第3章 有机化合物的同分异构1
- 格式:ppt
- 大小:8.26 MB
- 文档页数:68
有机化合物的同分异构与结构特点有机化合物是由碳原子与氢、氧、氮等元素组成的化合物。
在有机化学中,同分异构是指同一种化学式但结构不同的化合物。
同一种化学式的有机化合物可以有多个不同结构的同分异构体。
同分异构体的存在使得有机化合物的种类变得非常丰富,给有机化学研究带来了挑战。
一、同分异构的分类1. 构造异构:即同一种化学式的有机化合物分子结构不同。
包括链式异构、环式异构、官能团位置异构等。
2. 空间异构:即同一种化学式的有机化合物空间结构不同。
包括手性异构和顺反异构。
二、同分异构的原因同分异构体的存在是由于碳原子的四价性和形成共价键的能力。
碳原子可以形成单、双、三键,以及与其他原子形成多种不同的键型和键数,这为同分异构的存在提供了可能。
1. 构造异构的原因:构造异构是由于碳原子能形成不同的键型和键数,从而导致化合物分子结构不同。
例如,在同分子式的有机化合物中,碳原子的连接方式和官能团位置不同,会导致化合物的结构不同。
2. 空间异构的原因:空间异构是由于碳原子的四个键所连接的原子或官能团的空间排列方式不同。
例如,手性异构体的存在是由于碳原子与四个不同官能团连接而成的手性中心可以有两种不同的空间排列方式。
三、同分异构的实例1. 构造异构的实例:(1) 甲醇与乙醇:它们的分子式均为C2H6O,但结构不同。
甲醇的结构是CH3OH,乙醇的结构是C2H5OH。
(2) 正丁烷与异丁烷:它们的分子式均为C4H10,但结构不同。
正丁烷的结构是CH3CH2CH2CH3,异丁烷的结构是CH3CH(CH3)CH3。
2. 空间异构的实例:(1) 朗得尔酸和菲森酸:它们的分子式均为C4H4O4,但空间结构不同。
朗得尔酸的两个羧基位于同一平面,菲森酸的两个羧基位于不同平面。
(2) 丙二酮和己二酮:它们的分子式均为C4H6O2,但空间结构不同。
丙二酮的两个羰基位于同一平面,己二酮的两个羰基位于不同平面。
四、同分异构的意义同分异构体的存在对有机化学的研究和实际应用有着重要意义。
第2课时有机化合物中的共价键和同分异构现象[核心素养发展目标]1.了解有机化合物中共价键的类型,理解键的极性与有机反应的关系。
2.理解有机化合物的同分异构现象,学会同分异构体的书写方法,能判断有机物的同分异构体。
一、有机化合物中的共价键1.共价键的类型一般情况下,有机化合物中的单键是σ键,双键中含有一个σ键和一个π键,三键中含有一个σ键和两个π键。
2.共价键对有机化合物性质的影响(1)共价键的类型对有机化合物性质的影响π键的轨道重叠程度比σ键的小,比较容易断裂而发生化学反应。
例如乙烯和乙炔分子的双键和三键中含有π键,都可以发生加成反应,而甲烷分子中含有C—H σ键,可发生取代反应。
(2)共价键的极性对有机化合物性质的影响共价键的极性越强,在反应中越容易发生断裂,因此有机化合物的官能团及其邻近的化学键往往是发生化学反应的活性部位。
实验探究实验操作:向两只分别盛有蒸馏水和无水乙醇的烧杯中各加入同样大小的钠(约绿豆大)现象解释结论两只烧杯中均有气泡产生,乙醇与钠反应缓慢,蒸馏水与钠反应剧烈乙醇可以与钠反应产生氢气,是因为乙醇分子中的氢氧键极性较强,能够发生断裂。
用方程式可表示为:―→+H 2↑相同条件下,乙醇与钠反应没有水与钠反应的剧烈,是由于乙醇分子中氢氧键的极性比水分子中氢氧键的极性弱基团之间的相互影响使得官能团中化学键的极性发生变化,从而影响官能团和物质的性质另外,由于羟基中氧原子的电负性较大,乙醇分子中的碳氧键极性也较强,也可断裂,如乙醇与氢溴酸的反应:。
(1)σ键比π键牢固,所以不会断裂()(2)甲烷分子中只有C—H σ键,只能发生取代反应()(3)乙烯分子中含有π键,所以化学性质比甲烷活泼()(4)乙酸与钠反应比水与钠反应更剧烈,是因为乙酸分子中氢氧键的极性更强()答案(1)×(2)×(3)√(4)√1.某有机物分子的结构简式为,该分子中有8个σ键,2个π键,有(填“有”或“没有”)非极性键。
第2课时烷烃[目标导航]1。
了解烷烃的概念、通式及结构特点。
2.了解烷烃的物理性质和化学性质。
3。
了解简单烷烃的命名.4。
知道同系物、同分异构体的概念,并会判断及书写简单烷烃的同分异构体。
一、烷烃1.分子结构特点2.物理性质(1)递变规律(随碳原子数n递增)(2)相似性烷烃均难溶于水,相对密度均小于1.3.化学性质(与CH4相似)(1)稳定性在通常情况下,烷烃比较稳定,跟强酸、强碱、酸性高锰酸钾溶液等都不起反应.(2)燃烧反应烷烃燃烧通式:C n H2n+2+错误!O2错误!n CO2+(n+1)H2O。
(3)取代反应烷烃能与氯气等卤素单质在光照条件下发生取代反应,如乙烷与氯气光照时生成一氯乙烷的化学方程式为:C2H6+Cl2C2H5Cl +HCl。
4.习惯命名法(1)表示(2)举例:C6H14命名为己烷,C18H38命名为十八烷。
(3)碳原子数n相同结构不同时,用正、异、新表示,如C4H10的两种分子的命名:无支链时,CH3CH2CH2CH3:正丁烷。
有支链时,:异丁烷。
【议一议】1.判断正误(1)烷烃的分子通式是C n H2n+2(n≥1),但符合通式C n H2n+2的不一定是烷烃.()(2)烷烃的特征性质是能与卤素单质发生取代反应。
()(3)烷烃性质稳定,不能使酸性KMnO4溶液褪色。
()答案(1)×(2)√(3)√2.多碳原子烷烃(如CH3CH2CH2CH2CH3)分子中,碳原子是直线形吗?答案烷烃分子中的碳原子以单键与其他原子相连,因此与之成键的4个原子构成四面体结构。
碳原子一定不在同一直线上,直链烷烃中碳原子的排列呈锯齿状。
二、同系物同分异构体1.同系物(1)特点:结构相似,在分子组成上相差一个或若干个CH2原子团的物质。
(2)实例:CH4、CH3CH3、CH3CH2CH3等烷烃互为同系物。
提示①同系物具有相同的通式,但是通式相同的有机物不一定互为同系物,同系物的前提是同一类物质且分子组成上相差一个或若干个CH2原子团。
第三章有机化合物本章包括最简单的有机化合物——甲烷、来自石油和煤的两种基本化工原料、生活中两种常见的有机物、基本营养物质四节内容,就其主要题型有:(1)甲烷的组成与结构; (2)甲烷的物理与化学性质;(3)同分异构体 同系物 ; 确定未知气态烃分子结构 (4)乙烯的分子结构; (5)乙烯的性质; (6)苯的化学性质;(7)苯的分子结构 ;(8)乙醇的性质; (9)酯化反应;(10)乙酸的化学性质; (11)酯、油脂的性质; (12)糖类的性质;(13)蛋白质的性质等等。
本章从日常生活中我们熟悉的物质开始,介绍了它们的来源、性质、用途等若干知识,有助于我们常识性、基础性地了解这些物质。
同时有机化学是高考内容的重要组成部分,学好本章内容会对以后进一步学习有机化学打下坚实的基础。
第一节最简单的有机物——甲烷甲烷:CH4 正四面体结构 1.氧化反应CH 4(g)+2O 2(g) → CO 2(g)+2H 2O(l) 2.取代反应CH 4+Cl 2(g) → CH 3Cl (g )+HCl 反应条件为光照生成的一氯甲烷与氯气进一步反应依次生成难溶于水的油状液体:二氯甲烷、三氯甲烷、四氯化碳;3.烷烃的通式:C n H 2n+2 n ≤4为气体 、所有1-4个碳内的烃为气体,都难溶于水,比水轻;4.命名:碳原子数在十以下的,依次用甲、乙、丙、丁、戊、己、庚、辛、壬、癸,其后加“烷”字;碳原子数在十以上的以汉字数字代表;5.同系物:结构相似,在分子组成上相差一个或若干个CH 2原子团的物质互称为同系物;6.同分异构体:具有同分异构现象的化合物互称为同分异构;7.同素异形体:同种元素形成不同的单质;特点在理解同分异构现象和同分异构体时应注意以下几点:(1)同分异构现象、同分异构体概念的内涵包括缺一不可的两点:一是分子式相同,分子式相同必然相对分子质量相同,但相对分子质量相同分子式不一定相同,如H3PO4与H2SO4、C2H6与NO均是相对分子质量相同,但分子式不同。
有机化合物的同分异构及命名同分异构是有机化学中一个重要的概念,指的是具有相同分子式但结构不同的化合物。
在有机化学中,分子的结构对其化学性质和物理性质具有重要影响,因此研究和命名有机化合物的同分异构是必不可少的。
一、同分异构的定义同分异构是指具有相同分子式但结构不同的化合物。
这种结构不同可以是由于原子的连接方式不同或键的位置不同所导致的。
同分异构可以分为以下几种类型:1.链同分异构:分子中碳原子的连接方式不同,产生不同的分子结构。
2.环同分异构:分子中存在环状结构,但环中碳原子的连接方式不同。
3.官能团异构:分子中的官能团位置不同,导致分子的结构不同。
二、同分异构的命名有机化合物的命名是为了准确描述其结构和化学性质,因此命名系统应该能够区分同分异构体。
在有机化学中,主要使用以下两种命名系统:1.结构式命名:结构式命名通过显示化合物的结构来进行命名,对于同分异构体能够清晰地描述其结构差异。
常用的结构式命名方法包括:(1)连线式命名:将原子以及官能团的连接方式用直线表示,通过在直线上标记原子和官能团的符号来描述化合物的结构。
(2)键线式命名:将原子之间的键用线段表示,通过在线段上标记原子来描述化合物的结构。
(3)投影式命名:将分子投影到一个平面上,通过不同符号和线条的排布来描述分子的立体结构。
2.系统命名:系统命名通过使用一系列规则来对化合物进行命名,使得同分异构体能够有唯一且准确的命名。
常用的系统命名方法包括:(1)IUPAC命名:国际纯粹和应用化学联合会(International Union of Pure and Applied Chemistry,简称IUPAC)制定了一套用于命名有机化合物的规则,这套规则被广泛应用于化学界。
(2)功能组命名:有机化合物通常包含不同的官能团,根据官能团的种类和位置来对分子进行命名。
无论是结构式命名还是系统命名,都可以准确地描述有机化合物的结构,但系统命名更加规范和统一。
智能考点有机物的同分异构体一、有机物的同分异构体1. 同分异构体的概念化合物具有相同的分子式,但具有不同结构的现象,叫做同分异构现象。
具有同分异构现象的化合物互称为同分异构体。
同系物、同分异构体、同素异形体和同位素的比较概念同系物同分异构体同素异形体同位素研究范围有机物化合物单质原子限制条件结构相似分子式相同同一元素质子数相同组成相差CH2原子团结构不同性质不同中子数不同注意:①分子式相同则相对分子质量必然相同,但相对分子质量相同而分子式不一定相同。
如:H3PO4与H2SO4、C2H6O与CH2O2的相对分子质量相同,但分子式不同。
最简式相同的化合物不一定是同分异构体,如:HCHO、CH3COOH、HCOOCH3、C6H12O6的最简式相同,但分子式不同。
②分子结构不同是由分子里原子或原子团的排列方式不同而引起的,如:CH3CH2OH和CH3OCH3、CH3CH2CHO和CH3COCH3等。
③同分异构现象在有机化合物中广泛存在,既存在于同类有机物中,又存在于某些不同类有机物中,如:CH3CH2 CH2 CH2CH3、CH3CH2 CH(CH3)CH3、C(CH3)4;CH3COOH、HCOOCH3。
同分异构现象在某些无机化合物中也存在,如:CO(NH2)2与NH4OCN、HOCN(氰酸)和HNCO(异氰酸)。
④化合物的分子组成、分子结构越简单,同分异构现象越弱。
反之,化合物的分子组成、分子结构越复杂,同分异构现象越强。
如甲烷、乙烷、丙烷等均无同分异构现象,而丁烷、戊烷的同分异构体分别为2种、3种。
⑤同分异构体之间的化学性质可能相同也可能不同,但它们的物理性质一定不同。
各同分异构体中,分子里支链越多,熔沸点一般越低。
2.同分异构体的类型①碳链异构:指的是分子中碳原子的排列顺序不同而产生的同分异构体。
如:所有烷烃异构都属于碳链异构。
②位置异构:指的是分子中官能团(包括双键、叁键或侧链在苯环上)位置不同而产生的同分异构。
第三章有机化学知识点总结有机化合物:含有碳元素的化合物。
常有氢和氧,还含有氮、磷、硫、卤素等元素。
【注意】(碳的氧化物、碳酸及其盐、碳的金属化合物是无机化合物)。
烃:只含有碳和氢两种元素的有机物,甲烷是最简单的烃。
)2、物理性质:甲烷是一种没有颜色,没有气味的气体。
密度比空气小,极难溶于水。
(可以用排水法和向下排空气法收集甲烷)3、化学性质:通常情况下,甲烷比较稳定,与酸性高锰酸钾等强氧化剂不反应,与强酸、强碱也不反应。
但在一定条件下,甲烷也会发生某些反应。
1)燃烧反应:CH4+2O2CO2+2H2O 。
(纯净的甲烷在空气中安静地燃烧,火焰呈淡蓝色)2)取代反应:(有机化合物分子里的原子或原子团被其它原子或原子团所代替的反应)甲烷与氯气的反应方程式①。
②。
③。
④。
★(条件:光照)五种产物(两种气体:一氯甲烷和氯化氢,其他三种均为液体)甲烷与氯气取代反应实验现象:气体颜色逐渐变浅,试管壁有油状液滴出现,同时试管上方有白雾生成,试管内液面逐渐降低。
二、烷烃:(烃分子中碳原子之间都以碳碳单键结合成链状,剩余价键均与氢原子结合,使每个碳原子的化合价都达到“饱和”,这样的烃叫做饱和烃,也称为烷烃)。
分子通式为C n H2n+21、烷烃的命名:烷烃碳原子数在十以内时,以甲、乙、丙、丁、戊、己、庚、辛、壬、癸依次代表碳原子数,其后加“烷”字,碳原子数在十以上时,以“汉字数字”代表。
例如:十一烷。
2、烷烃的物理性质:常温下的状态(设碳原子数为n),当n ≤4 时为气态;随着碳原子数的增加,烷烃的熔沸点依次升高,烷烃的密度依次增大。
3. 烷烃的化学性质:1、稳定性:与甲烷类似,通常情况下,不与强酸、强碱、高锰酸钾等强氧化剂反应。
2、可燃性:都能燃烧,反应通式为C n H2n+2+213nO2nCO2+(n+1)H2O。
3、在光照条件下能与氯气发生取代反应。
4、同系物和同分异构体1. 结构相似,在分子组成上相差一个或若干个CH2原子团的物质互称同系物。
有机化合物的同分异构与构造异构有机化合物是由碳元素构成的化合物,具有丰富多样的结构和性质。
在有机化学中,同分异构和构造异构是两个重要的概念。
本文将详细介绍有机化合物的同分异构和构造异构,并探讨它们的区别和应用。
一、同分异构同分异构是指分子式相同但结构和性质不同的有机化合物。
同分异构分为结构同分异构和功能性同分异构两种形式。
1. 结构同分异构结构同分异构是指分子式相同但结构不同的有机化合物。
这种异构体在结构上的差异主要体现在碳原子的排列顺序或立体构型的不同上。
例如,丙醇和异丙醇,它们的分子式均为C3H8O,但结构不同。
丙醇的结构式为CH3CH2CH2OH,而异丙醇的结构式为(CH3)2CHOH。
2. 功能性同分异构功能性同分异构是指分子式相同但官能团位置不同的有机化合物。
官能团是指分子中的化学活性团,如羟基(-OH)、酮基(-C=O)等。
通过移动官能团的位置,可以得到不同的同分异构体。
例如,丙醇和丙酮,它们的分子式均为C3H6O,但官能团位置不同。
丙醇的结构式为CH3CH2CH2OH,而丙酮的结构式为CH3COCH3。
二、构造异构构造异构是指分子式相同但连接方式不同的有机化合物。
构造异构分为链式异构、位置异构、环式异构和功能组异构四种形式。
1. 链式异构链式异构是指有机化合物分子中主链连接方式不同的异构体。
这种异构体的不同之处在于碳原子的连接方式不同。
例如,戊烷和异戊烷,它们的分子式均为C5H12,但主链连接方式不同。
戊烷的结构式为CH3CH2CH2CH2CH3,而异戊烷的结构式为CH3CH(CH3)CH2CH3。
2. 位置异构位置异构是指有机化合物分子中同种官能团连接位置不同的异构体。
它们的分子式相同,但官能团连接的碳原子位置不同。
例如,取代苯胺和间苯胺,它们的分子式均为C6H5NH2,但取代基连接的碳原子位置不同。
取代苯胺的结构式为C6H5NH2,而间苯胺的结构式为C6H4NH2CH3。
3. 环式异构环式异构是指有机化合物分子中环的连接方式不同的异构体。