至今尚未成熟。
基坑土方开挖阶段的应急措施土方开挖有时会引起围护墙或临近建筑物、管线等产生一些异常现象。
此时需要配合有关人员及时进行处理,以免产生大祸。
1.流砂及管涌的处理在细砂、粉砂层土中往往会出现局部流砂或管涌的情况,对基坑施工带来困难。
如流砂等十分严重则会引起基坑周围的建筑、管线的倾斜、沉降。
对轻微的流砂现象,在基坑开挖后可采用加快垫层浇筑或加厚垫层的方法“压注”流砂。
对较严重的流砂增加坑内降水措施,使地下水位降至坑底以下0.5~1m左右。
降水是防治流砂的最有效的方法。
管涌一般发生在围护墙附近,如果设计支护结构的嵌固深度满足要求。
则造成管涌的原因一般是由于坑底的下部位的支护排桩中出现断桩,或施打未及标高,或地下连续墙出现较大的孔、洞,或由于排桩净距较大,其后止水帷幕又出现漏桩、断桩或孔洞,造成管涌通道所致。
如果管涌十分严重也可在支护墙前再打设一排钢板桩,在钢板桩与支护墙间进行注浆,钢板桩底与支护墙底标高相同,顶面与坑底标高相同,钢板桩的打设宽度比管涌范围较宽3~5m。
2.临近建筑与管线位移的控制基坑开挖后,坑内大量土方挖去,土体平衡发生很大变化,对坑外建筑或地下管线往往也会引起较大的沉降或位移,有时还会造成建筑的倾斜,并由此引起房屋裂缝,管线断裂、泄漏。
基坑开挖时必须加强观察,当位移或沉降值达到报警值后,立即采取措施。
对建筑的沉降的控制一般可采用跟踪注浆的方法。
根据基坑开挖进程,连续跟踪注浆。
注浆孔布置可在围护墙背及建筑物前各布置一排,两排注浆孔间则适当布置。
注浆深度在地表至坑底以下2~4m范围,具体可根据工程条件确定。
此时注浆压力控制不宜过大,否则不仅对围护墙会造成较大侧压力,对建筑本身也不利。
注浆量可根据支护墙的估算位移量及土的空隙率来确定。
采用跟踪注浆时,严密观察建筑的沉降状况,防止由注浆引起土体搅动而加剧建筑物的沉降或将建筑物抬起。
对沉降很大,而压密注浆又不能控制的建筑,如其基础是钢筋混凝土的,则可考虑采用静力锚杆压桩的方法。
浅谈土木工程施工过程中的流砂和管涌廖杰新2010302350035摘要:在开挖基坑或沟槽时,为了保证施工的正常进行,防止边坡塔防和地基承载能力的下降,必须做好基坑降水工作.但当遇到地下水文、地质情况较为复杂时,会给施工带来极大不便。
因此,对降水工作是有可能遇到的流砂和管涌情况进行详尽了解,显得尤为重要。
关键词:流砂管涌成因应对措施1 流砂1.1 流砂的概念及成因流砂,顾名思义,就是流动的砂子,这主要是砂子在地下遇到水,在水压力发生变化的情况下,水发生了流动,这样砂子跟水一起发生了流动,但是否出现流砂现象的重要条件是动水压力的大小和方向。
在一定条件,土转化为流砂,而在另一条件下,如在基坑开挖中,防沉流砂的原则是“沉流砂必积水”,主要途径是消除减少或平衡动水力压力.土体在受水浸泡饱和时,土粒中亲水胶体颗粒吸水膨胀使土粒的密度减小,当在动水压力的作用下,动水压力超过土粒的重力时,土粒产生悬浮流动,即形成流砂。
动水压力是产生流砂的一个重要因素。
产生流砂的临界条件为:I=(ρ—1)(1-n )其中,I为临界水力坡度;ρ为土粒密度;n为土的孔隙率。
在基础施工过程中,如果没有解决好流砂问题,基础就会跟着砂层一起流动,发生位移,这样地基的持力层就会发生变化,这对建筑物来说是十分有害的,也是绝对不容许有这种现象发生的。
1.2 流砂的应对措施1。
2。
1 流砂的应急措施当出现深坑流砂时,应立即停止开挖,用土回填或注水至地下水浸润线以上.在深坑周边补下闭合的二级或三级井点.当二级或三级井点开始运行一段时问后,深坑周边的地下水浸润线会逐步下降,从而防止流砂现象的出现。
1.2。
2 流砂的预防措施(1)轻型井点降水法目前最常用的方法是井点降水法,特别是轻型井点排水法。
轻型井点降低地下水位,是沿基坑周围,以一定的间距埋入,在地面上用集水总管将各井点管连接起来,并在一定的位置设置抽水设备,利用真空泵和离心泵的真空吸力作用使地下水经滤管进入井点,然后汇入总管排出,从而降低地下水位。
预防流砂、管涌的措施
1、当出现流砂时,应立即停止开完,并回填深基坑将流砂埋没或在深基坑中注水,以平衡渗流的动水压力。
然后在在深坑周围立即补下二级(或三级)井点,待二级(或三级)井点降水使地下水浸润线低于开挖范围以下500mm后,再继续开挖施工。
2、当深坑接近承压水层时或经计算坑底土体的抗浮不能满足要求时采用井点管穿过不透水层直接抽取不透水层下的承压水,以降低承压水头,从而避免因承压水头过大而形成管涌。
坑底流砂或管涌应急措施
1、坑底流砂或突涌处理措施:出现流砂时,对轻微的流砂现象,在基坑开挖后可采用加快垫层浇筑或加厚垫层的方法“压住”流砂并降低降水井水位,严重的流砂立即检查降水水位,加大降水强度,增加降水井出水量。
使地下水位降至坑底以下。
降水是防止流砂的最有效的方法。
2、出现坑底涌水冒砂时,若局部涌水量较小,以轻水为主,则在涌水点周围采用注浆止水或浇筑300厚混凝土配筋垫层进行反压,同时降压井适当降低承压水头;若局部涌水量较大,且带黑砂,则立即回填土、沙袋或浇筑混凝土进行反压,并立即降低承压水头。
土力学简答题(1)1、土的三相指标有哪些?哪些可以直接测定?如何测定?答:三相指标:土地的干密度、土的饱和密度、土的浮密度、土的孔隙比、土的孔隙率、土的饱和度直接测定:土的含水量、土的密度、土粒的的相对密度测定方法:烘干发、环刀法、比重计法。
2、流砂与管涌现象有什么区别和联系?答:区别与联系:○1流沙发生在水力梯度大于临界水力梯度;管涌发生在水力梯度小于临界水力梯度的情况下;○2流沙发生的部位在渗流溢出处;管涌发生的部位可以在渗流溢出处,也可以在土体内部;○3流沙发生在水流方向上;管涌没有限制。
3、在工程中,如何考虑土中应力分布规律?答:○1考虑相邻建筑物时,新老建筑物要保持一定的净距,其具体值依据原有基础荷载和地基土质而定,一般不宜小于该相邻基础底面高差的1-2倍;○2同样道理,当建筑物基础临近边坡即坡肩时,会使土坡的下滑力增加,要考虑和分析边坡的稳定性。
要求基础离开边坡有一个最小的距离a。
○3应力和应变式联系在一起的,附加应力大,地基变形也大;反之,地基变形就小,甚至可以忽略不计。
因此在计算地基最终沉降量时,“沉降计算深度Zn”用应力比法确定。
4、简述太沙基有效应力原理。
答:土的有效应力等于总应力减去孔隙水压力;土的有效应力控制了土的变形。
5、地基附加应力分布规律有哪些?答:○1附加应力不仅发生在荷载作用面积之下,而且发生在荷载作用面积之外相当大的范围之下,这就是基地附加应力的扩散分布。
○2在离基底不同深度z处各水平面上,以基底中心点以下轴线处σz值最大,随离中性轴距离增大曲线减小。
○3在荷载分布范围之下任意点沿铅垂线的σz值,随深度增大曲线减小。
○4条形荷载比相同宽度的方形荷载σz的影响深度大,在相同深度处,条形荷载在地基中的σz比相同宽度方形荷载大的多。
6、在砂土地基和软粘土地基中,建造同样的建筑物,施工期和使用期内哪些地基土的建筑物的沉降量大?为什么?答:施工期内砂土地基上建筑物的沉降量大,并能达到基本稳定;使用期内软念土地基上建筑物的沉降量大。
:
管涌是土的一种渗流破坏现象,地下水在土体内渗透,渗透水头压力沿水流方向以体积力作用于土体,其大小等于i w γ(i 为水力梯度),在基坑开挖过程中,周围高水位的地下水向基坑内渗透.当基坑底面以下的土体所承受的渗透水头压力(向上方向)大于土体的水中重度时,土体就会向上移动。
涌沙及其破坏计算模式 根据试验表明,流砂现象首先发生在离坑壁大约等于板桩深度一半的范围内,由于板桩是临时结
构,为简化计算,可近似地取最短路径。
管涌破坏计算图式如上图所示。
管涌的验算方法都是建立在下述极限平衡的公式上,即在基坑底部(严格说是渗流出口处),w i γγ='
具体处理方法有多种,这里用太沙基法进行检算。
抗管涌破坏稳定性的安全系数为
K s =W/U
式中:W 为土的净重,W =2/22'D γ
γ‘:为砂的水中容重;
U 为围堰底部向上的渗透压力,U =γw h a D 2/2;
h a 为围堰底部向上的平均渗透水头,一般取(偏于安全)h s =h w /2;
h w 为到封底混凝土底面标高处的水头差,取6.3米;
3.13
.60.11.58.0222'=⨯⨯⨯==w w s h D K γγ 在实际施工时,利用退潮时,围堰地面有6个小时左右能完全露出地面,此时h w 比6.3米小得多。
封底混凝土施工时采用干封,封完后可回灌水至堰内。
施工承台抽水时,封底混凝土已达到强度,不但可增加一个压力(混凝土的重量在上述计算中并没有考虑),而且可抵抗一定的向上的水头压力,故在抗流沙方面是安全的!。
工程地质知识:地下水的渗透破坏有几方面地下水的渗透破坏主要有潜蚀、流砂和管涌等3个方面。
(1)潜蚀
渗透水流在一定水力坡度(即地下水水力坡度大于岩土产生潜蚀破坏的临界水力坡度)条件下产生较大的动水压力,冲刷、挟走细小颗粒或溶蚀岩土体,使岩土体中孔隙不断增大,甚至形成洞穴,导致岩土体结构松动或破坏,以致产生地表裂隙、塌陷,影响工程的稳定。
(2)流砂
流砂是指松散细小颗粒土被地下水饱和后,在动水压力即水头差的作用下,产生的悬浮流动现象。
流砂多发生在颗粒级配均匀的粉细砂中,有时在粉土中也会产生流砂。
(3)管涌
地基土在具有某种渗透速度的渗透水流作用下,其细小颗粒被冲走,岩土的孔隙逐渐增大,慢慢形成一种能穿越地基的细管状渗流通路,从而掏空地基或坝体,使地基或斜坡变形、失稳,此现象称为管涌。