概率统计课程第6次作业参考解答
- 格式:doc
- 大小:434.00 KB
- 文档页数:13
概率论与数理统计课后答案第6章第6章习题参考答案1.设是取⾃总体X的⼀个样本,在下列情形下,试求总体参数的矩估计与最⼤似然估计:(1),其中未知,;(2),其中未知,。
2.设是取⾃总体X的⼀个样本,其中X服从参数为的泊松分布,其中未知,,求的矩估计与最⼤似然估计,如得到⼀组样本观测值X 0 1 2 3 4频数17 20 10 2 1求的矩估计值与最⼤似然估计值。
3.设是取⾃总体X的⼀个样本,其中X服从区间的均匀分布,其中未知,求的矩估计。
4.设是取⾃总体X的⼀个样本,X的密度函数为其中未知,求的矩估计。
5.设是取⾃总体X的⼀个样本,X的密度函数为其中未知,求的矩估计和最⼤似然估计。
6.设是取⾃总体X的⼀个样本,总体X服从参数为的⼏何分布,即,其中未知,,求的最⼤似然估计。
7. 已知某路⼝车辆经过的时间间隔服从指数分布,其中未知,现在观测到六个时间间隔数据(单位:s):1.8,3.2,4,8,4.5,2.5,试求该路⼝车辆经过的平均时间间隔的矩估计值与最⼤似然估计值。
8.设总体X的密度函数为,其中未知,设是取⾃这个总体的⼀个样本,试求的最⼤似然估计。
9. 在第3题中的矩估计是否是的⽆偏估计?解故的矩估计量是的⽆偏估计。
10.试证第8题中的最⼤似然估计是的⽆偏估计。
11. 设为总体的样本,证明都是总体均值的⽆偏估计,并进⼀步判断哪⼀个估计有效。
12.设是取⾃总体的⼀个样本,其中未知,令,试证是的相合估计。
13.某车间⽣产滚珠,从长期实践中知道,滚珠直径X服从正态分布,从某天⽣产的产品中随机抽取6个,量得直径如下(单位:mm):14.7,15.0,14.9,14.8,15.2,15.1,求的0.9双侧置信区间和0.99双侧置信区间。
14.假定某商店中⼀种商品的⽉销售量服从正态分布,未知。
为了合理的确定对该商品的进货量,需对和作估计,为此随机抽取七个⽉,其销售量分别为:64,57,49,81,76,70,59,试求的双侧0.95置信区间和⽅差的双侧0.9置信区间。
概率作业纸第六章答案第六章参数估计第⼀节参数的点估计⼀、选择1. 以样本的矩作为相应(同类、同阶)总体矩的估计⽅法称为(A ). (A) 矩估计法 (B) ⼀阶原点矩法 (C) 贝叶斯法 (D) 最⼤似然法2. 总体均值)(X E 的矩估计值是(A ).(A )x (B )X (C )1x (D )1X⼆、填空1.设总体X 服从泊松分布)(λP ,其中0>λ为未知参数.如果取得样本观测值为n x x x ,,,21 ,则参数λ的最⼤似然估计值为x .2.设总体X 在区间[]θ,0上服从均匀分布,其中0>θ为未知参数.如果取得样本观测值为n x x x ,,,21 ,则参数θ的矩估计值为x 2. 三、简答题1. 设设总体X 的概率密度为,0()0, 0x e x f x x θθ-?>=?≤?,求参数θ的矩估计值.解:,0dx xe EX x ?+∞-=θθ设du dx u x x u θθθ1,1,===则00111()0()u uu EX ue du ue e du e θθθθ+∞+∞--+∞--+∞==-+=+-?=θ1故1EXθ=,所以x 1?=θ2. 设总体X 服从⼏何分布.,3,2,1,)1();(1 =-=-x p p p x p x 如果取得样本观测值为n x x x ,,,21 ,求参数p 的矩估计值与最⼤似然估计值. 解:由已知可得p X E X v 1)()(1==,所以x x n p ni i ==∑=111由此可得参数的矩估计值为xp1=. 似然函数为nx n ni x ni i i p p p p p L -=-∑-=-==∏1)1())1(()(11取对数,得).1ln()(ln )(ln 1p n xp n p L ni i--+=∑=于是,得0)(11)(ln 1=---=∑=ni i n x p p n dp p L d .由此可得参数的最⼤似然估计值为x p1?=. 3. 设总体X 服从“0-1”分布: .1,0,)1();(1=-=-x p p p x p x x如果取得样本观测值为)10(,,,21或=i n x x x x ,求参数p 的矩估计值与最⼤似然估计值. 解:由已知可得p X E X v ==)()(1,所以x x n p ni i ==∑=11由此可得参数的矩估计值为x p=?. 似然函数为∑-∑=-===-=-∏ni ini iiix n x ni x x p pp pp L 11)1())1(()(11取对数,得).1ln()(ln )()(ln 11p x n p x p L ni ini i--+=∑∑==于是,得0)(111)(ln 11=---=∑∑==ni i n i i x n p x p dp p L d .由此可得参数的最⼤似然估计值为x p=?.第⼆节衡量点估计好坏的标准⼆、选择1. 估计量的⽆偏性是指( B ).(A )统计量的值恰好等于待估总体参数(B) 所有可能样本估计值的数学期望等于待估总体参数 (C) 样本估计值围绕待估总体参数使其误差最⼩ (D) 样本量扩⼤到和总体单元相等时与总体参数⼀致 2. 估计量的有效性是指( C ).(A )估计量的数学期望等于被估计的总体参数 (B) 估计量的具体数值等于被估计的总体参数 (C) 估计量的⽅差⽐其它估计量的⽅差⼩ (D) 估计量的⽅差⽐其它估计量的⽅差⼤ 3. 估计量的⼀致性是指( D ).(A) 估计量的具体数值等于被估计的总体参数 (B) 估计量的⽅差⽐其它估计量的⽅差⼩ (C) 估计量的⽅差⽐其它估计量的⽅差⼤(D) 随样本容量的增⼤,估计量的值越来越接近被估计的总体参数⼆、填空1.设),,(??2111n X X X θθ=与),,(??2122n X X X θθ=都是参数θ的⽆偏估计量,如果 )?()?(21θθD D <,则称1?θ⽐2θ有效. 2. 设总体X 的均值µ=)(X E ,⽅差2)(σ=X D ,则x 是总体均值的⽆偏的、有效的、⼀致的估计量,2S 是总体⽅差的⽆偏的、有效的、⼀致的估计量.三、简答题1.从总体X中抽取样本321,,X X X ,证明下列三个统计量,632?3211X X X ++=µ,442?3212X X X ++=µ,333?3213X XX ++=µ都是总体均值的⽆偏估计量;并确定哪个估计更有效.证:设总体X 的均值与⽅差分别为µ=)(X E ,2)(σ=X D .则因为样本与总体服从相同的分布,所以有µ=)(i X E ,.3,2,1,)(2==i X D i σ所以有;613121)632()?(3211µµµµµ=++=++=X X X E E ;412121)422()?(3212µµµµµ=++=++=X X X E E .313131)333()?(3213µµµµµ=++=++=X X X E E 所以1µ,2µ,3µ都是总体均值的⽆偏估计量.;1873619141)632()?(22223211σσσσµ=++=++=X X X D D ;8316116141)442()?(22223212σσσσµ=++=++=X X X D D ;31919191)333()?(22223213σσσσµ=++=++=X X X D D 因为),?()?()?(123µµµD D D <<所以认为估计量3?µ更有效. 2.设1?θ和2?θ为参数θ的两个独⽴的⽆偏估计量,且假定21?2?θθD D =,求常数c 和d ,使21θθθd c +=为θ的⽆偏估计,并使⽅差θ?D 最⼩. 解:由于θθθθθθ)(??)??(?2121d c dE cE d c E E +=+=+=,且知θθ=?E ,故得c+d=1。
第13次1在总体N (U 「2)中抽取样本 X !,X 2,X 3 (」已知,二2未知),指出X ! X 2 X 3,解 X 1 X 2 X 3 , X 2 2h , max(X 1 ,X 2,X 3) , |X 1—'X 31 是统计量2给定样本观测值92,94,103,105,106求样本均值和方差1解 X =丄(9294 103 105 106) =100 521 2 2 2 2 2S[(92 -100)(94 -100) (103-100)(105 -100) (106 -100)]5 -1=42.53在总体X ~ N(12,22)中随机抽取容量为 5的样本,求样本均值与总体均值之差的绝对值大于1的概率 2解 注意到 X~N (叫——)n - (2 丫有 X ~ N(12,)& 5丿13 _ 12 11 _ 12P{| X -12 | 1} =1 - P{11 :: X :: 13} =1 -[门( )一 门( 2 )]、5. 5=1一:门( )亠叫一 )=1一门()1一门()=0.26282 2 2 24 已知 X ~t(8),求(1)P{X 2.306},P{X <1.3968}(2)若 P{X }=0.01 求’解 (1)P{X 2.306} =0.025,P{ X ::: 1.3968} = P{ X 1.3968} = 1 - 0.1 = 0.9(2)P{X } =0.01= • - 2.89655 已知 X ~2(8),求(1)P{X 2.18},P{X :: 20.09}(2)若 P{X 「} =0.025求,(3)若 P{X :: } =0.95 求■ 解(1)P{X 2.18} =0.975,P{X :: 20.09} =1-P{X 20.09} = 1 -0.01 = 0.99(2) P{X •} =0.025 二,-17.534X 2 2」,max(X ,,X 2,X 3)|X i -X 3 I 哪些是统计量?2 2X iX 2 X2 3(3) P{X }=0.95 P{X . •} =0.05 二,-15.5076设总体X ~ N (3.2,62 3 4), X ,,X 2,...,X n 是X 的样本,则容量n 应取多大,才能使得P{1.2 :: X :: 5.2} _0.95P{1.2 :::X ::5.2}二仁5^尹)一讥违竺)凡(亍)一讥一亍)n= :.:,( □)_:「( 0) =2+(」)_1 _0.9533 3y' n Tn ::」()_ 0.975 1.96 n_ 34.5 7 4433所以n 最小为35第14次1从某正态总体 X 取得样本观测值:14.7,15.1,14.8,15.0, 15.2,14.6,用矩法估计总体均值」和方差c 2 解」-X =1(14.7 15.1 14.8 15.0 15.2 14.6) =14.96A —1-X21 n--------------------------- 2 1 2 2 2 匚 (X i -X) [(14.7—14.9)(15.1—14.9)(14.8—14.9)n i 总 6(15.0-14.9)2 (15.2 -14.9)2 (14.6 -14.9)2] =0.28X 乞1 2总体x 的密度为p(x) =1 飞,样本为X 1,X 2 ,...X n 求二的矩法估计量归 ex 〉11 3总体x 的密度为p (x )=1。
第六章 参数估计习题6.11. 设X 1, X 2, X 3是取自某总体容量为3的样本,试证下列统计量都是该总体均值µ 的无偏估计,在方差存在时指出哪一个估计的有效性最差?(1)3211613121ˆX X X ++=µ; (2)3212313131ˆX X X ++=µ; (3)3213326161ˆX X X ++=µ. 证:因µµµµµ=++=++=613121)(61)(31)(21)ˆ(3211X E X E X E E , µµµµµ=++=++=313131)(31)(31)(31)ˆ(3212X E X E X E E , µµµµµ=++=++=326161)(32)(61)(61)ˆ(3213X E X E X E E , 故321ˆ,ˆ,ˆµµµ都是总体均值µ 的无偏估计; 因2222321136143619141)Var(361)Var(91)Var(41)ˆVar(σσσσµ=++=++=X X X , 2222321231919191)Var(91)Var(91)Var(91)ˆVar(σσσσµ=++=++=X X X , 222232132194361361)Var(94)Var(361)Var(361)ˆVar(σσσσµ=++=++=X X X , 故)ˆVar()ˆVar()ˆVar(312µµµ<<,即2ˆµ有效性最好,1ˆµ其次,3ˆµ最差. 2. 设X 1, X 2, …, X n 是来自Exp (λ)的样本,已知X 为1/λ的无偏估计,试说明X /1是否为λ的无偏估计.解:因X 1, X 2, …, X n 相互独立且都服从指数分布Exp (λ),即都服从伽玛分布Ga (1, λ),由伽玛分布的可加性知∑==ni i X Y 1服从伽玛分布Ga (n , λ),密度函数为01e )()(>−−ΙΓ=y y n nY y n y p λλ,则λλλλλλλ1)1()(e )(e )(110201−=−Γ⋅Γ=Γ=Γ⋅=⎟⎠⎞⎜⎝⎛=⎟⎠⎞⎜⎝⎛−∞+−−∞+−−∫∫n n n n n dy y n n dy y n y n Y n E X E n n y n n yn n, 故X /1不是λ的无偏估计.3. 设θˆ是参数θ 的无偏估计,且有0)ˆ(Var >θ,试证2)ˆ(θ不是θ 2的无偏估计. 证:因θθ=)ˆ(E ,有2222)ˆVar()]ˆ([)ˆVar(])ˆ[(θθθθθθ>+=+=E E ,故2)ˆ(θ不是θ 2的无偏估计. 4. 设总体X ~ N(µ , σ 2),X 1, …, X n 是来自该总体的一个样本.试确定常数c 使∑=+−ni i i X X c 121)(为σ 2的无偏估计.解:因E [(X i + 1 − X i )2 ] = Var (X i + 1 − X i ) + [E (X i + 1 − X i )]2 = Var (X i + 1) + Var (X i ) + [E (X i + 1) − E (X i )]2 = 2σ 2,则2211211121)1(22)1(])[()(σσ−=⋅−⋅=−=⎥⎦⎤⎢⎣⎡−∑∑−=+−=+n c n c X X E c X X c E n i i i n i i i ,故当)1(21−=n c 时,21121)(σ=⎥⎦⎤⎢⎣⎡−∑−=+n i i i X X c E ,即∑−=+−1121)(n i i i X X c 是σ 2的无偏估计.5. 设X 1, X 2, …, X n 是来自下列总体中抽取的简单样本,⎪⎩⎪⎨⎧+≤≤−=.,0;2121,1);(其他θθθx x p证明样本均值X 及)(21)()1(n X X +都是θ 的无偏估计,问何者更有效? 证:因总体⎟⎠⎞⎜⎝⎛+−21,21~θθU X ,有)1,0(~21U X Y +−=θ,则21−+=θY X ,21)1()1(−+=θY X ,21)()(−+=θn n Y X ,即21)(21)(21)()1()()1(−++=+θn n Y Y X X ,可得θθθ=−+=−+=21)(21)()(Y E Y E X E ,nY n Y X 121)Var(1)Var()Var(===,因Y 的密度函数与分布函数分别为p Y ( y ) = I 0<y <1,⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(y y y y y F Y有Y (1)与Y (n )的密度函数分别为10111)1()()](1[)(<<−−Ι−=−=y n Y n Y y n y p y F n y p ,1011)()]([)(<<−−Ι==y n Y n Y n ny y p y F n y p ,且(Y (1), Y (n ))的联合密度函数为)()1()()()]()()[1(),()()1(2)1()()()1(1n y y n Y Y n Y n Y n n y p y p y F y F n n y y p <−Ι−−=102)1()()()1())(1(<<<−Ι−−=n y y n n y y n n ,则11)2()()2()1()(101)1(+=+ΓΓΓ⋅=−⋅=∫−n n n n dy y n y Y E n ,1)(101)(+=⋅=∫−n n dy ny y Y E n n , )2)(1(2)3()()3()1()(10122)1(++=+ΓΓΓ⋅=−⋅=∫−n n n n n dy y n y Y E n ,2)(10122)(+=⋅=∫−n n dy ny y Y E n n , ∫∫∫∫−−−−⋅⋅=−−⋅=11)1()()()1()(1)1(2)1()()()1()()()1()()()()1())(1()(n n y n n n n y n n n n n y y d n y y dy dy y y n n y y dy Y Y E∫∫⎥⎦⎤⎢⎣⎡⋅−+−−=−−100)1()(1)1()(01)1()()()1()()()()()(n n y n n n y n n n n dy y y y n y y y ny dy2121)(102)(10)(1)(100)1()()()()(+=+==⎥⎦⎤⎢⎣⎡−⋅−=++∫∫n y n dy y y y y dy n n n n n y n n n n n , 即)2()1(11)2)(1(2)Var(22)1(++=⎟⎠⎞⎜⎝⎛+−++=n n n n n n Y ,)2()1(12)Var(22)(++=⎟⎠⎞⎜⎝⎛+−+=n n n n n n n Y n ,且)2()1(111121),Cov(2)()1(++=+⋅+−+=n n n nn n Y Y n 可得θθ=−++=⎥⎦⎤⎢⎣⎡+21)]()([21)(21)()1()()1(n n Y E Y E X X E ,)2)(1(21)2()1(422)],Cov(2)Var()[Var(41)(21Var 2)()1()()1()()1(++=+++=++=⎥⎦⎤⎢⎣⎡+n n n n n Y Y Y Y X X n n n , 因θ=(X E ,θ=⎥⎦⎤⎢⎣⎡+)(21)()1(n X X E ,故X 及)(21)()1(n X X +都是θ 的无偏估计; 因当n > 1时,)2)(1(21)(21Var 121)Var()()1(++=⎥⎦⎤⎢⎣⎡+>=n n X X n X n , 故)(21)()1(n X X +比样本均值X 更有效. 6. 设X 1, X 2, X 3服从均匀分布U (0, θ ),试证)3(34X 及4X (1)都是θ 的无偏估计量,哪个更有效?解:因总体X 的密度函数与分布函数分别为θθ<<Ι=x x p 01)(,⎪⎩⎪⎨⎧≥<≤<=.,1;0,;0,0)(θθθx x x x x F有X (1)与X (3)的密度函数分别为θθθ<<Ι−=−=x x x p x F x p 03221)(3)()](1[3)(,θθ<<Ι==x x x p x F x p 032233)()]([3)(,则443223)(3)(043223032)1(θθθθθθθθ=⎟⎟⎠⎞⎜⎜⎝⎛+⋅−⋅=−⋅=∫x x x dx x x X E , 43433)(043032)3(θθθθθ=⋅=⋅=∫x dy x x X E , 1054233)(3)(205432303222)1(θθθθθθθθ=⎟⎟⎠⎞⎜⎜⎝⎛+⋅−⋅=−⋅=∫x x x dx x x X E , 53533)(25303222)3(θθθθθ=⋅=⋅=∫x dy x x X E , 即803410)Var(222)1(θθθ=⎟⎠⎞⎜⎝⎛−=X ,8034353)Var(222)3(θθθ=⎟⎠⎞⎜⎝⎛−=X , 因θθ=⋅=44)4()1(X E ,θθ=⋅=⎟⎠⎞⎜⎝⎛433434)3(X E ,故4X (1)及)3(34X 都是θ 的无偏估计; 因5380316)4Var(22)1(θθ=⋅=X ,1580391634Var 22)3(θθ=⋅=⎟⎠⎞⎜⎝⎛X ,有⎟⎠⎞⎜⎝⎛>)3()1(34Var )4Var(X X , 故)3(34X 比4X (1)更有效. 7. 设从均值为µ ,方差为σ 2 > 0的总体中,分别抽取容量为n 1和n 2的两独立样本,1X 和2X 分别是这两个样本的均值.试证,对于任意常数a , b (a + b = 1),21X b X a Y +=都是µ 的无偏估计,并确定常数a , b 使Var (Y ) 达到最小.解:因µµµµ=+=+=+=)()()()(21b a b a X bE X aE Y E ,故Y 是µ 的无偏估计;因22222121222122221212)1()(Var )(Var )(Var σσσ⎟⎟⎠⎞⎜⎜⎝⎛+−+=⋅−+⋅=+=n a n a n n n n n a n a X b X a Y , 令022)(Var 222121=⎟⎟⎠⎞⎜⎜⎝⎛−⋅+=σn a n n n n Y da d ,得211n n n a +=,且02)(Var 2212122>⋅+=σn n n n Y a d d , 故当211n n n a +=,2121n n n a b +=−=时,Var (Y ) 达到最小2211σn n +.8. 设总体X 的均值为µ ,方差为σ 2,X 1, …, X n 是来自该总体的一个样本,T (X 1, …, X n )为µ 的任一线性无偏估计量.证明:X 与T 的相关系数为)Var()Var(T X .证:因T(X 1, …, X n )为µ的任一线性无偏估计量,设∑==ni i i n X a X X T 11),,(L ,则µµ===∑∑==ni i ni i i a X E a T E 11)()(,即11=∑=ni i a ,因X 1, …, X n 相互独立,当i ≠ j 时,有Cov (X i , X j ) = 0,则nanX X n a X a X n X a X n T X ni in i i i i n i i i i ni i i n i i 2121111),Cov(,1Cov ,1Cov ),Cov(σσ===⎟⎠⎞⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=∑∑∑∑∑=====,因),Cov()Var(1)Var(2T X nX n X ===σ,故X 与T 的相关系数为)Var()Var()Var()Var()Var()Var()Var(),Cov(),Corr(T X T X X T X T X T X ===.9. 设有k 台仪器,已知用第i 台仪器测量时,测定值总体的标准差为σ i (i = 1, …, k ).用这些仪器独立地对某一物理量θ 各观察一次,分别得到X 1, …, X k ,设仪器都没有系统误差.问a 1, …, a k 应取何值,方能使∑==ki i i X a 1ˆθ成为θ 的无偏估计,且方差达到最小?解:因θθθ⎟⎟⎠⎞⎜⎜⎝⎛===⎟⎟⎠⎞⎜⎜⎝⎛=∑∑∑∑====k i i ki i k i i i ki i i a a x E a x a E E 1111)()ˆ(, 则当11=∑=ki i a 时,∑==ki ii x a 1ˆθ是θ 的无偏估计, 因∑∑∑=====⎟⎟⎠⎞⎜⎜⎝⎛=ki i i k i i i k i i i a x a x a 122121)(Var Var )ˆ(Var σθ, 讨论在11=∑=ki i a 时,∑=ki i i a 122σ的条件极值,设拉格朗日函数⎟⎟⎠⎞⎜⎜⎝⎛−+=∑∑==1),,,(11221ki i ki iik a a a a L λσλL , 令⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=−=∂∂=+=∂∂=+=∂∂∑=,01,02,02122111ki i k k ka L a a L a a L λλσλσL L L L L 得2212−−++−=k σσλL ,2212−−−++=k i i a σσσL ,i = 1, …, k , 故当2212−−−++=k i i a σσσL ,i = 1, …, k 时,∑==ki ii x a 1ˆθ是θ 的无偏估计,且方差达到最小. 10.设X 1, X 2, …, X n 是来自N (θ, 1)的样本,证明g (θ ) = |θ | 没有无偏估计(提示:利用g (θ )在θ = 0处不可导).证:反证法:假设T = T (X 1, X 2, …, X n )是g (θ ) = |θ | 的任一无偏估计,因∑==ni i X n X 11是θ 的一个充分统计量,即在取定x X =条件下,样本条件分布与参数θ 无关,则)|(X T E S =与参数θ 无关,且S 是关于X 的函数,||)()()]|([)(θθ====g T E X T E E S E , 可得)(X S S =是g (θ ) = |θ | 的无偏估计,因X 1, X 2, …, X n 是来自N (θ, 1)的样本,由正态分布可加性知X 服从正态分布⎟⎠⎞⎜⎝⎛n N 1,θ,则∫∫∞+∞−+−−∞+∞−−−⋅⋅=⋅=dx x S ndx n x S S E x n x n n x nθθθ22222)(2e)(eπ2eπ2)()(,因E (S ) = |θ|,可知对任意的θ,反常积分∫∞+∞−+−⋅dx x S x n x n θ22e)(收敛,则由参数θ的任意性以及该反常积分在−∞与+∞两个方向的收敛性知∫∞+∞−⋅⋅+−⋅dx x S x n x n ||||22e)(θ收敛,因x n x S x S x n x n x n n ⋅⋅=⎥⎥⎦⎤⎢⎢⎣⎡⋅∂∂+−+−θθθ2222e )(e )(,且| y | ≤ e| y |,有||)1||(2222eex n n x n x n x n ⋅+⋅+−+−≤⋅θθ,则由∫∞+∞−⋅+⋅+−⋅dx x S x n x n ||)1|(|22e)(θ的收敛性知∫∞+∞−+−⎥⎥⎦⎤⎢⎢⎣⎡⋅∂∂dx x S x n x n θθ22e )(一致收敛, 可得∫∞+∞−+−−⋅⋅=dx x S nS E x n x n n θθ2222e)(e π2)(关于参数θ 可导,与E (S ) = |θ |在θ = 0处不可导矛盾,故g (θ ) = |θ | 没有无偏估计.11.设总体X 服从正态分布N (µ , σ 2),X 1, X 2, …, X n 为来自总体X 的样本,为了得到标准差σ 的估计量,考虑统计量:∑=−=ni i X X n Y 11||1,∑==n i i X n X 11,n ≥ 2,∑∑==−−=n i nj j i X X n n Y 112||)1(1,n ≥ 2,求常数C 1与C 2,使得C 1Y 1与C 2Y 2都是σ 的无偏估计. 解:设),0(~2θN Y ,有θθθθθθθπ2eπ22e π212e π21|||][|02022222222=−=⋅=⋅=+∞−∞+−∞+∞−⋅−∫∫y y y dy y dy y Y E , 因X X i −是独立正态变量X 1, X 2, …, X n 的线性组合, 且0()()(=−=−=−µµX E X E X X E i i ,22211,Cov 21),Cov(2)Var()Var()Var(σσσn n X n X n X X X X X X i i i i i −=⎟⎠⎞⎜⎝⎛−+=−+=−,则⎟⎠⎞⎜⎝⎛−−21,0~σn n N X X i ,σσπ)1(21π2|][|n n n n X X E i −=−⋅=−, 可得σσπ)1(2π)1(21|][|1)()(11111111n n C n n n n C X X E n C Y E C Y C E n i i −=−⋅⋅⋅=−⋅==∑=,故当)1(2π1−=n n C 时,E [C 1Y 1] = σ,C 1Y 1是σ 的无偏估计;当i ≠ j 时,X i 与X j 相互独立,都服从正态分布N (µ , σ 2),有E (X i − X j ) = E (X i ) − E (X j ) = µ − µ = 0,Var(X i − X j ) = Var(X i ) + Var(X j ) = σ 2 + σ 2 = 2σ 2,则X i − X j ~ N (0, 2σ 2),σσπ22π2|][|=⋅=−j i X X E , 当i = j 时,X i − X j = 0,E [| X i − X j |] = 0,可得σσπ2π2)()1(1|][|)1(1)()(2221122222C n n n n C X X E n n C Y E C Y C E n i nj j i =−⋅−⋅=−−⋅==∑∑==, 故当2π2=C 时,E [C 2Y 2] = σ,C 2Y 2是σ 的无偏估计. 习题6.21. 从一批电子元件中抽取8个进行寿命测试,得到如下数据(单位:h ):1050,1100,1130,1040,1250,1300,1200,1080,试对这批元件的平均寿命以及寿命分布的标准差给出矩估计.解:平均寿命µ 的矩估计75.1143ˆ==x µ;标准差σ 的矩估计8523.89*ˆ==s µ. 2. 设总体X ~ U (0, θ ),现从该总体中抽取容量为10的样本,样本值为:0.5,1.3,0.6,1.7,2.2,1.2,0.8,1.5,2.0,1.6,试对参数θ 给出矩估计.解:因X ~ U (0, θ ),有2)(θ=X E ,即θ = 2 E (X ),故θ 的矩估计68.234.122ˆ=×==x θ. 3. 设总体分布列如下,X 1, …, X n 是样本,试求未知参数的矩估计.(1)Nk X P 1}{==,k = 0, 1, 2, …, N − 1,N (正整数)是未知参数;(2)P {X = k } = (k − 1)θ 2 (1 − θ )k − 2,k = 2, 3, …,0 < θ < 1.解:(1)因21)]1(10[1)(−=−+++=N N N X E L ,即N = 2 E (X ) + 1,故N 的矩估计12ˆ+=X N ; (2)因⎥⎦⎤⎢⎣⎡−=−=−−⋅=∑∑∑+∞=+∞=+∞=−22222222222)1()1()1()1()(k k k k k k d d d d k k X E θθθθθθθθ θθθθθθθθθθθ2221)1(1)1(322222222=⋅=⎟⎠⎞⎜⎝⎛+−=⎥⎦⎤⎢⎣⎡−−−=d d d d , 则)(2X E =θ, 故θ 的矩估计X2ˆ=θ. 4. 设总体密度函数如下,X 1, …, X n 是样本,试求未知参数的矩估计.(1))(2);(2x x p −=θθθ,0 < x < θ ,θ > 0; (2)p (x ;θ ) = (θ + 1) x θ,0 < x < 1,θ > 0;(3)1);(−=θθθx x p ,0 < x < 1,θ > 0; (4)θµθµθ−−=x x p e1),;(,x > µ ,θ > 0.解:(1)因3322)(2)(032202θθθθθθθ=⎟⎟⎠⎞⎜⎜⎝⎛−⋅=−⋅=∫x x dx x x X E ,即θ = 3 E (X ),故θ 的矩估计X 3ˆ=θ; (2)因212)1()1()(10210++=+⋅+=+⋅=+∫θθθθθθθx dx x x X E ,即)(11)(2X E X E −−=θ, 故θ 的矩估计XX −−=112ˆθ; (3)因11)(101101+=+⋅=⋅=+−∫θθθθθθθxdx x x X E ,即2)(1)(⎥⎦⎤⎢⎣⎡−=X E X E θ, 故θ 的矩估计21ˆ⎟⎟⎠⎞⎜⎜⎝⎛−=XX θ; (4)因θµθµθµθµµθµµθµµθµµθµ+=−=+−=−⋅=⋅=+∞−−∞+−−+∞−−∞+−−∞+−−∫∫∫x x x x x dx x d x dx x X E eeee)1(e1)(,)(2e2ee)1(e1)(22222X E dx x x d x dx x X E x x x x θµθµθµµθµµθµµθµ+=+−=−⋅=⋅=∫∫∫∞+−−+∞−−∞+−−∞+−−= µ 2 + 2µθ + 2θ 2,则Var (X ) = E (X 2 ) − [E (X )]2 = θ 2,即)Var(X =θ,)Var()(X X E −=µ,故θ 的矩估计*ˆS =θ,*ˆS X −=µ. 5. 设总体为N (µ , 1),现对该总体观测n 次,发现有k 次观测值为正,使用频率替换方法求µ 的估计.解:因p = P {X > 0} = P {X − µ > −µ} = 1 − Φ (−µ) = Φ (µ),即µ = Φ −1 ( p ),故µ 的矩估计⎟⎠⎞⎜⎝⎛Φ=Φ=−−n k p 11)ˆ(ˆµ.6. 甲、乙两个校对员彼此独立对同一本书的样稿进行校对,校完后,甲发现a 个错字,乙发现b 个错字,其中共同发现的错字有c 个,试用矩法给出如下两个未知参数的估计: (1)该书样稿的总错字个数; (2)未被发现的错字数. 解:(1)设N 为该书样稿总错别字个数,且A 、B 分别表示甲、乙发现错别字,有A 与B 相互独立,则P (AB ) = P (A ) P (B ),使用频率替换方法,即N b N a p p N c p B A AB ⋅===ˆˆˆ,得cabN =, 故总错字个数N 的矩估计cab N=ˆ; (2)设k 为未被发现的错字数,因)()()(1)(1)(AB P B P A P B A P B A P +−−=−=U ,使用频率替换方法,即N cN b N a p p pN k pAB B A B A +−−=+−−==1ˆˆˆ1ˆ,即k = N − a − b + c , 故未被发现的错字数k 的矩估计c b a cab c b a N k+−−=+−−=ˆˆ. 7. 设总体X 服从二项分布b (m , p ),其中m , p 为未知参数,X 1, …, X n 为X 的一个样本,求m 与p 的矩估计.解:因E (X ) = mp ,Var (X ) = mp (1 − p ),有)()Var(1X E X p =−,则)()Var(1X E X p −=,)Var()()]([)(2X X E X E p X E m −==, 故m 的矩估计22*ˆS X X m −=,p 的矩估计XS p 2*1ˆ−=.习题6.31. 设总体概率函数如下,X 1, …, X n 是样本,试求未知参数的最大似然估计.(1)1);(−=θθθxx p ,0 < x < 1,θ > 0;(2)p (x ;θ ) = θ c θ x − (θ + 1) ,x > c ,c > 0已知,θ > 1. 解:(1)因1,,,01212110121)()(<<−=<<−Ι=Ι=∏n i x x x n nni x ix x x x L L L θθθθθ,当0 < x 1, x 2, …, x n < 1时,)ln()1(ln 2)(ln 21n x x x nL L −+=θθθ, 令0)ln(212)(ln 21=+=n x x x n d L d L θθθθ,得)ln(21n x x x n L −=θ,即221)ln(⎥⎦⎤⎢⎣⎡=n x x x nL θ,故θ 的最大似然估计221)ln(ˆ⎦⎤⎢⎣⎡=n X X X n L θ;(2)因c x x x n n n ni c x i n i x x x c x c L >+−=>+−Ι=Ι=∏,,,)1(211)1(21)()(L L θθθθθθθ,当x 1, x 2, …, x n > c 时,ln L (θ ) = n ln θ + n θ ln c − (θ + 1) ln (x 1 x 2 …x n ), 令0)ln(ln )(ln 21=−+=n x x x c n n d L d L θθθ,得c n x x x nn ln )ln(21−=L θ, 故θ 的最大似然估计cn X X X nn ln )ln(ˆ21−=L θ.2. 设总体概率函数如下,X 1, …, X n 是样本,试求未知参数的最大似然估计.(1)p (x ;θ ) = c θ c x − (c + 1) ,x > θ ,θ > 0,c > 0已知;(2)θµθµθ−−=x x p e1),;(,x > µ ,θ > 0;(3)p (x ;θ ) = (k θ )−1,θ < x < (k + 1)θ ,θ > 0.解:(1)因θθθθθ>+−=>+−Ι=Ι=∏n i x x x c n nc n ni x c i c x x x c x c L ,,,)1(211)1(21)()(L L ,显然θ 越大,nc θ越大,但只有x 1 , x 2 , …, x n > θ 时,才有L (θ ) > 0,即θ = min {x 1, x 2, …, x n } 时,L (θ ) 达到最大,故θ 的最大似然估计},,,min{ˆ21)1(nX X X X L ==θ;(2)因µµθµθµθθµθ>⎟⎟⎠⎞⎜⎜⎝⎛−−=>−−Ι∑=Ι==∏n n i i i i x x x n x nni x x L ,,,11211e1e1),(L ,当x 1, x 2, …, x n > µ 时,⎟⎟⎠⎞⎜⎜⎝⎛−−−=∑=µθθµθn x n L ni i 11ln ),(ln , 令01),(ln 12=⎟⎟⎠⎞⎜⎜⎝⎛−+−=∑=µθθθµθn x n d L d ni i ,解得µµθ−=⎟⎟⎠⎞⎜⎜⎝⎛−=∑=x n x n n i i11, 且显然µ越大,⎟⎟⎠⎞⎝⎛−−∑=µθn x n i i 11e 越大,但只有x 1 , x 2 , …, x n > µ 时,才有L (θ, µ) > 0,即µ = min {x 1, x 2, …, x n } 时,L (θ, µ) 才能达到最大,故µ 的最大似然估计},,,min{ˆ21)1(n X X X X L ==µ,θ 的最大似然估计)1(ˆˆX X X −=−=µθ; (3)因θθθθθθθ)1(,,,1)1(121)()()(+<<−=+<<−Ι=Ι=∏k x x x n ni k x n i k k L L ,显然θ 越小,(k θ )−n 越大,但只有θ < x 1 , x 2 , …, x n < (k + 1)θ 时,才有L (θ ) > 0,即},,,max{1121n x x x k L +=θ时,L (θ ) 达到最大, 故θ 的最大似然估计为},,,max{111ˆ21)(nn X X X k k X L +=+=θ. 3. 设总体概率函数如下,X 1, …, X n 是样本,试求未知参数的最大似然估计.(1)θθθ||e 21);(x x p −=,θ > 0;(2)p(x ;θ ) = 1,θ − 1/2 < x < θ + 1/2;(3)12211),;(θθθθ−=x p ,θ1 < x < θ2.解:(1)因∑===−=−∏ni i i x n n ni x L 1||11||e21e 21)(θθθθθ,有∑=−−−=n i i x n n L 1||1ln 2ln )(ln θθθ, 令∑=+⋅−=ni i x n d L d 12||11)(ln θθθθ,得∑==ni i x n 1||1θ, 故θ的最大似然估计∑==ni i X n 1||1ˆθ; (2)因2/1,,,2/112/12/121)(+<<−=+<<−Ι=Ι=∏θθθθθn i x x x ni x L L ,即θ − 1/2 < x (1) ≤ x (n ) < θ + 1/2,可得当x (n ) − 1/2 < θ < x (1) + 1/2时,都有L (θ ) = 1,故θ 的最大似然估计ˆθ是 (x (n ) − 1/2, x (1) + 1/2) 中任何一个值; (3)因221121,,,1211221)(11),(θθθθθθθθθθ<<=<<Ι−=Ι−=∏n i x x x n ni x L L ,显然θ 1越大且θ 2越小时,L (θ1, θ 2) 越大,但只有θ1 < x 1 , x 2 , …, x n < θ 2 时,才有L (θ1, θ 2) > 0, 即θ 1 = min {x 1, x 2, …, x n }且θ 2 = max {x 1, x 2, …, x n }时,L (θ1, θ 2)达到最大,故θ 1的最大似然估计},,,min{ˆ21)1(1nX X X X L ==θ, θ 2的最大似然估计},,,max{ˆ21)(2nn X X X X L ==θ. 4. 一地质学家为研究密歇根湖的湖滩地区的岩石成分,随机地自该地区取100个样品,每个样品有10块石子,记录了每个样品中属石灰石的石子数.假设这100次观察相互独立,求这地区石子中石灰石的比例p 的最大似然估计.该地质学家所得的数据如下: 样本中的石子数 0 1 2 3 4 5 6 7 8 9 10样品个数0 1 6 7 23 26 21 12 3 1 0解:总体X 为样品的10块石子中属石灰石的石子数,即X 服从二项分布B (10, p ),其概率函数为xx p p x x p −−⎟⎟⎠⎞⎜⎜⎝⎛=10)1(10)(,x = 1, 2, …, 10,因∑−∑⋅⎟⎟⎠⎞⎜⎜⎝⎛=−⎟⎟⎠⎞⎜⎜⎝⎛===−==−∏∏1001100110001001110)1(10)1(10)(i ii iii x x i i ni x x i p p x p p x p L ,即)1ln(1000ln 10ln )(ln 100110011001p x p x x p L i i i i i i −⋅⎟⎟⎠⎞⎜⎜⎝⎛−+⋅+⎟⎟⎠⎞⎜⎜⎝⎛=∑∑∑===, 令01110001)(ln 10011001=−⋅⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=∑∑==p x p x dp p L d i i i i ,得∑==100110001i i x p ,即∑==100110001ˆi i X p 由于49909137261101001=+×+×+×+×+=∑=i i x ,故比例p 的最大似然估计499.049910001ˆ=×=p. 5. 在遗传学研究中经常要从截尾二项分布中抽样,其总体概率函数为m k p p p k m p k X P mk m k ,,2,1,)1(1)1(};{L =−−−⎟⎟⎠⎞⎜⎜⎝⎛==−. 若已知m = 2,X 1, …, X n 是样本,试求p 的最大似然估计.解:当m = 2时,X 只能取值1或2,且p p p p p X P −−=−−−==222)1(1)1(2}1{2,ppp p X P −=−−==2)1(1}2{22, 即pp p p p p p p x X P x x x x−−=⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−−==−−−−2)22(2222};{1212,x = 1, 2,因nnx x n ni x x p p p p p p p L ni i ni i i i )2()22(2)22()(112112−∑∑−=−−=−−=−−==∏, 即)2ln(ln )22ln(2)(ln 11p n p n x p x n p L n i i ni i −−⋅⎟⎟⎠⎞⎜⎜⎝⎛−+−⋅⎟⎟⎠⎞⎜⎜⎝⎛−=∑∑==,令02112222)(ln 11=−−⋅−⋅⎟⎟⎠⎞⎜⎜⎝⎛−+−−⋅⎟⎟⎠⎞⎜⎜⎝⎛−=∑∑==p n p n x p x n dp p L d n i i ni i ,得x x n p n i i22221−=−=∑=, 故p 的最大似然估计Xp22ˆ−=. 6. 已知在文学家萧伯纳的“An Intelligent Woman’s Guide to Socialism ”一书中,一个句子的单词数X 近似地服从对数正态分布,即Z = ln X ~ N (µ , σ 2 ).今从该书中随机地取20个句子,这些句子中的单词数分别为52, 24, 15, 67, 15, 22, 63, 26, 16, 32, 7, 33, 28, 14, 7, 29, 10, 6, 59, 30,求该书中一个句子单词数均值22e )(σµ+=X E 的最大似然估计.解:因Z = ln X ~ N (µ , σ 2 ),则µ的最大似然估计09.3)30ln 24ln 52(ln 201ln 11ˆ11=+++====∑∑==L n i in i i x n z n z µ, σ 2的最大似然估计51.0])09.330(ln )09.324(ln )09.352[(ln 201)(12221222=−++−+−=−==∑=∗∧L n i i zz z n sσ, 故由最大似然估计的不变性知22e)(σµ+=X E 的最大似然估计31.28e e )(251.009.322*===++∧zs z X E .7. 总体X ~ U (θ , 2θ ),其中θ > 0是未知参数,又X 1, …, X n 为取自该总体的样本,X 为样本均值.(1)证明X 32ˆ=θ是参数θ 的无偏估计和相合估计; (2)求θ的最大似然估计,它是无偏估计吗?是相合估计吗?解:(1)因X ~ U(θ , 2θ ),有θθθ2322)(=+=X E ,2212112)2()Var(θθθ=−=X , 故θθ=⋅===2332)(32)(32)ˆ(X E X E E ,即X 32ˆ=θ是参数θ 的无偏估计; 因n n X n X 2712194)Var(94)Var(94)ˆVar(22θθθ=⋅===,有θθ=→∞)ˆ(lim E n ,0)ˆVar(lim =∞→θn , 故X 32ˆ=θ是参数θ 的相合估计; (2)因θθθθθθθ2,,,122111)(<<=<<Ι=Ι=∏n i x x x nni x L L ,显然θ 越小,nθ1越大,但只有θ < x 1 , x 2 , …, x n < 2θ 时,才有L (θ ) > 0,即},,,max{2121n x x x L =θ时,L (θ ) 达到最大, 故θ 的最大似然估计为},,,max{2121*ˆ21)(nn X X X X L ==θ;因X 的密度函数为⎪⎩⎪⎨⎧<<=.,0;2,1)(其他θθθx x p ,分布函数为⎪⎩⎪⎨⎧≥<≤−<=.2,1;2,;,0)(θθθθθθx x x x x F则X (n ) 的密度函数⎪⎩⎪⎨⎧<<−==−−.,0;2,)()()]([)(11其他θθθθx x n x p x F n x p nn n n因θθθθθθθθθθθ11)()()()(2121)(+=+−⋅=−⋅−=−+−∫n nn x n dx x n x X E n n nn n ,有θ112)()(++=n n X E n , 且2222122)(22)()()(])[(θθθθθθθθθθθ+=+−⋅=−⋅−=−+−∫n nn x n dx x n x X E n n nn n , 则2222)()()2()1(12)Var()Var(θθθθ++=⎟⎠⎞⎜⎝⎛+−+=−=n n n n n n n X X n n , 因θθθ≠++==)1(212)(21*)ˆ()(n n X E E n ,22)()2()1(4)Var(41*)ˆVar(θθ++==n n n X n , 故)(21*ˆn X =θ不是参数θ 的无偏估计,应该修偏为)(121ˆn X n n ++=θ才是θ 的无偏估计, 因θθθ=++=→∞→∞)1(212lim *)ˆ(lim n n E n n ,0)2()1(4lim *)ˆVar(lim 22=++=∞→∞→θθn n n n n , 故θ 的最大似然估计)(21*ˆn X =θ是参数θ 的相合估计. 8. 设X 1, …, X n 是来自密度函数为p (x ;θ ) = e − (x − θ), x >θ 的样本.(1)求θ 的最大似然估计1ˆθ,它是否是相合估计?是否是无偏估计? (2)求θ 的矩估计2ˆθ,它是否是相合估计?是否是无偏估计? 解:(1)似然函数θθθθθ>+−=>−−Ι∑=Ι==∏n ni i i i x x x n x ni x x L ,,,1)(211ee)(L ,显然θ 越大,θn x ni i +−∑=1e 越大,但只有x 1 , x 2 , …, x n > θ 时,才有L (θ ) > 0, 即θ = min {x 1, x 2, …, x n } 时,L (θ ) 达到最大,故θ 的最大似然估计},,,min{ˆ21)1(1nX X X X L ==θ; 因X 的密度函数与分布函数分别为⎩⎨⎧≤>=−−.,0;,e )()(θθθx x x p x ⎩⎨⎧≤>−=−−.,0;,e 1)()(θθθx x x F x 则X (1) 的密度函数为⎩⎨⎧≤>=−=−−−.,0;,e )()](1[)()(11θθθx x n x p x F n x p x n n 可得X (1) − θ 服从指数分布Exp (n ),因n X E 1)()1(=−θ,2)1(1)Var(nX =−θ, 则θθθ≠+==nX E E 1)()ˆ()1(1,2)1()1(11)Var()Var()ˆVar(n X X =−==θθ, 故)1(1ˆX =θ不是θ 的无偏估计; 因θθθ=⎟⎠⎞⎜⎝⎛+=→∞→∞n E n n 1lim )ˆ(lim 1,01lim )ˆVar(lim 21==→∞→∞n n n θ, 故)1(1ˆX =θ是θ 的相合估计; (2)因总体X 的密度函数为p (x ;θ ) = e − (x − θ), x >θ ,有X − θ 服从指数分布Exp (1),则E (X − θ ) = E (X ) − θ = 1,即θ = E (X ) − 1,故θ 的矩估计1ˆ2−=X θ; 因E (X ) = θ + 1,Var(X ) = Var(X − θ) = θ 2,则θθ=−=−=1)(1)()ˆ(2X E X E E ,nX n X 22)Var(1)Var()ˆVar(θθ===, 故1ˆ2−=X θ是θ 的无偏估计; 因θθ=∞→)ˆ(lim 2E n ,0lim )ˆVar(lim 22==→∞→∞n n n θθ, 故1ˆ2−=X θ是θ 的相合估计. 9. 设总体X ~ Exp (1/θ ),X 1, …, X n 是样本,θ 的矩估计和最大似然估计都是X ,它也是θ 的相合估计和无偏估计,试证明在均方误差准则下存在优于X 的估计(提示:考虑X a a=θˆ,找均方误差最小者). 证:因X ~ Exp (1/θ ),有E (X ) = θ ,Var(X ) = θ 2,且X 的密度函数为⎪⎩⎪⎨⎧≤>=−.0,0;0,e 1)(x x x p xθθ故θ = E (X ),即θ 的矩估计为X =θˆ; 因似然函数0,,,110211e1e1)(>−=>−Ι∑=Ι==∏n ni ii ix x x x nni x x L L θθθθθ, 当x 1, x 2, …, x n > 0时,∑=−−=ni i x n L 11ln )(ln θθθ, 令01)(ln 12=+−=∑=ni i x n d L d θθθθ,得x x n ni i ==∑=11θ, 故θ 的最大似然估计也为X =θˆ; 因θ==)((X E X E ,nX n X 2)Var(1)Var(θ==,故X 是θ 的无偏估计;因θ=→∞)(lim X E n ,0lim)Var(lim 2==∞→∞→nX n n θ,故X 是θ 的相合估计;设X a a =θˆ,有θθa X aE E a ==)()ˆ(,na X a a 222)Var()ˆVar(θθ==, 则nnX E X X 2222)(])([)Var()MSE(θθθθθ=−+=−+=,222222212)(])ˆ([)ˆVar()ˆMSE(θθθθθθθθ⎟⎟⎠⎞⎜⎜⎝⎛+−+=−+=−+=a a n a a n a E a a a 2222111111121θθ⎥⎥⎦⎤⎢⎢⎣⎡++⎟⎠⎞⎜⎝⎛+−+=⎟⎠⎞⎜⎝⎛++++−+=n n n a n n n n n a a n n ,故当1+=n n a 时,X n n a 1ˆ+=θ的均方误差1)ˆMSE(2+=n a θθ小于X 的均方误差nX 2)MSE(θ=.10.为了估计湖中有多少条鱼,从中捞出1000条,标上记号后放回湖中,然后再捞出150条鱼,发现其中有10条鱼有记号.问湖中有多少条鱼,才能使150条鱼中出现10条带记号的鱼的概率最大?解:设湖中有N 条鱼,有湖中每条鱼带记号的概率为Np 1000=,看作总体X 服从两点分布b (1, p ),从中抽取容量为150的样本X 1, X 2, …, X 150,有101501=∑=i i x ,似然函数∑−∑=−===−=−∏ni ini iiix n x ni x x p pp p p L 11)1()1()(11,有)1ln(ln )(ln 11p x n p x p L ni i ni i −⋅⎟⎟⎠⎞⎜⎜⎝⎛−+⋅=∑∑==, 令0111)(ln 11=−−⋅⎟⎟⎠⎞⎜⎜⎝⎛−+⋅=∑∑==p x n p x dp p L d ni i n i i ,得x x n p ni i ==∑=11,即p 的最大似然估计为X p =ˆ, 因pN 1000=,由最大似然估计的不变性知X N1000ˆ=, 故湖中有150001015011000ˆ=×=N条鱼时,才能使150条鱼中出现10条带记号的鱼的概率最大. 11.证明:对正态分布N (µ , σ 2 ),若只有一个观测值,则µ , σ 2的最大似然估计不存在. 证:若只有一个观测值,似然函数222)(2eπ21),(σµσσµ−−=x L ,对于任一固定的σ,当µ = x 时,L (µ)取得最大值σπ21, 但显然σ 越小,σπ21越大,且σ 可任意接近于0,即σπ21不存在最大值,故µ , σ 2的最大似然估计不存在.习题6.41. 设总体概率函数是p (x ;θ ),X 1, …, X n 是其样本,T = T (X 1, …, X n )是θ 的充分统计量,则对g (θ )的任一估计gˆ,令)|ˆ(~T g E g =,证明:)ˆMSE()~MSE(g g ≤.这说明,在均方误差准则下,人们只需要考虑基于充分估计量的估计.解:因)|ˆ(~T g E g=,由Rao-Blackwell 定理知)ˆ()~(g E g E =,)ˆVar()~Var(g g ≤, 故)ˆMSE()]()ˆ([)ˆVar()]()~([)~Var()~MSE(22g g g E g g g E g g=−+≤−+=θθ. 2. 设T 1 , T 2分别是θ 1 , θ 2的UMVUE ,证明:对任意的(非零)常数a , b ,aT 1 + bT 2 是a θ 1 + b θ 2的UMVUE .证:因T 1 , T 2分别是θ 1 , θ 2的UMVUE ,有E (T 1) = θ 1 ,E (T 2) = θ 2 ,且对任意的满足E (ϕ) = 0的ϕ 都有Cov (T 1 , ϕ) = Cov (T 2 , ϕ) = 0, 则E (aT 1 + bT 2) = a E (T 1) + b E (T 2) = a θ 1 + b θ 2 ,且Cov (aT 1 + bT 2 , ϕ) = a Cov (T 1 , ϕ) + b Cov (T 2 , ϕ) = 0, 故aT 1 + bT 2是a θ 1 + b θ 2的UMVUE .3. 设T 是g (θ ) 的UMVUE ,gˆ是g (θ ) 的无偏估计,证明,若+∞<)ˆ(Var g ,则0)ˆ,Cov(≥g T . 证:因gˆ和T 都是g (θ ) 的无偏估计,有)()()ˆ(θg T E g E ==,即0)ˆ(=−T g E , 又因T 是g (θ ) 的UMVUE ,有0)ˆ,(Cov =−T g T ,即0),Cov()ˆ,Cov(=−T T g T , 故0),Cov()ˆ,Cov(≥=T T gT . 4. 设总体X ~ N (µ , σ 2),X 1 , …, X n 为样本,证明,∑==n i i X n X 11,∑=−−=n i i X X n S 122)(11分别为µ , σ 2的UMVUE .证:因X ~ N (µ , σ 2 ),有X 是µ 的无偏估计,S 2是σ 2的无偏估计,且样本X 1 , …, X n 的联合密度函数为===−−=−−∏ni i ix nni x n x x p 12222)(2112)(21e )π2(1e π21),;,,(µσσµσσσµL ,对任意的满足E (ϕ) = 0的ϕ (x 1 , …, x n ),有0e)π2(1)(1)(21122=∑⋅=∫∫∞+∞−∞+∞−−−=n x ndx dx E ni i L L µσϕσϕ,对E (ϕ) = 0两端关于µ 求偏导数,得∫∫∑∞+∞−∞+∞−−−=⋅−⋅==∂∂=n x ni i ndx dx x E ni i L L 1)(2112122e )(1)π2(10)(µσµσϕσµϕ∫∫∞+∞−∞+∞−−−∑⋅−⋅==n x n dx dx n x n ni i L L 1)(212122e)(1)π2(1µσµσϕσ)()]()([])[(222ϕσϕµϕσϕµσX E nE X E nX E n=−=−=,则0)(=ϕX E ,0)(()(),Cov(=⋅−=ϕϕϕE X E X E X ,故∑==ni i X n X 11是µ 的UMVUE ;对0)(=ϕX E 两端再关于µ 求偏导数,得∫∫∑∞+∞−∞+∞−−−=∑⋅−⋅==∂∂=n x n i i ndx dx x x X E ni i L L 1)(2112122e )(1)π2(10)(µσµσϕσµϕ∫∫∞+∞−∞+∞−−−∑⋅−⋅==n x n dx dx n x n x ni i L L 1)(212122e)(1)π2(1µσµσϕσ )()]()([])[(22ϕσϕµϕσϕµσX E nX E X E nX X E n=−=−=,则0)(2=ϕX E ,对0)()π2(=ϕσE n 两端关于σ 2求偏导数,得∫∫∑∞+∞−∞+∞−−−=∑⋅−⋅==∂∂=n x ni indx dx xE ni i L L 1)(211242122e)(210)]()π2[(µσµσϕσϕσ∫∫∑∞+∞−∞+∞−−−=∑⋅⎟⎟⎠⎞⎜⎜⎝⎛+−⋅==n x n i i dx dx n x n x ni i L L 1)(212124122e 221µσµµσϕ⎥⎦⎤⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛+−=∑=ϕµµσσ21222)π2(n X n X E n i i n ⎟⎟⎠⎞⎜⎜⎝⎛=⎥⎦⎤⎢⎣⎡+−⎟⎟⎠⎞⎜⎜⎝⎛=∑∑==n i i n n i i n X E E n X E n X E 122122)π2()()(22)π2(ϕσσϕµϕµϕσσ, 则012=⎟⎟⎠⎞⎜⎜⎝⎛∑=n i i X E ϕ,因⎟⎟⎠⎞⎜⎜⎝⎛−−=−−=∑∑==21212211)(11X n X n X X n S n i i n i i ,有0)(11)(2122=⎥⎦⎤⎢⎣⎡−⎟⎟⎠⎞⎜⎜⎝⎛−=∑=ϕϕϕX nE X E n S E n i i , 则Cov (S 2, ϕ ) = E (S 2ϕ ) − E (S 2) ⋅ E (ϕ) = 0,故∑=−−=ni i X X n S 122)(11是σ 2的UMVUE . 5. 设总体的概率函数为p(x ;θ ),满足定义6.4.2的条件,若二阶导数);(22θθx p ∂∂对一切的θ ∈ Θ 存在,证明费希尔信息量⎟⎟⎠⎞⎜⎜⎝⎛∂∂−=);(ln )(22θθθX p E I . 证:因θθ∂∂⋅=∂∂p p p 1ln ,2222222221ln 111ln θθθθθθθ∂∂⋅+⎟⎠⎞⎜⎝⎛∂∂−=∂∂⋅+⎟⎠⎞⎜⎝⎛∂∂⋅−=⎟⎟⎠⎞⎜⎜⎝⎛∂∂⋅∂∂=∂∂p p p p p p p p p p , 故∫∫∞+∞−∞+∞−∂∂+−=⋅∂∂⋅+−=⎟⎟⎠⎞⎜⎜⎝⎛∂∂⋅+⎟⎠⎞⎜⎝⎛∂∂−=⎟⎟⎠⎞⎜⎜⎝⎛∂∂dx p I pdx p p I p p E p E p E 222222222)(1)(1ln ln θθθθθθθ)()()(22θθθI dx x p I −=⎟⎠⎞⎜⎝⎛∂∂+−=∫∞+∞−.6. 设总体密度函数为p (x ;θ ) = θ x θ − 1, 0 < x < 1, θ > 0,X 1 , …, X n 是样本.(1)求g (θ ) = 1/θ 的最大似然估计; (2)求g (θ )的有效估计.解:(1)似然函数1,,,0121110121)()(<<−=<<−Ι=Ι=∏n i x x x n n ni x i x x x x L L L θθθθθ,当0 < x 1, x 2, …, x n < 1时,ln L (θ ) = n ln θ + (θ − 1) ln (x 1x 2…x n ),令0)ln()(ln 21=+=n x x x n d L d L θθθ,得∑=−=−=ni i n x n x x x n 121ln )ln(L θ,即∑=−=ni iX n 1ln ˆθ, 故g(θ ) = 1/θ 的最大似然估计为∑=−==ni iX n g 1ln 1ˆ/1ˆθ; (2)因θθθθθθθθ1101ln )(ln ln )(ln 10101010101−=−=⋅−=⋅=⋅=∫∫∫−x dx x x x x x d x dx x x X E ,21102102101222)(ln 2ln 2)(ln )()(ln )(ln )(ln θθθθθθθ=−=⋅−==⋅=∫∫∫−X E dx x x x x x x d x dx x x X E , 则22222112)](ln [)(ln )Var(ln θθθ=⎟⎠⎞⎜⎝⎛−−=−=X E X E X ,可得)(111)(ln 1)ˆ(1θθθg n n X E n gE n i i ==⎟⎠⎞⎜⎝⎛−⋅⋅−=−=∑=,即∑=−=n i i X n g 1ln 1ˆ是g (θ )的无偏估计, 且22212111)Var(ln 1)ˆ(Var θθn nn X ngni i =⋅⋅==∑=, 因p (x ; θ ) = θ x θ − 1 I 0 < x < 1,当0 < x < 1时,ln p (x ; θ ) = ln θ + (θ − 1) ln x ,则x x p ln 1);(ln +=∂∂θθθ,2221);(ln θθθ−=∂∂x p ,即2221);(ln )(θθθθ=⎥⎦⎤⎢⎣⎡∂∂−=X p E I ,可得g (θ ) = 1/θ 无偏估计方差的C-R 下界为)ˆ(Var 111)()]([22222g n n nI g ==⋅⎟⎠⎞⎜⎝⎛−=′θθθθθ, 故∑=−=ni i X n g1ln 1ˆ是g (θ ) = 1/θ 的有效估计. 7. 设总体密度函数为2e 2);(3x xx p θθθ−=, x > 0, θ > 0,求θ 的费希尔信息量I (θ ).解:因032e 2);(>−Ι=x x xx p θθθ,当x > 0时,2ln 3ln 2ln );(ln x x x p θθθ−−+=,。
概率论第六章课后习题答案概率论第六章课后习题答案概率论是一门研究随机现象的数学分支,它在解决实际问题中具有广泛的应用。
第六章是概率论中的重要章节,主要涉及随机变量及其概率分布、数学期望和方差等内容。
在课后习题中,我们将通过解答一些典型问题,进一步加深对这些概念的理解。
1. 随机变量X的概率分布函数为F(x) ={ 0, x < 0{ 1/4, 0 ≤ x < 1{ 1/2, 1 ≤ x < 2{ 3/4, 2 ≤ x < 3{ 1, x ≥ 3(1) 求随机变量X的概率密度函数f(x)。
(2) 求P(0.5 ≤ X ≤ 2.5)。
解:(1) 概率密度函数f(x)是概率分布函数F(x)的导数。
根据导数的定义,我们可以得到:f(x) ={ 0, x < 0{ 1/4, 0 ≤ x < 1{ 1/2, 1 ≤ x < 2{ 1/4, 2 ≤ x < 3{ 0, x ≥ 3(2) P(0.5 ≤ X ≤ 2.5) = F(2.5) - F(0.5) = 3/4 - 1/4 = 1/2 2. 设随机变量X的概率密度函数为f(x) ={ c(1 - x^2), -1 ≤ x ≤ 1{ 0, 其他(1) 求常数c的值。
(2) 求P(|X| > 0.5)。
解:(1) 概率密度函数f(x)的积分值等于1。
我们可以计算:∫[-1,1] c(1 - x^2) dx = 1解这个积分方程,可得c = 3/4。
(2) P(|X| > 0.5) = 1 - P(|X| ≤ 0.5)= 1 - ∫[-0.5,0.5] c(1 - x^2) dx= 1 - 3/4 ∫[-0.5,0.5] (1 - x^2) dx= 1 - 3/4 [x - x^3/3] |[-0.5,0.5]= 1 - 3/4 [(0.5 - 0.5^3/3) - (-0.5 + 0.5^3/3)] = 1 - 3/4 [0.5 - 0.5/3 - (-0.5 + 0.5/3)]= 1 - 3/4 [1/3]= 1 - 1/4= 3/43. 设随机变量X的概率密度函数为f(x) ={ kx^2, 0 ≤ x ≤ 2{ 0, 其他(1) 求常数k的值。
概率论与数理统计作业及解答第一次作业★1. 甲 乙 丙三门炮各向同一目标发射一枚炮弹 设事件A B C 分别表示甲 乙 丙击中目标 则三门炮最多有一门炮击中目标如何表示. 事件E {事件,,A B C 最多有一个发生},则E 的表示为;E ABC ABC ABC ABC =+++或;AB AC BC =U U 或;AB AC BC =U U或;AB ACBC =或().ABC ABC ABC ABC =-++(和A B +即并A B U ,当,A B 互斥即AB φ=时A B U 常记为A B +) 2. 设M 件产品中含m 件次品 计算从中任取两件至少有一件次品的概率.221M mM C C --或1122(21)(1)m M m m MC C C m M m M M C -+--=- ★3. 从8双不同尺码鞋子中随机取6只 计算以下事件的概率.A {8只鞋子均不成双},B {恰有2只鞋子成双},C {恰有4只鞋子成双}. ★4. 设某批产品共50件 其中有5件次品 现从中任取3件 求 (1)其中无次品的概率 (2)其中恰有一件次品的概率(1)34535014190.724.1960C C == (2)21455350990.2526.392C C C ==5. 从1~9九个数字中 任取3个排成一个三位数 求(1)所得三位数为偶数的概率 (2)所得三位数为奇数的概率(1){P 三位数为偶数}{P =尾数为偶数4},9=(2){P 三位数为奇数}{P =尾数为奇数5},9=或{P 三位数为奇数}1{P =-三位数为偶数45}1.99=-=6. 某办公室10名员工编号从1到10任选3人记录其号码求(1)最小号码为5的概率(2)最大号码为5的概率记事件A {最小号码为5}, B {最大号码为5}.(1) 253101();12C P A C ==(2) 243101().20C P B C ==7. 袋中有红、黄、白色球各一个每次从袋中任取一球记下颜色后放回共取球三次求下列事件的概率:A ={全红}B ={颜色全同}C ={颜色全不同}D ={颜色不全同}E ={无黄色球}F ={无红色且无黄色球}G ={全红或全黄}.☆.某班n 个男生m 个女生(mn 1)随机排成一列 计算任意两女生均不相邻的概率.☆.在[0 1]线段上任取两点将线段截成三段 计算三段可组成三角形的概率. 第二次作业1. 设A B 为随机事件 P (A ) P (B ) (|)0.85P B A = 求(1)(|)P A B (2)()P A B ∪(1) ()()0.85(|),()0.850.080.068,()10.92P AB P AB P B A P AB P A ====⨯=- (2)()()()()P A B P A P B P AB =+-U 0.920.930.8620.988.=+-= 2. 投两颗骰子已知两颗骰子点数之和为7求其中有一颗为1点的概率. 记事件A {(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}, B {(1,6),(6,1)}.★.在1—2000中任取一整数 求取到的整数既不能被5除尽又不能被7除尽的概率记事件A {能被5除尽}, B {能被7除尽}.4001(),20005P A ==取整2000285,7⎡⎤=⎢⎥⎣⎦28557(),2000400P B ==200057,57⎡⎤=⎢⎥⨯⎣⎦57(),2000P AB = 3. 由长期统计资料得知 某一地区在4月份下雨(记作事件A )的概率为4/15刮风(用B 表示)的概率为7/15 既刮风又下雨的概率为1/10 求P (A |B )、P (B |A )、P (AB )4 设某光学仪器厂制造的透镜第一次落下时摔破的概率是1/2若第一次落下未摔破第二次落下时摔破的概率是7/10若前二次落下未摔破第三次落下时摔破的概率是9/10试求落下三次而未摔破的概率. 记事件i A ={第i 次落下时摔破}1,2,3.i =5 设在n 张彩票中有一张奖券有3个人参加抽奖分别求出第一、二、三个人摸到奖券概率.记事件i A ={第i 个人摸到奖券}1,2,3.i =由古典概率直接得1231()()().P A P A P A n ===或212121111()()()(|),1n P A P A A P A P A A n n n -====-或 第一个人中奖概率为11(),P A n=前两人中奖概率为12122()()(),P A A P A P A n +=+=解得21(),P A n=前三人中奖概率为1231233()()()(),P A A A P A P A P A n ++=++=解得31().P A n=6 甲、乙两人射击 甲击中的概率为08 乙击中的概率为07 两人同时射击 假定中靶与否是独立的求(1)两人都中靶的概率 (2)甲中乙不中的概率 (3)甲不中乙中的概率记事件A ={甲中靶}B ={乙中靶}.(1) ()()()0.70.70.56,P AB P A P B ==⨯= (2) ()()()0.80.560.24,P AB P A P AB =-=-= (3) ()()()0.70.560.14.P AB P B P AB =-=-=★7 袋中有a 个红球 b 个黑球 有放回从袋中摸球 计算以下事件的概率 (1)A {在n 次摸球中有k 次摸到红球}(2)B {第k 次首次摸到红球}(3)C {第r 次摸到红球时恰好摸了k 次球}(1) ();()k n kk n kk k nnna b a b P A C C a b a b a b --⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭(2) 11();()k k kb a ab P B a b a b a b --⎛⎫== ⎪+++⎝⎭ (3) 1111().()rk rr k rr r k k ka b a b P C CCa b a b a b ------⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭8一射手对一目标独立地射击4次 已知他至少命中一次的概率为80.81求该射手射击一次命中目标的概率 设射击一次命中目标的概率为,1.p q p =-4801121,,1.818133q q p q =-===-=9 设某种高射炮命中目标的概率为 问至少需要多少门此种高射炮进行射击才能以的概率命中目标(10.6)10.99,n -<-0.40.01,n <由50.40.01024,=60.40.01,<得 6.n ≥ ☆.证明一般加法(容斥)公式证明 只需证分块111,,k k n k i i i i i i A A A A A A +⊂L L L 只计算1次概率.(1,,n i i L 是1,,n L 的一个排列1,2,,.k n =L )分块概率重数为1,,k i i A A L 中任取1个-任取2个1(1)k -++-L 任取k 个即将,U I 互换可得对偶加法(容斥)公式☆.证明 若A B 独立 A C 独立 则A B ∪C 独立的充要条件是A BC 独立. 证明充分性:⇐(())()()()()(),P A B C P A P B P A P C P ABC =+-U 代入()()()P ABC P A P BC = ()(()()())P A P B P C P BC =+-()(),P A P B C =U 即,A B C U 独立. 必要性:⇒()()(),P ABC P A P BC =即,A BC 独立.☆.证明:若三个事件A 、B 、C 独立,则A ∪B 、AB 及A -B 都与C 独立. 证明 因为所以A ∪B 、AB 及A -B 都与C 独立. 第三次作业1 在做一道有4个答案的选择题时 如果学生不知道问题的正确答案时就作随机猜测 设他知道问题的正确答案的概率为p 分别就p 和p 两种情形求下列事件概率(1)学生答对该选择题 (2)已知学生答对了选择题求学生确实知道正确答案的概率记事件A ={知道问题正确答案}B ={答对选择题}.(1) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+113,444p pp -=+=+当0.6p =时13130.67()0.7,444410p P B ⨯=+=+== 当0.3p =时13130.319()0.475.444440p P B ⨯=+=+==(2) 由贝叶斯公式得()4(|),13()1344P AB p pP A B p P B p ===++当0.6p =时440.66(|),13130.67p P A B p ⨯===++⨯ 当0.3p =时440.312(|).13130.319p P A B p ⨯===++⨯ 2 某单位同时装有两种报警系统A 与B 当报警系统A 单独使用时 其有效的概率为 当报警系统B 单独使用时 其有效的概率为.在报警系统A 有效的条件下 报警系统B 有效的概率为.计算以下概率 (1)两种报警系统都有效的概率 (2)在报警系统B 有效的条件下 报警系统A 有效的概率 (3)两种报警系统都失灵的概率.(1) ()()(|)0.70.840.588,P AB P A P B A ==⨯=(2) ()0.588(|)0.735,()0.8P AB P A B P B === (3) ()()1()1()()()P AB P A B P A B P A P B P AB ==-=--+U U☆.为防止意外 在矿内同时设有两种报警系统A 与B 每种系统单独使用时 其有效的概率系统A 为0 92 系统B 为 在A 失灵的条件下 B 有效的概率为 求: (1)发生意外时 两个报警系统至少有一个有效的概率 (2) B 失灵的条件下 A 有效的概率3 设有甲、乙两袋 甲袋中有n 只白球 m 只红球 乙袋中有N 只白球 M 只红球从甲袋中任取一球放入乙袋 在从乙袋中任取一球 问取到白球的概率是多少 记事件A ={从甲袋中取到白球}B ={从乙袋中取到白球}. 由全概率公式得☆.设有五个袋子 其中两个袋子 每袋有2个白球 3个黑球 另外两个袋子 每袋有1个白球 4个黑球 还有一个袋子有4个白球 1个黑球 (1)从五个袋子中任挑一袋 并从这袋中任取一球 求此球为白球的概率 (2)从不同的三个袋中任挑一袋 并由其中任取一球 结果是白球 问这球分别由三个不同的袋子中取出的概率各是多少★4 发报台分别以概率06和04发出信号 “·” 及 “” 由于通信系统受到于扰 当发出信号 “·” 时 收报台分别以概率08及02收到信息 “·” 及 “” 又当发出信号 “” 时 收报台分别以概率09及0?l 收到信号 “” 及 “·” 求: (1)收报台收到 “·”的概率(2)收报台收到“”的概率(3)当收报台收到 “·” 时 发报台确系发出信号 “·” 的概率(4)收到 “” 时 确系发出 “” 的概率记事件B ={收到信号 “·”}1A ={发出信号 “·”}2A ={发出信号“”}. (1) )|()()|()()(2211A B P A P A B P A P B P +=;52.01.04.0)2.01(6.0=⨯+-⨯= (2) ()1()10.520.48;P B P B =-=-=(3) 1111()()(|)(|)()()P A B P A P B A P A B P B P B ==0.60.8120.923;0.5213⨯=== (4)2222()()(|)(|)()()P A B P A P B A P A B P B P B ==0.40.930.75.0.484⨯=== 5 对以往数据分析结果表明 当机器调整良好时 产品合格率为90% 而机器发生某一故障时 产品合格率为30% 每天早上机器开动时 机器调整良好的概率为75%(1)求机器产品合格率(2)已知某日早上第一件产品是合格品 求机器调整良好的概率 记事件B ={产品合格}A ={机器调整良好}. (1) 由全概率公式得(2) 由贝叶斯公式得()()(|)(|)()()P AB P A P B A P A B P B P B ==0.750.90.9.0.75⨯== ☆.系统(A) (B) (C)图如下 系统(A) (B)由4个元件组成 系统(C)由5个元件组成 每个元件的可靠性为p 即元件正常工作的概率为p 试求整个系统的可靠性.(A) (B) (C) 记事件A ={元件5正常}B ={系统正常}.(A) 222(|)(1(1)(1))(44),P B A p p p p p =---=-+(B) 2222(|)1(1)(1)(2),P B A p p p p =---=- (C) 由全概率公式得 第四次作业1 在15个同型零件中有2个次品 从中任取3个 以X 表示取出的次品的个数 求X 的分布律.☆.经销一批水果 第一天售出的概率是 每公斤获利8元 第二天售出的概率是 每公斤获利5元 第三天售出的概率是 每公斤亏损3元 求经销这批水果每公斤赢利X2 抛掷一枚不均匀的硬币 每次出现正面的概率为2/3 连续抛掷8次 以X 表示出现正面的次数 求X 的分布律.3 一射击运动员的击中靶心的命中率为 以X 表示他首次击中靶心时累计已射击的次数 写出X 的分布律 并计算X 取偶数的概率解得0.6513()=0.394.110.6533q P X q ==++B 偶 4 一商业大厅里装有4个同类型的银行刷卡机 调查表明在任一时刻每个刷卡机使用的概率为求在同一时刻(1)恰有2个刷卡机被使用的概率(2)至少有3个刷卡机被使用的概率 (3)至多有3个刷卡机被使用的概率(4)至少有一个刷卡机被使用的概率 在同一时刻刷卡机被使用的个数(4,0.1).X B n p ==:(1) 2224(2)0.10.90.00486,P X C ==⨯⨯= (2) 3344(3)(3)(4)0.10.90.10.0037,P X P X P X C ≥==+==⨯⨯+= (3) 4(3)1(4)10.10.9999,P X P X ≤=-==-=(4)4(1)1(0)10.910.65610.3439.P X P X ≥=-==-=-=5 某汽车从起点驶出时有40名乘客 设沿途共有4个停靠站 且该车只下不上每个乘客在每个站下车的概率相等 并且相互独立 试求 (1)全在终点站下车的概率 (2)至少有2个乘客在终点站下车的概率 (3)该车驶过2个停靠站后乘客人数降为20的概率记事件A ={任一乘客在终点站下车}乘客在终点站下车人数(40,1/4).X B n p ==:(1) 40231(40)8.271810,4P X -⎛⎫===⨯ ⎪⎝⎭(2) 403940140313433(2)1(0)(1)1144434P X P X P X C ⎛⎫⎛⎫⎛⎫≥=-=-==--⨯=-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3) 记事件B ={任一乘客在后两站下车}乘客在后两站下车人数(40,1/2).Y B n p ==:2020202040404011(20)0.1268.222C P Y C ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭(精确值)应用斯特林公式!,nn n e ⎫⎪⎭其中 1.7724538509.π==参贝努利分布的正态近似6 已知瓷器在运输过程中受损的概率是 有2000件瓷器运到 求 (1)恰有2个受损的概率 (2)小于2个受损的概率 (3)多于2个受损的概率 (4)至少有1个受损的概率受损瓷器件数(2000,0.002),X B n p ==:近似为泊松分布(4).P n p λ=⨯=(1) 2441480.146525,2!P e e --=== (2) 4424150.0915782,1!P e e --⎛⎫=+== ⎪⎝⎭(3) 431211130.761897,P P P e-=--=-= (4) 4410.981684.P e -=-=7 某产品表面上疵点的个数X 服从参数为的泊松分布 规定表面上疵点的个数不超过2个为合格品 求产品的合格品率产品合格品率2 1.2 1.21.2 1.212.920.879487.1!2!P e e --⎛⎫=+=== ⎪⎝⎭★8 设随机变量X求X 的分布函数 5),(||5).P X ≤ 随机变量X 的分布函数为 第五次作业1 学生完成一道作业的时间X 是一个随机变量(单位 小时) 其密度函数是 试求 (1)系数k (2)X 的分布函数 (3)在15分钟内完成一道作业的概率 (4)在10到20分钟之间完成一道作业的概率 (1) 0.50.52320111(0.5),21,32248kk F kx xdx x x k ⎛⎫==+=+=+= ⎪⎝⎭⎰(2) 23200,01()()217,00.5,2(0.5)1,0.5.x x F x P X x x xdx x x x F x <⎧⎪⎪=≤=+=+≤<⎨⎪=≥⎪⎩⎰(3) 322011119()2170.140625,442464x F P X x x xdx ⎛⎫⎛⎫⎛⎫=≤=+=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰(4) 3212316111111129217.6336424108P X F F x xdx ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫≤≤=-=+=+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎰2 设连续型随机变量X 服从区间[a a ](a 0)上的均匀分布 且已知概率1(1)3P X >= 求 (1)常数a (2)概率1()3P X <(1) 1111(1),3,223aa P X dx a a a ->====⎰(2) 13311115()3.36639P X dx -⎛⎫<==+= ⎪⎝⎭⎰3 设某元件的寿命X 服从参数为 的指数分布 且已知概率P (X 50)e4 试求(1)参数 的值 (2)概率P (25X 100)补分布()()|,0.x x xx x S x P X x e dx e ex θθθθ+∞--+∞->==-=>⎰@ (1) 504502(50)(50),0.08,25x S P X e dx e e θθθθ+∞---=>=====⎰(2) 由()(),,0,rx r S rx e S x r x θ-==>取50,x =依次令1,2,2r =得其中 2.7182818284.e B4 某种型号灯泡的使用寿命X (小时)服从参数为1800的指数分布 求 (1)任取1只灯泡使用时间超过1200小时的概率 (2)任取3只灯泡各使用时间都超过1200小时的概率 (1) 1312008002(1200)0.2231301602,P X ee-⨯->===1.6487212707001.= (2) 932(1200)0.0111089965.P X e->==5 设X ~N (0 1) 求 P (X 061) P (262X 125) P (X 134) P (|X |213) (1) (0.61)(0.61)0.72907,P X <=Φ=(2) ( 2.62 1.25)(1.25)( 2.62)(1.25)(2.62)1P X -<<=Φ-Φ-=Φ+Φ- (3) ( 1.34)1(1.34)10.909880.09012,P X >=-Φ=-= (4)(|| 2.13)22(2.13)220.983410.03318.P X >=-Φ=-⨯=6 飞机从甲地飞到乙地的飞行时间X ~N (4 19) 设飞机上午10 10从甲地起飞 求 (1)飞机下午2 30以后到达乙地的概率 (2)飞机下午2 10以前到达乙地的概率 (3)飞机在下午1 40至2 20之间到达乙地的概率 (1)131331/34111(1)10.841340.15866,331/3P X P X -⎛⎫⎛⎫⎛⎫>=-≤=-Φ=-Φ=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2) (4)(0)0.5,P X <=Φ=(3) 72525/647/24261/31/3P X --⎛⎫⎛⎫⎛⎫<<=Φ-Φ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭★7 设某校高三女学生的身高X ~N (162 25) 求 (1)从中任取1个女学生 求其身高超过165的概率 (2)从中任取1个女学生 求其身高与162的差的绝对值小于5的概率 (3)从中任取6个女学生 求其中至少有2个身高超过165的概率 (1)162165162(165)0.61(0.6)10.72580.2742,55X P X P --⎛⎫>=>==-Φ=-= ⎪⎝⎭(2) 162(|162|5)12(1)120.8413410.6827,5X P X P ⎛-⎫-<=<=Φ-=⨯-= ⎪⎝⎭(3) 记事件A ={任一女生身高超过165} ()(165)0.2742,p P A P X ==>= 随机变量Y :贝努利分布(6,0.2742),B n p == 第六次作业★1.设随机变量X 的分布律为 (1)求Y |X |的分(2)求YX 2X 的分布律(1)(2)★.定理设连续型变量X 密度为()X f x ,()y g x =严格单调,反函数()x x y =导数连续,则()Y g X =是连续型变量,密度为证明 1)若()0,x x y ''=>{}{()()}{},Y y g X g x X x ≤=≤=≤ 两边对y 求导,2)若()0,x x y ''=<{}{()()}{},Y y g X g x X x ≤=≤=≥ 两边对y 求导,因此总有()(())|()|,.Y X f y f x y x y y αβ'=<< 或证明两边对y 求导,或两边微分2 设随机变量X 的密度函数是f X (x ) 求下列随机变量函数的密度函数 (1)Y tan X (2)1Y X=(3)Y |X | (1) 反函数()arctan ,x y y ='21(),1x y y =+由连续型随机变量函数的密度公式得 或 反函数支()arctan ,i x y i y i π=+为整数,'21(),1i x y y=+(2) 1,X Y =反函数1,y x y ='211()()().Y X y y X f y f x x f y y==(3) ()()(||)()()()Y X X F y P Y y P X y P y X y F y F y =≤=≤=-≤≤=-- 两边对y 求导得Y 的密度函数为()()(),0.Y X X f y f y f y y =+-> ★3 设随机变量X ~U [2 2] 求Y 4X 21的密度函数 两边对y 求导得随机变量Y 的密度为或解 反函数支12()()x y x y ==★4 设随机变量X 服从参数为1的指数分布 求YX 2的密度函数(Weibull 分布) 当0y ≤时, 2Y X =的分布()0Y F y =,当0y >时, 两边对y 求导得或 反函数y x ='()()0.Y X y y f y f x x y ==>★5 设随机变量X~N (0 1) 求(1)Ye X 的密度函数 (2)YX 2的密度函数(Gamma 分布)(1) 当0y ≤时, e X Y =的分布()0Y F y =,当0y >时, 因而Y 的密度为 或反函数ln ,X Y =ln ,y x y ='1()()(ln )Y y y f y x x y y ϕϕ=={}2(ln ),0.2y y =->(2) 当0y ≤时,()0Y F y =;当0Y >时,2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤=-两边对y 求导得Y的密度函数为2,0,()0.yY y f y ->=⎩或反函数支12()()x y x y ==6 设随机变量X 的密度函数是21,1()0,1X x f x x x ⎧>⎪=⎨⎪≤⎩ 求Y ln X 的概率密度 反函数,y y x e ='()()(),0.y y y Y X y y X f y f x x f e e e y -===>第七次作业☆.将8个球随机地丢入编号为1 2 3 4 5的五个盒子中去 设X 为落入1号盒的球的个数 Y 为落入2号盒的球的个数 试求X 和Y 的联合分布律 1 袋中装有标上号码1 2 2的3个球 从中任取一个并且不再放回 然后再从袋中任取一球 以X Y 分别记第一、二次取到球上的号码数 求 (1)(X Y )的联合分布律(设袋中各球被取机会相等) (2)X Y 的边缘分布律 (3)X 与Y 是否独立 (1)(X Y )的联合分布律为(2) X Y 的分布律相同12(1),(2).33P X P X ==== (3) X 与Y 不独立2 设二维连续型变量(,)X Y 的联合分布函数35(1)(1),,0,(,)0,.x y e e x y F x y --⎧-->=⎨⎩其它 求(,)X Y 联合密度★3 设二维随机变量(X Y )服从D 上的均匀分布 其中D 是抛物线yx 2和xy 2所围成的区域 试求它的联合密度函数和边缘分布密度函数 并判断Y X ,是否独立分布区域面积213123200211,333x S x dx x x ⎛⎫===-= ⎪⎝⎭⎰⎰联合密度213,1,(,)0,.x y f x y S ⎧=<<<⎪=⎨⎪⎩其它边缘X的密度为22()),01,X x f x dy x x ==<<边缘Y的密度为22()),0 1.Y yf y dy y y ==<<(,)()(),X Y f x y f x f y ≠⋅因此X 与Y 不独立.或(,)f x y 非零密度分布范围不是定义在矩形区域上,因此X 与Y 不独立.4. 设二维离散型变量),(Y X 联合分布列是问,p q 取何值时X 与Y 两行成比例1/151/52,1/53/103q p ===解得12,.1015p q == ★5.设(,)X Y 的联合密度为2,11,0,(,)0,.y Ax e x y f x y -⎧-<<>=⎨⎩其它求(1)常数A (2)概率1(0,1);2P X Y <<>(3)边缘概率密度f X (x ) f Y (y ) (4)X 与Y 是否相互独立(1) 2220()(,),11,y y X f x f x y dy Ax e dy Axe dy Ax x +∞+∞+∞--====-<<⎰⎰⎰(2) 112201113(0,1)(0)(1).22216y e P X Y P X P Y x dx e dy -+∞-<<>=<<>==⎰⎰ (3) 23(),11,2X f x x x =-<<(4)由23,11,0()()(,),20,yX Yx e x y f x f y f x y -⎧-<<>⎪⋅==⎨⎪⎩其它得X 与Y 独立. 或因为2(,),11,0,y f x y Ax e x y -=-<<>可表示为x 的函数与y 的函数的积且分布在矩形区域上,所以X 与Y 相互独立.由此得(),0;y Y f y e y -=>2(),11,X f x Ax x =-<<6. 设X 服从均匀分布(0,0.2),U Y 的密度为55,0,()0,y Y e y f y -⎧>=⎨⎩其它.且,X Y 独立.求(1)X 的密度(2) (,)X Y 的联合密度 (1)X 的密度为()5,00.2,X f x x =≤≤(2)(,)X Y 的联合密度为525,00.2,0,(,)0,y e x y f xy -⎧≤≤>=⎨⎩其它.第八次作业★1 求函数(1)Z 1XY (2) Z 2min{X Y } (3) Z 3max{X Y }的分布律 (1)11(0)(0),6P Z P X Y =====1111(1)(0,1)(1,0),362P Z P X Y P X Y ====+===+=(2)2111(1)(1,1)(1,2),1264P Z P X Y P X Y ====+===+=223(0)1(1).4P Z P Z ==-==(3) 31(0)(0),6P Z P X Y =====2 设随机变量求函数Z X /Y 的分布律3 设X 与Y 相互独立 概率密度分别为220()00,xX e x f x x -⎧>=⎨≤⎩0()00,y Y e y f y x -⎧>=⎨≤⎩试求ZXY 的概率密度★4 设X ~U (0 1) Y ~E (1) 且X 与Y 独立 求函数ZXY 的密度函数 当01z <≤时 当1z >时 因此★5 设随机变量(X Y )的概率密度为()101,0(,)10x y e x y f x y e -+-⎧⎪<<<<+∞=⎨-⎪⎩其它(1)求边缘概率密度f X (x ) f Y (y ) (2)求函数U max (X , Y )的分布函数 (3)求函数V min (X , Y )的分布函数(1) 1,01,()10,x X e x f x e --⎧<<⎪=-⎨⎪⎩其它.,0,()0,yY e y f y -⎧>=⎨⎩其它. (2) 11000,0,1()(),01,111,1x xx x X X x e e F x f x dx dx x e e x ----≤⎧⎪-⎪===<<⎨--⎪≥⎪⎩⎰⎰.min{,1}10,0,1,01x x e x e --≤⎧⎪=⎨->⎪-⎩. (3) 111,0,()1(),01,10,1x X X x e eS x F x x e x ---≤⎧⎪-⎪-=<<⎨-⎪≥⎪⎩@.6 设某种型号的电子管的寿命(以小时计)近似地服从N (160 202)分布 随机地选取4只求其中没有一只寿命小于180小时的概率随机变量2(160,20),X N :180160(180)(1)0.84134,20P X -⎛⎫≤=Φ=Φ= ⎪⎝⎭没有一只寿命小于180小时的概率为 第九次作业★1.试求 E (X ) E (X 25) E (|X |)2. 设随机变量X 的概率密度为0 0,() 01, 1.x x f x x x Ae x -⎧≤⎪=<≤⎨⎪>⎩求 (1)常数A (2)X 的数学期望(1) 1100111(),2x f x dx xdx Ae dx Ae +∞+∞--==+=+⎰⎰⎰,2e A =(2) 12100114()2.2323x e e EX xf x dx x dx xe dx e +∞+∞--==+=+⨯=⎰⎰⎰★3. 设球的直径D 在[a b ]上均匀分布试求 (1)球的表面积的数学期望(表面积2D π)(2)球的体积的数学期望(体积316D π)(1) 22222()();3ba x E D ED dx a ab b b a ππππ===++-⎰ (2) 33322()().6624b a x E D ED dx a b a b b a ππππ⎛⎫===++ ⎪-⎝⎭⎰ ★4.求E (X ) E (Y ) E (XY ) ★ 5. 设随机变量X 和Y 独立 且具有概率密度为2,01,()0,X x x f x <<⎧=⎨⎩其它,3(1)3,1,()0, 1.y Y e y f y y --⎧>=⎨≤⎩(1)求(25)E X Y + (2)求2()E X Y(1) 112002()2,3X EX xf x dx x dx ===⎰⎰或随机变量1Z Y =-:指数分布(3),E 141,,33EZ EY EY =-==(2) 11223001()2,2X EX x f x dx x dx ===⎰⎰由X 和Y 独立得22142().233E X Y EX EY ==⨯=第十次作业1.试求 (1) D (X ) (2) D (3X 2)(1) 20.110.210.320.130.10.4,i i iEX x p ==-⨯-⨯+⨯+⨯+⨯=∑(2) 2(32)(3)9 2.0418.36.D X DX -+=-=⨯=★2. 设随机变量X 具有概率密度为22,02,()0,Ax x x f x ⎧+<<=⎨⎩其他,试求 (1)常数A (2)E (X ) (3) D (X ) (4) D (2X 3)(1) 22081()(2)4,3f x dx Ax x dx A +∞-∞==+=+⎰⎰解得9.8A =-(2) 22095()(2).86EX xf x dx x x x dx +∞-∞==-+=⎰⎰(3)22222094()(2),85EX x f x dx x x x dx +∞-∞==-+=⎰⎰2224519.56180DX EX E X ⎛⎫=-=-= ⎪⎝⎭(4) 21919(23)24.18045D X DX -==⨯=★ 3. 设二维随机变量(,)X Y 联合概率密度为2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其他,试求 (1),X Y 的协方差和相关系数A (2)(21).D X Y -+(1) 103()(,)(2),01,2X f x f x y dy x y dy x x +∞-∞==--=-<<⎰⎰由,x y 的对称性3(),0 1.2Y f y y y =-<<因此(2) 由随机变量和的方差公式()2(,)D X Y DX DX Cov X Y +=++得 ★4. 设二维随机变量(,)X Y 具有联合分布律试求,,,EX DX EY DY 以及X 和Y 的相关系数 (1) X 的分布列为由变量X 分布对称得0,EX =或10.4500.4510.450,i i iEX x p ==-⨯+⨯+⨯=g(2) Y(,)X Y 取值关于原点中心对称由变量Y分布对称得0,EY =或20.20.250.2520.20,j j iEY y p ==-⨯-++⨯=∑g(3) 由二维变量(,)X Y 的联合分布列关于两坐标轴对称得,()0,i j i j ijE XY x y p ==∑∑(,)()0,Cov X Y E XY EXEY =-=因此,0.X Y ρ==5. 设随机变量X 服从参数为2的泊松分布(2)P 随机变量Y 服从区间(0,6)上的均匀分布(0,6),U 且,X Y 的相关系数,X Y ρ=记2,Z X Y =-求,.EZ DZ (1) 2,EX =063,2EY +==(2)2223 4.EZ E X Y EX EY =-=-=-⨯=-(2) 2(60)2, 3.12DX DY -===由,X Y ρ==得(,)1,Cov X Y = 由随机变量和的方差公式()2(,)D X Y DX DY Cov X Y +=++得 第十一次作业★1. 试用切比雪夫不等式估计下一事件概率至少有多大 掷1000次均匀硬币 出现正面的次数在400到600次之间出现正面的次数~(1000,0.5),X B n p == 应用切比雪夫不等式有2. 若每次射击目标命中的概率为 不断地对靶进行射击 求在500次射击中 击中目标的次数在区间(49 55)内的概率击中目标的次数~(500,0.1),X B n p ==根据中心极限定理,X 近似服从正态分布(50,45).N EX DX ==★3. 计算器在进行加法时 将每个加数舍入最靠近它的整数.设所有舍入误差是独立的且在( 上服从均匀分布 (1)若将1500个数相加 问误差总和的绝对值超过15的概率是多少(2)最多可有几个数相加使得误差总和的绝对值小于10的概率不小于(1) 误差变量,1,2,.i X i =⋅⋅⋅独立同均匀分布(0.5,0.5),X U -:10,.12EX DX ==由独立变量方差的可加性150011500125,12i i D X =⎛⎫== ⎪⎝⎭∑15001i i X =∑近似(0,125).N :(2) 1||10n i i P X =⎧⎫<⎨⎬⎩⎭∑1|n i P X =⎧⎪=<=⎨⎪⎩210.90,⎛≈Φ-≥ ⎝ 因此最多可有4个数相加误差总和的绝对值小于10的概率不小于★4. 一个系统由n 个相互独立的部件所组成 每个部件的可靠性(即部件正常工作的概率)为 至少有80%的部件正常工作才能使整个系统正常运行 问n 至少为多大才能使系统正常运行的可靠性不低于 正常工作的部件数~(,),X B n p 其中0.9.p =0.9,EX np n ==0.09.DX npq n ==1.645,24.354.n ≥≥因此n 至少取25. ★5. 有一大批电子元件装箱运往外地 正品率为 为保证以的概率使箱内正品数多于1000只 问箱内至少要装多少只元件正品数~(,),X B n p 其中0.8.p =0.8,EX np n ==0.16.DX npq n == 解得1637.65,n ≥因此n 至少取1638.★.贝努利分布的正态近似.投掷一枚均匀硬币40次出现正面次数20X =的概率.正面次数(40,1/2),X B n p ==:400.520,400.50.510.EX np DX npq ==⨯===⨯⨯=离散值20X =近似为连续分组区间19.520.5,X << 第十二次作业★1. 设X 1 X 2 X 10为来自N (0 032)的一个样本 求概率1021{ 1.44}i i P X =>∑标准化变量(0,1),1,2,...,10.0.3iX N i =:由卡方分布的定义10222211~(10).0.3i i X χχ==∑略大卡方分布上侧分位数20.1(10)15.9872.χ= ★2. 设X 1 X 2 X 3 X 4 X 5是来自正态总体X ~(0 1)容量为5的样本 试求常数c 使得统计量服从t 分布 并求其自由度由独立正态分布的可加性12(0,2),X X N +:标准化变量(0,1),U N =:由卡方分布的定义22222345~(3),X X X χχ=++U 与2χ独立由t 分布的定义(3),T t ===:因此c =自由度为3. ★3 设112,,,n X X X L 为来自N (1 2)的样本 212,,,nY Y Y L为来自N (2 2)的样本 且两样本相互独立 2212,S S 分别为两个样本方差 222112212(1)(1)2pn S n S S n n -+-=+- 试证明22().p E S σ=证 由221112(1)~(1),n S n χσ--及()211(1)1E n n χ-=-得类似地222.ES σ=★4 设1,...,n X X 为总体2(,)N μσ的简单样本样本均值和样本方差依次为2,.X S 求满足下式的k 值()0.95.P X kS μ>+=统计量(1),X T t n =-:因此k = ☆.设正态总体2(,)N μσ的容量为12n =的简单样本为112,...,X X 样本均值和样本方差依次为2,.X S 求满足下式的k 值()0.95.P X kS μ>+=正态总体样本方差未知统计量(1),12.X T t n n =-=:★5 设N ( 2)的样本 记11nii X X n ==∑ 2211()1ni i S X X n ==--∑ 证明 T (1)t n - 证由独立正态分布的可加性21(,),ni i XN n n μσ=∑:211,,ni i X X N n n σμ=⎛⎫= ⎪⎝⎭∑:1n X +及2S 相互独立()2110,n n X X N nσ++-:和2S 独立标准化变量(0,1),U N =:2222(1)~(1),n S n χχσ-=-/,S σ=由t 分布的定义第十三次作业★1 设总体的密度函数为22(),0,(;)0,x x f x αααα-⎧<<⎪=⎨⎪⎩其他,求参数α的矩估计总体期望23220002()2(;),33x x x EX xf x dx x dx ααααααααα⎛⎫-==⋅=-= ⎪⎝⎭⎰⎰3,EX α= 用样本均值X 估计(或替换)总体期望EX 即ˆ,EXX =得α矩估计为ˆ3.X α= ★2 设总体的密度函数为1(1)(1),01(;)0,x x x f x θθθθ-⎧+-<<=⎨⎩其他 求参数 的矩估计总体期望解得2,1EX EX θ=-用样本均值X 估计(或替换)总体期望EX 即ˆ,EX X =得 矩估计为2ˆ.1X Xθ=- 3 设总体的密度函数为||1(;),2x f x e x σσσ-=-∞<<+∞ 求参数 的最大似然估计似然函数1111()(;)exp ||,2nn i i n n i i L f x x σσσσ==⎧⎫==-⎨⎬⎩⎭∑∏取对数得对数似然函数11ln ()ln 2ln ||,ni i L n n x σσσ==---∑令21ln ()1||0,ni i L n x σσσσ=∂=-+=∂∑ 解得σ的最大似然估计为11ˆ||.nL i i x n σ==∑ 4 设总体的密度函数为222,0(;)0,0x x e x f x x θθθ-⎧⎪>=⎨⎪<⎩求参数 的最大似然估计 似然函数2122111()(;)exp ,ninn i i i ni i xL f x x θθθθ===⎧⎫==-⎨⎬⎩⎭∏∑∏取对数得对数似然函数22111ln ()ln 2ln ,nn i i i i L x n x θθθ===--∑∑令231ln ()220,n i i L n x θθθθ=∂=-+=∂∑ 解得θ的最大似然估计为ˆLθ= ★5 设总体X 的均值和方差分别为与 2 X 1 X 2 X 3是总体的一个样本, 试验证统计量(1)112311ˆ4412X X X μ=++; (2)2123111ˆ333X X X μ=++; (3)3123311ˆ882X X X μ=++均为 的无偏估计量, 并比较其有效性(1)1123123111111ˆ.442442E E X X X EX EX EX μμ⎛⎫=++=++= ⎪⎝⎭ (2)1123123111111ˆ.333333E E X X X EX EX EX μμ⎛⎫=++=++= ⎪⎝⎭ (3)1123123311311ˆ.882882E E X X X EX EX EX μμ⎛⎫=++=++= ⎪⎝⎭ 因此123ˆˆˆ,,μμμ均为μ的无偏估计量 由独立变量方差的可加性因此无偏估计量123ˆˆˆ,,μμμ中2ˆμ最有效,1ˆμ比3ˆμ有效 ★7. 设2ˆθ为 2的无偏估计, 且ˆ()0D θ>, 试证ˆθ不是 的无偏估计 反之, 若ˆθ为 的无偏估计, ˆ()0D θ>, 则2ˆθ也不是 2的无偏估计证(1) 22ˆ,E θθ=2222ˆˆˆˆ0,D E E E θθθθθ=-=->22ˆˆ,,E E θθθθ<≠得ˆθ不是 的无偏估计(2) ˆ,E θθ=222222ˆˆˆˆˆ0,,D E E E E θθθθθθθ=-=->>得2ˆθ不是2θ的无偏估计 8设$$12,θθ是参数θ的两个相互独立的无偏估计量,且$$124D D θθ=,找出常数12,k k ,使$$1212k k θθ+也是θ的无偏估计量,并使它在所有这种形状的估计量中方差最小.$$$$1212121212()()E k k k E k E k k θθθθθθ+=+=+=,121k k +=,$$$$$222212122121212()(4)D k k k D k D k k D θθθθθ+=+=+,121222121,0,1,min{4}.k k k k s k k +=≤≤⎧⎨=+⎩ 求最小值得1214,55k k ==,4min 5s =,$$$121124min ().5D k k D θθθ+=第十四次作业★1. 某车间生产滚珠, 从长期实践中知道, 滚珠直径X 可以认为服从正态分布.从某天的产品里随机抽取6个, 测得直径(单位:mm)为, , , , ,若已知总体方差为, 试求平均直径的置信区间.(置信度为 若总体方差未知, 试求平均直径的置信区间.(置信度为 (1)μ的置信区间中心当20.06σ=时,μ的95.01=-α置信区间半长为 因此μ的0.95置信区间为(2) 样本方差2211()0.051,1ni S X X n =-=-∑ μ的95.01=-α置信区间半长为因此μ的0.95置信区间为★2. 为了解某型号灯泡使用寿命X (单位:小时)的均值μ和标准差 今测量10只灯泡 测得1500x = S20 若已知X 服从正态分布N ( 2), 求 (1)置信度为的总体均值 的置信区间 (2)置信度为的总体方差2的置信区间(1) 置信区间半长/20.025( 2.262 6.32214.3,t n t α-==⨯= 当2σ未知时,μ的95.01=-α置信区间为(2) 已知参数2210,20,0.10,n S α===上侧分位数为 置信区间两端(下限,上限)为因此灯泡使用寿命方差2σ置信度为10.90α-=的置信区间为★3. 对方差220σσ=为已知的正态总体 问须抽取容量n 为多大的样本, 方能使总体均值 的置信度为1的置信区间的长度不大于L总体均值μ的置信区间长度为/22,u L α≤取220/224n u L ασ≥的整数 ★4 已知某种元件的寿命X ~N ( 2) 现随机地抽取10个试件进行试验, 测得数据如下82, 93, 57, 71, 10, 46, 35, 18, 94, 69. (1)若已知 3, 求平均抗压强度 的95%的置信区间(2)求平均抗压强度的95%的置信区间 (3)求 的95%的置信区间 (1)μ的置信区间中心当223σ=时,μ的95.01=-α置信区间半长/2 1.96 1.861,u α==因此μ的0.95置信区间为(2) 上侧分位数220.02510.025(9)19.023,(9) 2.700,χχ-== 样本方差σ的10.95α-=的置信区间两端(下限,上限)为因此元件寿命标准差σ的0.95置信区间为★.两正态总体均值差21μμ-的1α-置信区间.当22212σσσ==未知时 由于22,,,x y X Y S S 相互独立构造服从分布(2)t m n +-的统计量(枢轴量) 记222(1)(1)2x ywm S n S S m n -+-=+-,则21μμ-的二样本t 置信区间为★5 随机地抽取A 批导线4根 B 批导线5根 测得起电阻为(单位 欧姆)A B设测得数据分别服从正态分布N (1 2) N (2 2) 且它们相互独立 1 2 均未知 求12的95%的置信区间上侧分位数20.025(2)(7) 2.3646,t m n t α+-==当22212σσσ==未知时,21μμ-的1α-置信区间半长为 21μμ-的95.01=-α置信区间为★6 假设人体身高服从正态分布, 今抽测甲、乙两地区18岁~ 25岁女青年身高得数据如下: 甲地区抽取10名, 样本均值米, 样本标准差0.2米; 乙地区抽取10名, 样本均值米, 样本标准差0.4米. 求 (1)两正态总体均值差的95%的置信区间 (2)两正态总体方差比的95%的置信区间 (1) 分位数20.025(2)(18) 2.1009,t m n t α+-==当22212σσσ==未知时,21μμ-的1α-置信区间半长为 21μμ-的95.01=-α置信区间为★(2)两正态总体(期望未知)的方差比2212/σσ的1α-置信区间.由于22111(1)/n S σ-~21(1),n χ-22222(1)/n S σ-~22(1),n χ-且2212,S S 独立,构造统计量(枢轴量) 2211122222~(1,1),S F F n n S σσ=-- 对给定的置信度α-1,由其中/2211/2121(1,1),(1,1)F n n F n n αα-=---- 因此2212/σσ的α-1置信区间为第十五次作业★1 某工厂生产的固体燃料推进器的燃烧率服从正态分布N ( 2) 40cm/s, 2cm/s 现在用新方法生产了一批推进器 从中随机抽取25只 测得燃烧率的样本均值为X s 设在新方法下总体均方差仍为2cm/s 问这批推进器的燃烧率是否较以往生产的推进器的燃烧率有显着的改变取显着性水平 1).提出原假设及备择假设.0010:40;:.H H μμμμ==≠ 2).选取统计量并确定其分布.~(0,1).X U N =3).确定分位数及拒绝域.上侧分位数0.025 1.96,u =拒绝域{|| 1.96}.W U =≥4).计算统计量的观测值并作出统计推断.因此拒绝原假设,认为在显着性水平0.05α=下,推进器的燃烧率显着改变.★2 某苗圃规定平均苗高60(cm)以上方能出圃 今从某苗床中随机抽取9株测得高度分别为 62 61 59 60 62 58 63 62 63 已知苗高服从正态分布 试问在显着性水平 下 这些苗是否可以出圃 1).原假设及备择假设0010:60;:.H H μμμμ≥=< 2).取统计量(8).X T t =: 3).上侧分位数0.05(8) 1.8595,t =得拒绝域(, 1.8595).W =-∞-4).由样本计算得61.11,X=0,.T T W S ==>∉因此接受原假设0,H 即认为在显着性水平0.05α=下,这些苗可以出圃.★3 5名测量人员彼此独立地测量同一块土地 分别测得这块土地面积(单位 km 2)为, , , ,算得平均面积为 设测量值总体服从正态分布 由这批样本值能否说明这块土地面积不到(1).原假设及备择假设0010: 1.25;:.H H μμμμ≥=< 2).取统计量(4).X T t =:3).上侧分位数0.05(4) 2.1318,t =得拒绝域(, 2.1318).W =-∞-4).样本方差为2211()0.00123,1ni S X X n =-=-∑0.035,S = 统计量的实现值为因此接受原假设0,H 认为在显着性水平0.05下,这块土地面积达到. ★4 设某电缆线的抗拉强度X 服从正态分布N (10600 822) 现从改进工艺后生产的一批电缆线中随机抽取10根 测量其抗拉强度 计算得样本均值x 10653 方差S 26962 当显着水平时 能否据此样本认为(1)新工艺下生产的电缆线抗拉强度比过去生产的电缆线抗拉强度有显着提高 (2)新工艺下生产的电缆线抗拉强度的方差有显着变化 (1)提出原假设及备择假设.0010:10600;:.H H μμμμ≥=< 选取统计量并确定其分布.(9).X T t =: 确定分位数及拒绝域.0.05(9) 1.8331,t =得拒绝域(, 1.8331).W =-∞- 计算统计量的观测值并作出统计推断.因此接受原假设,认为在显着性水平0.05α=下,新工艺电缆抗拉强度比过去工艺有显着提高.(2)提出原假设及备择假设222220010:82;:.H H σσσσ==≠ 在原假设成立的前提下,构造统计量2222(1)~(9).n S χχσ-=确定上侧分位数2210.0250.025(9) 2.700,(9)19.023,χχ-==得拒绝域 计算2χ统计量的观测值并作出统计推断因而接受原假设0,H 即认为新工艺下的电缆抗拉强度的方差无显着变化.★5 设某涤纶强度X ~N ( 2) 用老方法制造的涤纶强度均值是 标准差 现改进工艺后 从新生产的产品中随机抽取9个样品 测得起强度如下在显着性水平0.05α=下,涤纶强度的均值和标准差是否发生了改变 (1)提出原假设及备择假设.0010:0.528;:.H H μμμμ==≠ 选取统计量并确定其分布.~(0,1).X U N =确定分位数及拒绝域.上侧分位数0.025 1.96,u =拒绝域{|| 1.96}.W U =≥ 计算统计量的实现值并作出统计推断.样本均值为 统计量的实现值为因此接受原假设0,H 即认为在显着性水平0.05α=下,涤纶强度均值未改变.(2)提出原假设及备择假设222220010:0.016;:,H H σσσσ==≠ 在原假设成立的前提下,构造统计量2222(1)~(8).n S χχσ-=确定上侧分位数2210.0250.025(8) 2.180,(8)17.535,χχ-==得拒绝域计算2χ统计量的观测值并作出统计推断样本平方和样本偏差平方和 统计量的观测值因而接受原假设0,H 即认为涤纶强度的标准差未改变.★6 测定某饮料中糖份的含量 测得10个观察值的均值X %标准差S % 设饮料中糖份的含量服从正态分布N ( 2) 试在显着性水平下 分别检验(1) 0010:0.05%;:.H H μμμμ==≠ (2) 0010:0.04%;:.H H σσσσ==≠ (1)提出原假设及备择假设.0010:0.05%;:.H H μμμμ==≠ 选取统计量并确定其分布.~(1).X T t n =-。
《概率论与数理统计》第六章习题exe6-1解:10()0x b f x b ⎧<<⎪=⎨⎪⎩其他01()()2bb E X xf x dx x dx b +∞-∞==⋅=⎰⎰ 令11μ=A ,即2b X =,解得b 的矩估计量为ˆ2b X = 2ˆ2(0.50.60.1 1.30.9 1.60.70.9 1.0) 1.6899bx ==++++++++= exe6-2解:202()()()3x E X xf x dx x dx θθθθ+∞-∞-==⋅=⎰⎰令11μ=A ,即,3θ=X 解得θ的矩估计量为ˆ3X θ= Exe6-3解:(1)由于12222()()()()(1)()E X mpE X D X E X mp p mp μμ==⎧⎨==+=-+⎩ 令 ⎩⎨⎧==.2211μμA A求解得221111p m p μμμμ⎧-=-⎪⎪⎨⎪=⎪⎩,p, m 的矩估计量为22211(1)ˆ11ˆˆA A n S pA nX X m p ⎧--=-=-⎪⎪⎨⎪=⎪⎩Exe6-4解:(1)()E X λ= 令11μ=A ,即,λ=X 解得λ的矩估计量为ˆX λ= {}),2,1,0(!===-x e x x X P xλλ{}),2,1,0(!===-i i xi x e x x X P iλλ似然函数11111(){}()!!niii x n nx n i ni i i ii eL P X x e x x λλλλλ=--===∑====∏∏∏11ln ()()ln ln(!)nni i i i L n x x λλλ===-+-∑∑1ln ()0nii x d L n d λλλ==-+=∑解得λ的最大似然估计值为 11ˆni i x x n λ===∑ (2)由(1)知1ˆ(6496101163710)7.210x λ==+++++++++= Exe6-5解:(1)似然函数1(1)111(){}(1)(1)ni i i nnx x ni i i L p P X x p p p p =--==∑===-=-∏∏∑-==-ni i nx np p 1)1(1ln ()ln (1)ln ni i L p n p x p ==+-⋅∑)1ln()(ln 1p n x p n ni i --+=∑=1(1)ln ()01ni i x d L p n dp p p =-=-=-∑01)(ln 1=---=∑=pn x p ndp p L d ni i 解得p 的最大似然估计值为 11ˆnii npxx===∑ (2)155ˆ5174926px ===++++ Exe6-6解:由2()2()x f x μσ--=(1)2σ已知,似然函数221()()2211()(,)ni i i x nx n nii i L f x eμμσσμμ=----==∑===∏2211ln ())()2nii L n x μμσ==---∑21ln ()1(22)02nii d L x d μμμσ==--=∑即11()0nniii i x n xμμ==-=-=∑∑解得μ的最大似然估计值 1ˆnii xx nμ===∑(2)μ已知,似然函数为212222)(222)(12122121),()(σμσμπσσπσσ∑⎪⎭⎫ ⎝⎛====----==∏∏ni i i x nx ni n i i e ex f L21222)(21)ln(2)2ln(2)(ln μσσπσ-∑---==n i ix n n L 0)()(212)(ln 2122222=-+-=∑=μσσσσni i x n L d d 解得∑=-=n i i x x n 122)(1ˆσ,故2σ的最大似然估计值为 .)(1ˆ122∑=-=n i i i x x n σ Exe6-7解:(1)矩估计量2220()()()(3)2xt x xt xx E X xf x dx x e dx e dx t e dt θθθθθθθθ=--+∞+∞+∞+∞--∞==⋅===Γ=⎰⎰⎰⎰令2X θ=,得ˆ/2X θ= 似然函数211()(,)ix n nii i i x L f x eθθθθ-====∏∏1111ln ()(ln 2ln )ln 2ln nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑ 令21ln ()210ni i d L n x d θθθθ==-+=∑解得θ的最大似然估计值为111ˆ22n ii x x n θ===∑ (2)2311()(,)2ixnni i i i x L f x e θθθθ-====∏∏331111ln ()[2ln ln(2)]2ln ln(2)nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑令2321ln ()1602nii d L n xd θθθθθ==-⋅-=∑013)(ln 1223=+⋅-=∑=ni ixn d L d θθθθθ解得θ的最大似然估计值为 111ˆ33ni i x x n θ===∑ (3) ),(~p m B X ,m 已知{}∏∏=-=-===ni x m x x m ni i i i ip p C x X P p L 11)1()(1111ln ()[ln ln ()ln(1)]ln ln ln(1)()i inx m i i i nnnx m i i i i i L p C x p m x p C p x p nm x =====++--=++--∑∑∑∑令 11ln ()01n ni ii i x nm x d L p dp p p==-=-=-∑∑即1111(1)1n nniiii i i x xxnmppp p p===+==---∑∑∑ 解得p 的最大似然估计值为 1ˆnii xxpmnm===∑ Exe6-8解:(1)似然函数为{}{}{})1(2)1(2121)(522θθθθθθθ-=⋅-⋅==⋅=⋅==X P X P X P L)1ln(ln 52ln )(ln θθθ-++=L 令 0115)(ln =--=θθθθL d d 解得θ的最大似然估计值为.65ˆ=θ Exe6-9解:2121222222)()(22)(12)(111212121),,(),,(),(σβαβασβασβασπσπσπβαβαβα∑∑⎪⎪⎭⎫⎝⎛=====+-+---+--=---===∏∏∏∏ni i n i i i i i i y x ny ni x ni n i i Y n i i X e eey f x f L))()((21ln 2)2ln(),(ln 21212βαβασσπβα+-∑+--∑---===ni i ni i y x n n L0))()((22),(ln 112=+-+--=∂∂∑∑==βαβασβααni i n i i y x L 0)()((22),(ln 112=+----=∂∂∑∑==βαβασβαβn i i n i i x x L 联立 解得,2ˆ,2ˆyx y x -=+=βα故βα,的最大似然估计量为 .2ˆ,2ˆYX Y X -=+=βαExe6-10解:(1)由1/2EX μθ==,得θ的矩估计量ˆ2X θ= ˆ()2()2()22E E X E X θθθ===⋅= 故θ的矩估计量ˆ2X θ=是θ的无偏估计量。
《概率论与数理统计》习题及答案第 六 章1.某厂生产玻璃板,以每块玻璃上的泡疵点个数为数量指标,已知它服从均值为λ的泊松分布,从产品中抽一个容量为n 的样本12,,,n X X X L ,求样本的分布.解 样本12(,,,)n X X X L 的分量独立且均服从与总体相同的分布,故样本的分布为11221(,,,)()nn n ii i P X k X k X k P Xk ======∏L 1!ikni i e k λλ-==∏112!!!ni i n k n e k k k λλ=-∑=L 0,1,i k =L ,1,2,,,i n =L 2.加工某种零件时,每一件需要的时间服从均值为1/λ的指数分布,今以加工时间为零件的数量指标,任取n 件零件构成一个容量为n 的样本,求样本分布。
解 零件的加工时间为总体X ,则~()X E λ,其概率密度为,0,()0,0.x e x f x x λλ-⎧>=⎨≤⎩于是样本12(,,,)n X X X L 的密度为1121,0(,,,)0,.nii ix nnx i n i e x f x x x e λλλλ=--=⎧∑⎪>==⎨⎪⎩∏K 其它 1,2,,i n =L 3.一批产品中有成品L 个,次品M 个,总计N L M =+个。
今从中取容量为2的样本(非简单样本),求样本分布,并验证:当,/N M N p →∞→时样本分布为(6.1)式中2n =的情况。
解 总体~(01)X -,即(0),(1)L MP X P X N N==== 于是样本12(,)X X 的分布如下 121(0,0)1L L P X X N N -===⋅-,12(0,1)1L M P X X N N ===⋅-12(1,0)1M L P X X N N ===⋅-,121(1,1)1M M P X X N N -===⋅- 若N →∞时M p N →,则1Lp N→-,所以2002012(0,0)(1)(1)P X X p p p +-==→-=-012112(0,1)(1)(1)P X X p p p p +-==→-=-102112(1,0)(1)(1)P X X p p p p +-==→-=-2112212(1,1)(1)P X X p p p +-==→=-以上恰好是(6.1)式中2n =的情况.4.设总体X 的容量为100的样本观察值如下:15 20 15 20 25 25 30 15 30 25 15 30 25 35 30 35 20 35 30 25 20 30 20 25 35 30 25 20 30 25 35 25 15 25 35 25 25 30 35 25 35 20 30 30 15 30 40 30 40 15 25 40 20 25 20 15 20 25 25 40 25 25 40 35 25 30 20 35 20 15 35 25 25 30 25 30 25 30 43 25 43 22 20 23 20 25 15 25 20 25 30433545304530454535作总体X 的直方图解 样本值的最小值为15,最大值为45取14.5a =,45.5b =,为保证每个小区间内都包含若干个观察值,将区间[14.5,45.5]分成8个相等的区间。
第六章习题6-11、由一致估计的定义,对0ε∀>{}{}{}()1212max ,,,max ,,,n n P X X X P X X X θεεθεθ-<=-+<<+()()F F εθεθ=+--+()0, 0, 01, X x xF x x x θθθ<⎧⎪=≤≤⎨⎪>⎩及(){}()()()()1212max ,,,n n X X X X X X F x F x F x F x F x ==⋅⋅⋅()1F εθ∴+=(){}()12max ,,,1nn x F P X X X εθεθθ⎫⎛-+=<-+≈- ⎪⎝⎭{}()12max ,,,111()nn x P X X X n θεθ⎫⎛∴-<=--→→∞ ⎪⎝⎭2、证明:EX μ=()1111111ni i n n i i i i nn n i i i i i i i i a X E a E X a a a a μμ======⎫⎛⎪ ⎪ ==⋅=⎪ ⎪⎝⎭∑∑∑∑∑∑ 11niii nii a Xa==∴∑∑是μ的无偏估计量3、证明: ()() ()()22D E E θθθ=-()() ()()()2222E D E D θθθθθθ∴=+=+> 2θ∴不是2θ的无偏估计量4、证明:()~X P λEX λ∴=,()()222E X DX EX λλ=+=+()22E X EX λ∴-=,即()22E X X λ-=用样本矩2211n i i A X n ==∑,1A X =代替相应的总体矩()2E X 、EX所以得2λ的无偏估计量: 22111n i i A A X X n λ==-=-∑ 5、()~,X B n p ,EX np ∴=()()()()22222111E X np p n p np n n p EX n n p =-+=+-=+-()()()()222111E X EX E X X p n n n n -⎫⎛∴=-=⎪ --⎝⎭所以用样本矩2211n i i A X n ==∑,1A X =分别代替总体矩()2E X 、EX得2p 的无偏估计量: ()()()222121111ni i i A A p X X n n n n =-==---∑6、()~,1X N m ,()i E X m ∴=,()1i D X =,(1,2)i =()()()11212212121333333E m E X X E X E X m m m ⎫⎛∴=+=+=+= ⎪⎝⎭()()()1121221414153399999D m D X X D X D X ⎫⎛=+=+=+= ⎪⎝⎭同理可得: ()2E m m =, ()258D m =, ()3E m m =, ()212D m =123,,m m m ∴都是m 的无偏估计量,且在 123,,m m m 中, 3m 的方差最小习题6-21、(1)()11cccEX x c xdx cx dx θθθθθθθθ+∞+∞-+-=⋅==-⎰⎰EXEX cθ∴=-,令X EX =X X c θ∴=-为矩估计量,θ的矩估计值为 x x cθ=-,其中11n i i x x n ==∑似然函数为:()()11211,,,;nnn n n ii i i L x x x c xcx θθθθθθθ-+-====∏∏ ,i x c > 对数似然函数:()()()1ln ln ln 1ln nii L n n c x θθθθ==+-+∑求导,并令其为0,得:1ln ln ln 0ni i d L nn c x d θθ==+-=∑ 1ln ln Lnii nx n cθ=∴=-∑,即θ的最大似然估计量为 1ln ln Lnii nXn cθ==-∑(2)21111EX EX x x dx EX θθθθθ-⎫⎛=⋅=⇒= ⎪--⎝⎭⎰ 以X EX =,得: 21X X θ⎫⎛=⎪ -⎝⎭为θ的矩估计量θ的矩估计值为: 21x x θ⎫⎛=⎪ -⎝⎭,其中11ni i x x n ==∑ 而()1121211,,,;n nnn i i i i L x x x x x θθθθθ--==⎫⎛==⎪⎝⎭∏∏ ,01i x ≤≤()()1ln ln 1ln 2nii nL x θθθ=∴=+-∑令1ln 11ln 022ni i d L n x d θθθ==+⋅⋅=∑, 21ln L ni i n x θ=⎫⎛⎪ ⎪ ∴=⎪⎪⎝⎭∑ 所以θ的最大似然估计量 21ln L ni i n x θ=⎫⎛⎪ ⎪ =⎪ ⎪⎝⎭∑ (3)()~,X B m p ,EXEX mp p m∴=⇒=p ∴的矩估计量: 111n i i X p X X m mn m====∑p ∴的矩估计值为: 11n i i p x mn ==∑ 而()()()111211,,,;11nniii i ii i i nnx m x m x x x x n mm i i L x x x p Cpp C pp ==--==∑∑=-=⋅⋅-∏∏ ,0,1,,ix m = ()()()111ln ln ln ln 1i nnn x mi i i i i L p C x p m x p ====+⋅+-⋅-∑∑∑令() 111ln 111101n n n i i L ii i i d L x m x p x x dp p p mn m ====⋅--⋅=⇒==-∑∑∑ p ∴的最大似然估计量为: 1L p X m=2、(1)()01;2EX xf x dx xdx θθθθ+∞-∞===⎰⎰令11n i i EX X X n ===∑,22X X θθ∴=⇒=2X θ∴= (2)由观测的样本值得:6111(0.30.80.270.350.620.55)0.481766i i x x ===+++++≈∑20.9634x θ∴== 3、由1111122EX X θθθθθ+=⨯+⨯++⨯== 21X θ∴=-为θ的矩估计量 4、设p :抽得废品的概率;1p -:抽得正品的概率 引入{1, i i X i =第次抽到废品0,第次抽到正品,1,2,,60i =()1i P X p ∴==,()01i P X p ==-,且i EX p =所以对样本1260,,,X X X 的一个观测值1260,,,x x x由矩估计法得,p 的估计值为: 601141606015ii p x ====∑,即这批产品的废品率为1155、()()2212213132EX θθθθθ=⨯+⨯-+⨯-=-,()1412133x =⨯++=EX x = , 3526x θ-∴==为矩估计值 ()()()()()()()34511223312121i i i L P X x P X x P X x P X x θθθθθθ========⋅⋅-=-∏()()ln ln25ln ln 1L θθθ=++-令() ln 1155016Ld L d θθθθθ=⨯-=⇒=- 6、(1)λ的最大似然估计 LX λ=, ()0LX P X e e λ--∴=== (2)设X :一个扳道员在五年内引起的严重事故的次数()~X P λ∴,122n =得样本均值:5011(044142221394452) 1.123122122r r x r s ==⨯⋅=⨯⨯+⨯+⨯+⨯+⨯+⨯=∑()1.12300.3253x P X e e --∴====习题6-33、从总体中抽取容量为n 的样本12,,,n X X X 由中心极限定理:()~0,1,/X U N n nμσ-=→∞(1)当2σ已知时,近似得到μ的置信度为1α-的置信区间为:22,X u X u n n αασσ⎫⎛-⋅+⋅⎪ ⎝⎭ (2)当2σ未知时,用2σ的无偏点估计2s 代替2σ:~(0,1),/X N n s nμ-→∞于是得到μ的置信度为1α-的置信区间为:22,s s X u X u n n αα⎫⎛-⋅+⋅⎪ ⎝⎭一般要求30n ≥才能使用上述公式,称为大样本区间估计 4、40n = 属于大样本,2,X N n σμ⎫⎛∴⎪ ⎝⎭ 近似μ∴的95%的置信区间近似为:2x u n ασ⎫⎛±⋅⎪ ⎝⎭其中642x =,3σ=,40 6.32n =≈,21.96u α=()23642 1.966420.9340x u n ασ⎫⎛⎫⎛∴±⋅=±⨯≈±⎪ ⎪⎝⎭⎝⎭故μ的95%的置信区间上限为642.93,下限为641.075、100n =属于大样本,2~,X N n σμ⎛⎫∴ ⎪⎝⎭近似μ∴的99%的置信区间近似为:2x u n ασ⎫⎛±⋅⎪ ⎝⎭其中10x =,3σ=,100n =,22.58u α=()()2310 2.58100.7749.226,10.774100x u n ασ⎛⎫⎛⎫∴±⋅=±⨯=±= ⎪ ⎪⎝⎭⎝⎭由此可知最少要准备10.77410000107740()kg ⨯=这种商品,才能以0.99的概率满足要求。
第6章 参数估计1,设总体0),,0(~>B b U X未知,921,,,X X X 是来自X的样本。
求b 的矩估计量。
今测得一个样本值0.5,0.86,0.1,1.3,0.9,1.6,0.7,0.9,1.0,求b 的矩估计值。
解:因为总体),0(~b U X,所以总体矩2/)(b X E =。
根据容量为9的样本得到的样本矩∑==9191i iX X。
令总体矩等于相应的样本矩:X X E =)(,得到b 的矩估计量为X b2ˆ=。
把样本值代入得到b 的矩估计值为69.1ˆ=b。
2,设总体X 具有概率密度⎪⎩⎪⎨⎧<<-=他其θθθx x x f X00)(2)(2,参数θ未知,n X X X ,,,21 是来自X的样本,求θ的矩估计量。
解:总体X 的数学期望为3)(2)(02θθθθ=-=⎰dx x xX E ,令XX E =)(可得θ的矩估计量为X 3ˆ=θ。
3,设总体),,(~p m B X参数)10(,<<p p m 未知,n X X X ,,,21 是来自X的样本,求p m ,的矩估计量(对于具体样本值,若求得的mˆ不是整数,则取与m ˆ最接近的整数作为m 的估计值)。
解:总体X 的数学期望为 mp X E =)(,)1()(p mp X D -=,二阶原点矩为[])1()()()(22+-=+=p mp mp X E X D X E 。
令总体矩等于相应的样本矩:XX E =)(,∑===ni iX nA XE 12221)( 得到XA X p21ˆ-+=,()()222ˆA X X X m-+=。
4,(1)设总体0),(~>λλπX未知,n X X X ,,,21 是来自X的样本,n x x x ,,,21 是相应的样本值。
求λ的矩估计量,求λ的最大似然估计值。
(2)元素碳-14在半分钟内放射出到达计数器的粒子数)(~λπX ,下面是X 的一个样本:6 4 9 6 10 11 6 37 10求λ的最大似然估计值。
第六次作业 参考解答习题2.1 .7775.-P15.设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.11;10,;00)(2x x Ax x x F ,, 试求:(1)系数A ;(2)X 落在区间(0.3,0.7)的概率; (3)X 的密度函数.解 依题设可知,X 为连续型随机变量. (1) 连续型随机变量X 的分布函数在),(+∞-∞上点点连续,有1)1()01(==-F F ,即 112=⨯A , 所以,1=A .(2)利用X 的分布函数)(x F 得所求概率为)7.03.0()7.03.0(≤<=<<X P X P )3.0()7.0(F F -=4.03.07.022=-=.(3) 由于在)(x F 的可导点处有:()()p x F x '=,得i )当0x <或1>x 时,()()p x F x '==0;ii )当10<<x 时,()()p x F x '=='=)(2x x 2;iii )当10或=x 时,)(x F 不可导,但可不妨取0)1()0(==p p , 所以X 的密度函数为⎩⎨⎧<<=.0;102)(,其他,x x x p16.学生完成一道作业的时间X 是一个随机变量,单位为小时,它的密度函数为⎩⎨⎧≤≤+=.0;5.00)(2,其他,x x cx x p (1) 确定常数c ; (2) 写出X 的分布函数;(3) 试求在20分钟内完成一道作业的概率; (4) 试求10分钟以上完成一道作业的概率.解(1)由密度函数的正则性,得⎰+=+=+=5.005.002328124)213()(1c x x c dx x cx ,所以21=c .(2)由⎰∞-=xdt t p x F )()(,得i )当0x <时,⎰∞-=xdt t p x F )()(00==⎰∞-xdt ;ii )当5.00<≤x 时,⎰∞-=xdt t p x F )()(2302217)21(0x x dt t t dt x+=++=⎰⎰∞-; iii )当5.0≥x 时,⎰∞-=xdt t p x F )()(10)21(05.05.002=+++=⎰⎰⎰+∞∞-dt dt t t dt .所以,X 的分布函数⎪⎩⎪⎨⎧≥<≤+<=.5.01;5.00,5.07;00)(23x x x x x x F ,, (3))(x F X 的分布函数由,得)310()min 20(≤<=X P P 内完成一道作业在)0()31(F F -=0)81277(-+=5417=;(4) )(x F X 的分布函数由,得)61()min 10(>=X P P 以上完成一道作业 )61(1F -=)7212167(1+-=108103=.习题2.2 .8684.-P1. 设离散型随机变量X 的分布列为试求EX 和)53(+X E .解 由已知分布和期望定义,得 2.03.023.004.02-=⨯+⨯+⨯-=EX . 由随机变量函数期望的计算方法,得4.43.0)523(3.0)503(4.0]5)2(3[)53(=⨯+⨯+⨯+⨯+⨯+-⨯=+X E . 或者,由期望的性质,得=⨯-+=E.X+EX+3(=()2.0535)534.49. (此为思考题,同样提供参考解答)某人想用10000元投资某个股票,该股票当前的价格是每股2元,假设一年后该股票等可能的为每股1元和每股4元。
而理财顾问给他的建议是:若期望一年后所拥有的股票市值达到最大,则现在就购买;若期望一年后拥有的股票数量最大,则一年以后购买.试问理财顾问的建议是否正确?为什么?解本问题的判断依据是:用10000元投资购买该股票,通过比较今年买入和一年后买入两种买法的相关指标的大小来判定理财顾问建议的正确性.从股票市值的期望值指标来看:投资10000元今年买入,得到5000股,记X“今年买入,一年后这5000股的股票市值数”,=则X为离散型随机变量,且由于股票一年后的价格可能是1元或4元,所以X的可能值为5000元,20000元.并且X的分布列为于是125002120000215000=⨯+⨯=EX (元)又如果是,不考虑原来的10000元的增值,一年后投资10000元买入该股票,无论到时股票的价格是1元或4元,买入后股票市值都是10000元.再从股票数量指标来看:投资10000元今年买入,得到5000股. 如果是,不考虑原来的10000元的增值,一年后投资10000元买入该股票,记=X “一年后投资10000元买入该股票能买入的股数”,则X 为离散型随机变量,且由于股票一年后的价格可能是1元或4元,所以X 的可能值为2500股, 10000股.并且X 的分布列为于是62502110000212500=⨯+⨯=EX (股)根据以上数据,可判定理财顾问的建议是正确的.14. 设随机变量X 的密度函数为⎪⎩⎪⎨⎧≤≤=.0;2083)(2,其他,x x x p 试求21X 的数学期望.解 记21)(X X g Y ==,则21X 的数学期望为43831)()()]([)1(2222=⨯====⎰⎰+∞∞-dx x x dx x p x g X g E EY XE .习题2.3 .9291.-P2. 假设有10只同种电器元件,其中有两只不合格品,装配仪器时,从这批元件中任取一只,如为不合格品,则扔掉重新任取一只,如仍为不合格品则扔掉再取一只,试求在取到合格品之前,已取出的不合格品只数的方差.解 记X =“在取到合格品之前,已取出的不合格品只数”, 则X 为离散型随机变量,其可能值为0,1,2. 而利用概率的古典方法和乘法公式容易求得X 的分布列为由此,得924512458145360=⨯+⨯+⨯=EX , 1544512458145360)(2222=⨯+⨯+⨯=X E .于是,在取到合格品之前,已取出的不合格品只数的方差为40588)92(154)()(222=-=-=EX X E DX .6.(此为思考题,这里提供参考解答)试证:对任意常数EX c ≠,有22)()(c X E EX X E DX -<-=.Proof 由于)2(])(2[)()(222222c cX X E EX X EX X E c X E EX X E +--+⋅-=---22222)()(2)(c cEX X E EX EX EX X E -+-+⋅-=2)(EX c --=可见当EX c ≠时,0)()()(222<--=---EX c c X E EX X E ,即22)()(c X E EX X E DX -<-=.12. 设)(x g 为随机变量X 取值集合上的恒正不减函数,且))((x g E 存在,证明:对任意的0>ε,有)())(()(εεg x g E X P ≤>.Proof 先就离散型随机变量证明如下: 设X 的分布列为Λ,2,1,)(===i p x X P i i ,则由已知,对0>ε,当0>>εi x 时,有 0)()(>≥εg x g i . 于是i xx i i p g x g p X P i i ∑∑>>≤=>εεεε)()()( )())(()()(11εεg X g E p x g g i i i =≤∑+∞=.再就连续型随机变量证明如下:设X 的密度函数为)(x p ,则由已知,对0>ε,当0>>εx 时,有0)()(>≥εg x g . 于是⎰⎰+∞+∞≤=>εεεεdx x p g x g dx x p X P )()()()()( )())(()()()(1εεg X g E dx x p x g g =≤⎰+∞∞-.证毕.习题2.4 .106104.-P3. 某优秀射手命中10环的概率为0.7,命中9环的概率为0.3.试求该射手三次射击所得的环数不少于29环的概率.解 记X =“该射手三次射击所得10环的次数”,则由已知得X ~)7.0,3(b ,于是P (该射手三次射击所得的环数不少于29环))2(≥=X P)3()2(=+==X P x P3332237.03.07.0⨯+⨯⨯=C C784.0=.6. 设随机变量X ~),2(p b ,而随机变量Y ~),4(p b ,若98)1(=≥X P ,试求)1(≥Y P . 解 由X ~),2(p b 及98)1(=≥X P ,得2)1(1)0(198p X P --==-=,解之得,32=p ,或34=p (不合,舍去). 于是Y ~)32,4(b ,从而 8180)321()32(1)0(1)1(4004=--==-=≥C Y P Y P .7. 一批产品的不合格品率为0.02,现从中任取40件进行检查,若发现两件或两件以上不合格品就拒收这批产品.分别用以下方法求拒收的概率:(1)用二项分布作精确计算;(2)用泊松分布作近似计算.解 记X =“从这批产品任取40件进行检查发现的次品数”,则X ~)02.0,40(b ,于是(1)用二项分布作精确计算,得P (拒收这批产品))2(≥=X P)1()0(1=-=-=X P X P391140400040)02.01(02.0)02.01(02.01-⨯⨯--⨯⨯-=C C 1905.0=.(2)用泊松分布作近似计算:由于X ~)02.0,40(b ,这其中40=n 较大,02.0=p 也较小,所以X 近似服从8.0==np λ的泊松分布,作近似计算,得P (拒收这批产品))2(≥=X P λ-=∑-≈e k k k10!8.01 1912.0= (查表).9.(此为思考题,这里提供参考解答)已知某商场一天来的顾客数X 服从参数λ为的泊松分布,而每个来到商场的顾客购物的概率为p ,证明:此商场一天内购物的顾客数服从参数为p λ的泊松分布.证明 记Y =“此商场一天内购物的顾客数”,则由全概率公式,有∑+∞======k i i X k Y P i X P k Y P )()()( k i k k i k i i p p C e i -+∞=--=∑)1(!λλ∑+∞=---=ki ik k i p e k p )!()]1([!)(λλλ )1(!)(p k e e k p --=λλλp k e k p λλ-=!)(,Λ,2,1,0=k . 可见,Y ~)(p P λ.15.(此为思考题,这里提供参考解答)某产品的不合格品率为0.1,每次随机抽取10件进行检验,若发现其中不合格品数多于1,就去调整设备,若检验员每天检查4次,试问每天平均要调整几次设备.解 记=X “每次随机抽取10件进行检验发现不合格品件数”,则由已知得X ~)1.0,10(b ,于是P (需要调整设备))1(>=X P)1()0(1=-=-=X P X P9110109.01.09.01⨯⨯--=C2639.0=.又记Y =“每天调整设备的次数”,则Y ~)2639.0,4(b ,于是,每天平均要调整设备的次数为0556.12639.04=⨯=EY (次).。