第6章 多重共线性的情形及其处理
- 格式:ppt
- 大小:358.50 KB
- 文档页数:42
丫= 1+ 8人-4人+ 3为=1 + 8人-(3X2+ 2)+ 3为=7+ 8人-9%(1.5)在(1.4)中,X2的系数为12,表示丫与为成正比例关系,即正相关;而在(1.5)中,X2的系数为-9,表示丫与X?成负比例关系,即负相关。
如此看来,同一个方程丫= 1+ 4片+ 3X2变换出的两个等价方程,由于不同的因式分解和替换,导致两个方程两种表面上矛盾的结果。
实际上,根据X1 = 3为+ 2式中的X1与为的共线性,X1约相当于3X2, 在(1.4)减少了3人,即需要用9个X2来补偿;而在(1.5)增加了4人, 需要用12个X2来抵消,以便保证两个方程的等价性,这样一来使得(1.5)中为的系数变为了负数。
从上述分析看来,由于X i与勺的共线性,使得同一个方程有不同的表达形式,从而使得丫与为间的关系难以用系数解释。
2•对多重线性关系的初步估计与识别如果在实际应用中产生了如下情况之一,则可能是由于多重共线性的存在而造成的,需作进一步的分析诊断。
①增加(或减去)一个变量或增加(或剔除)一个观察值,回归系数发生了较大变化。
②实际经验中认为重要的自变量的回归系数检验不显著。
③回归系数的正负号与理论研究或经验相反。
④在相关矩阵中,自变量的相关系数较大。
⑤自变量回归系数可信区间范围较广等。
3•对多重共线性本质的认识多重共线性可分为完全多重共线性和近似多重共线性(或称高度相关性),现在我们集中讨论多重共线性的本质问题。
多重共线性普遍被认为是数据问题或者说是一种样本现象。
我们认为,这种普遍认识不够全面,对多重共线性本质的认识,至少可从以下几方面解解。
(3)检验解释变量相互之间的样本相关系数。
假设我们有三个解释变量X i、X2、X3,分别以「12、「13、「23 来表示X i 与X2、X i 与X3、X2与X3之间的两两相关系数。
假设r i2 = 0.90,表明X i与X2之间高度共线性,现在我们来看相关系数「12,3,这样一个系数我们定义为偏相关系数,它是在变量X3为常数的情况下,X i与X2之间的相关系数。
第6章 多重共线性6.1 多重共线性及其产生的原因6.1.1 多重共线性(Multicollinearity)的定义从数学意义上去解释变量之间存在共线性,就是对于变量k x x x ,,21,如果存在不全为零的常数k λλλ ,,21,使得下式成立02211=+++k k x x x λλλ (6.1.1)则称变量k x x x ,,21之间存在完全共线性。
在计量经济学中,一个具有两个以上解释变量的线性回归模型里,如果解释变量之间存在式(6.1.1)那样的关系,则称这些解释变量之间存在完全的多重共线性。
完全多重共线性还可以用矩阵形式加以描述。
设解释变量矩阵X 为X = ⎪⎪⎪⎪⎪⎭⎫⎝⎛kn k k n n x x x x x x x x x 212222*********所谓完全的多重共线性,就是0='X X 。
或者rank (X )k 〈+1,表明在矩阵X 中,至少有一个列向量可以由其余的列向量线性表示。
所谓近似共线性或不完全多重共线性是指对于k 个解释变量t x (t =1,2,3,…k),如果存在不全为零的数k λλλ ,,21使得02211=++++u x x x k k λλλ (6.1.2)成立,其中u 为随机误差项。
如果k 个解释变量之间不存在上述完全或不完全的线性关系式,则称无多重共线性。
如果用矩阵表示,这时X 为满秩矩阵,即rank (X )=k +1。
6.1.2 多重共线性产生的原因根据经验,多重共线性产生的经济背景和原因有以下几个方面:1.经济变量之间往往存在同方向的变化趋势 2.经济变量之间往往存在着密切的关联度 3.在模型中引入滞后变量也容易产生多重共线性4.在建模过程中由于解释变量选择不当,引起了变量之间的多重共线性6.2 多重共线性造成的影响6.2.1 完全共线性下参数估计量不存在多元线性回归模型U XB Y +=的普通最小二乘估计量为Y X X X B ''=-1)(ˆ如果解释变量之间存在完全多重共线性,由于X 矩阵的系数行列式0='X X ,逆矩阵1)(-'X X 不存在,无法得到参数估计式Bˆ。
多重共线性问题及解决方法概念所谓多重共线性(Multicollinearity)是指线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确。
一般来说,由于经济数据的限制使得模型设计不当,导致设计矩阵中解释变量间存在普遍的相关关系。
后果参数估计失去其意义检验与检验目前常用的多重共线性诊断方法有:1.自变量的相关系数矩阵R诊断法:研究变量的两两相关分析,如果自变量间的二元相关系数值很大,则认为存在多重共线性。
但无确定的标准判断相关系数的大小与共线性的关系。
有时,相关系数值不大,也不能排除多重共线性的可能。
2.方差膨胀因子(the variance inflation factor,VIF)诊断法:方差膨胀因子表达式为:VIFi=1/(1-R2i)。
其中Ri为自变量xi对其余自变量作回归分析的复相关系数。
当VIFi很大时,表明自变量间存在多重共线性。
该诊断方法也存在临界值不易确定的问题,在应用时须慎重。
3.容忍值(Tolerance,简记为Tol)法:容忍值实际上是VIF的倒数,即Tol=1/VIF。
其取值在0~1之间,Tol越接近1,说明自变量间的共线性越弱。
在应用时一般先预先指定一个T ol值,容忍值小于指定值的变量不能进入方程,从而保证进入方程的变量的相关系数矩阵为非奇异阵,计算结果具有稳定性。
但是,有的自变量即使通过了容忍性检验进入方程,仍可导致结果的不稳定。
4.多元决定系数值诊断法:假定多元回归模型p个自变量,其多元决定系数为R2y(X1,X2,…,Xp)。
分别构成不含其中某个自变量(Xi,i=1,2,…,p)的p个回归模型,并应用最小二乘法准则拟合回归方程,求出它们各自的决定系数R2i(i=1,2,…,p)。
如果其中最大的一个R2k与R2Y很接近,就表明该自变量在模型中对多元决定系数的影响不大,说明该变量对Y总变异的解释能力可由其他自变量代替。
它很有可能是其他自变量的线性组合。
第6章多重共线性的情形及其处理思考与练习参考答案6.1 试举一个产生多重共线性的经济实例。
答:例如有人建立某地区粮食产量回归模型,以粮食产量为因变量Y,化肥用量为X1,水浇地面积为X2,农业投入资金为X3。
由于农业投入资金X3与化肥用量X1,水浇地面积X2有很强的相关性,所以回归方程效果会很差。
再例如根据某行业企业数据资料拟合此行业的生产函数时,资本投入、劳动力投入、资金投入与能源供应都与企业的生产规模有关,往往出现高度相关情况,大企业二者都大,小企业都小。
6.2多重共线性对回归参数的估计有何影响?答:1、完全共线性下参数估计量不存在;2、近似共线性下OLS估计量非有效;3、参数估计量经济含义不合理;4、变量的显著性检验失去意义;5、模型的预测功能失效。
6.3 具有严重多重共线性的回归方程能不能用来做经济预测?答:虽然参数估计值方差的变大容易使区间预测的“区间”变大,使预测失去意义。
但如果利用模型去做经济预测,只要保证自变量的相关类型在未来期中一直保持不变,即使回归模型中包含严重多重共线性的变量,也可以得到较好预测结果;否则会对经济预测产生严重的影响。
6.4多重共线性的产生于样本容量的个数n、自变量的个数p有无关系?答:有关系,增加样本容量不能消除模型中的多重共线性,但能适当消除多重共线性造成的后果。
当自变量的个数p较大时,一般多重共线性容易发生,所以自变量应选择少而精。
6.5 自己找一个经济问题来建立多元线性回归模型,怎样选择变量和构造设计矩阵X才可能避免多重共线性的出现?答:请参考第三次上机实验题——机场吞吐量的多元线性回归模型,注意利用二手数据很难避免多重共线性的出现,所以一般利用逐步回归和主成分回归消除多重共线性。
如果进行自己进行试验设计如正交试验设计,并收集数据,选择向量使设计矩阵X 的列向量(即X 1,X 2, X p )不相关。
6.6对第5章习题9财政收入的数据分析多重共线性,并根据多重共线性剔除变量。
第六章多重共线性第六章多重共线性前面两章所讲的异方差性和自相关性都是表现在随机误差项中的,我们下面所讲的多重共线性讨论的是模型中的解释变量违背基本假设的问题。
回忆以下我们在讲多元线性回归模型时,基本假定与简单线性回归模型不同的是哪一点?——就是无多重共线性假定:即假定各解释变量之间不存在线性关系,或者说各解释变量的观测值之间线性无关。
这一章我们讨论的多重共线性就是当解释变量违背了这一条基本假定的情形。
第一节多重共线性概念先看一个实例:我们研究某个地区家庭消费及其影响因素。
我们除了引入收入X1以外,还引入了消费者的家庭财产X2作为第2个解释变量。
根据抽样数据回归得到以下结果:Y^=24.7747+0.9415X1-0.0424X2t=(3.6690) (1.1442) (-0.5261)R2=0.9635 R2——=0.9531 F=92.4020这一回归结果说明什么?1、可决系数和修正可决系数都很理想2、F统计量高度显著,说明X1、X2联合对Y的影响显著3、各变量参数的t检验都不显著,不能否定等于零的假设4、财产变量的系数竟然与预期的符号相反。
为什么会出现这样的结果呢?再看一个例子:分析某地区汽车保养费用支出与汽车的行程数以及汽车拥有的时间建立模型,通过样本数据估计得:Y^=7.29+27.58X1-151.15X2t= (0.06) (0.958) (-7.06)R2——=0.946 F=52.53这个结果修正可决系数理想,F检验也显著,但X的T检验不显著,X2的T检验虽然显著,但系数符号与经济意义不符。
为什么也出现这种结果?一、多重共线性的概念:如果某两个或多个解释变量之间出现了相关性,则称为多重共线性。
完全共线性与不完全共线性表示的是一种线性相关程度。
比如我们在第一个例子中,发现可支配收入与家庭财富之间有明显的共线性关系,他们的相关系数高达0.9989,第二个例子中汽车的行程数与拥有汽车的时间的相关系数也为0.9960,表明两个变量之间存在一种不完全的线性相关关系,我们可以认为他们之间有程度很高的多重共线性.不存在多重共线性只说明解释变量之间没有线性关系,而不排除他们之间存在某种非线性关系。
第6章多重共线性的情形及其处理思考与练习参考答案6.1 试举一个产生多重共线性的经济实例。
答:例如有人建立某地区粮食产量回归模型,以粮食产量为因变量Y,化肥用量为X1,水浇地面积为X2,农业投入资金为X3。
由于农业投入资金X3与化肥用量X1,水浇地面积X2有很强的相关性,所以回归方程效果会很差。
再例如根据某行业企业数据资料拟合此行业的生产函数时,资本投入、劳动力投入、资金投入与能源供应都与企业的生产规模有关,往往出现高度相关情况,大企业二者都大,小企业都小。
6.2多重共线性对回归参数的估计有何影响?答:1、完全共线性下参数估计量不存在;2、近似共线性下OLS估计量非有效;3、参数估计量经济含义不合理;4、变量的显著性检验失去意义;5、模型的预测功能失效。
6.3 具有严重多重共线性的回归方程能不能用来做经济预测?答:虽然参数估计值方差的变大容易使区间预测的“区间”变大,使预测失去意义。
但如果利用模型去做经济预测,只要保证自变量的相关类型在未来期中一直保持不变,即使回归模型中包含严重多重共线性的变量,也可以得到较好预测结果;否则会对经济预测产生严重的影响。
6.4多重共线性的产生于样本容量的个数n、自变量的个数p有无关系?答:有关系,增加样本容量不能消除模型中的多重共线性,但能适当消除多重共线性造成的后果。
当自变量的个数p较大时,一般多重共线性容易发生,所以自变量应选择少而精。
6.5 自己找一个经济问题来建立多元线性回归模型,怎样选择变量和构造设计矩阵X才可能避免多重共线性的出现?答:请参考第三次上机实验题——机场吞吐量的多元线性回归模型,注意利用二手数据很难避免多重共线性的出现,所以一般利用逐步回归和主成分回归消除多重共线性。
如果进行自己进行试验设计如正交试验设计,并收集数据,选择向量使设计矩阵X的列向量(即X1,X2,X p)不相关。
6.6对第5章习题9财政收入的数据分析多重共线性,并根据多重共线性剔除变量。
多重共线性的情形及其处理多重共线性的情形及其处理⼀、多重共线性对回归模型的影响设回归模型εββββ++++=p p x x x y 22110存在完全的多重共线性,即对设计矩阵X 的列向量存在不全为零的⼀组数p c c c c ,,,,210 ,使得:22110=++++ip p i i x c x c x c c (n i ,,2,1 =),此时设计矩阵X 的秩Rank(X)在实际问题研究当中,022110≈++++ip p i i x c x c x c c ,虽然Rank(X)=p+1成⽴,但是|X X '|≈0,1)(-'X X 的对⾓线元素很⼤,β的⽅差阵12)()?(-'=X X D σβ的对⾓线元素很⼤,⽽)?(βD 的对⾓线元素即为)?var(0β,)?var(1β,…, )?var(p β,因⽽p βββ,,,10的估计精度很低,这样,虽然OLSE 能得到β的⽆偏估计,但估计量β?的⽅差很⼤,不能正确判断解释变量对被解释变量的影响程度。
例如在⼆元回归中,假定y 与1x ,2x 都已经中⼼化,此时回归常数项为零,回归⽅程为2211x x y ββ+=,由此可以得到 1121221)1()?var(L r -=σβ,2221222)1()?var(L r -=σβ,其中∑==n i i x L 12111,∑==ni i i x x L 12112,∑==ni i x L 12222则1x ,2x 之间的相关系数22111212L L L r =。
随着⾃变量1x 与2x 的相关性增强,1?β和2β的⽅差将逐渐增⼤。
当1x 与2x 完全相关时,r=1,⽅差将变为⽆穷⼤。
当给定不同的12r 值时,从下表可以看出⽅差增⼤的速度。
表6.1为了⽅便,假设1112=L σ,相关系数从0.5变为0.9时,回归系数的⽅差增加了295%,相关系数从0.5变为0.95时,回归系数的⽅差增加了670%、当回归⾃变量1x 与2x 相关程度越⾼,多重共线性越严重,那么回归系数的估计值⽅差就越⼤,回归系数的置信区间就变得很宽,估计的精确性就⼤幅度降低,使估计值稳定性变得很差,进⼀步致使在回归⽅程整体⾼度显著时,⼀些回归系数则通不过显著性检验,回归系数的正负号也可能出现倒置,使得⽆法对回归⽅程得到合理的经济解释,直接影响到最⼩⼆乘法的应⽤效果,降低回归⽅程的价值。