指数函数及其性质(一)
- 格式:doc
- 大小:85.00 KB
- 文档页数:3
2.1.2 指数函数及其性质(一)一、学习目标:了解指数函数模型的实际背景,理解指数函数的概念和意义,掌握指数函数的图象和性质;本节课的重点是在理解指数函数定义的基础上掌握指数函数的图象和性质,本节课的难点是弄清楚底数a对于指数函数图象和性质的影响。
二、问题引领:1、指数函数的概念、图象和性质2、指数函数图象分布图: 如图,,,,A B C D 分别为指数函数,,,x x x x y a y b y c y d ====的图象,则,,,a b c d 与0、1的大小关系为01a b c d <<<<<。
三、典例剖析:例题1:已知指数函数()(0>=a a x f x 且)1≠a 的图象经过点()2,π,求()()()012f f f -、、的值。
分析:要求()()()012f f f -、、的值,我们需要先求出指数函数()x a x f =的解析式,也就是要先求a 的值。
根据函数图象过点()2,π这一条件,可以求得底数a 的值。
解: ()x a x f =的图象经过点()2,π,()2f π∴= 即2a π=,解得12a π=()2x f x π∴=,即:()()()1012101,12f f f ππππ-====-==。
点评:求函数解析式的典型方法是待定系数法,求指数函数需要待定的系数只有一个a ,只需要一个已知条件,就可以确定一个指数函数。
例题2:1、设1111333b a⎛⎫⎛⎫<<< ⎪ ⎪⎝⎭⎝⎭,求,,a b a a a b 的大小关系。
2、 比较23540.5,1.2,1的大小。
分析:利用指数函数的单调性和特殊点比较大小。
解:1、因为函数13x y ⎛⎫= ⎪⎝⎭在R 上为减函数,又由1111333b a⎛⎫⎛⎫<<< ⎪ ⎪⎝⎭⎝⎭,所以得:01a b <<<,因为当01a <<时,函数xy a =为减函数,又a b <,所以a b a a >,因为函数x y a =与xy b =在R 上同为减函数且当0x >时,随着x 的增大,函数x y a =比函数xy b =减小的快,所以a aa b <,即b a aa ab <<。
指数函数及其性质一、学习目标1.了解指数函数的背景,以及与实际生活的联系。
2.理解指数函数概念。
3.能画出具体指数函数的图象,掌握指数函数的性质。
. 二、新课导学探究一:指数函数的概念问题1:细胞分裂时,第一次由1个分裂成2个(即 ),第2次由2个分裂成4个(即 ),第3次由4个分裂成8个(即 ),如此下去,如果第x 次分裂得到 个细胞,那么细胞个数y 与次数x 的函数关系式是 。
问题2:《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭。
”请你写出截取x 次后,木棰剩余量y 关于x 的函数关系式是观察这两个函数,他们有什么共同的特点? (一)指数函数的定义一般地,函数 叫做指数函数,x 是自变量,函数的定义域为 。
思考:1、指数函数解析式的结构特征: (1)xa 前面的系数为 (2) a 的取值范围 (3)指数只含(二)巩固练习1、下列函数是指数函数的序号为①xy ⎪⎭⎫ ⎝⎛=51 ②25x y =⨯ ③2x y = ④23-=x y ⑤xy 4-=⑥xy )14.3(-=π ⑦12-=x y2、已知函数xa a a y ⋅+-=)33(2是指数函数,则=a指数函数及其性质的运用1.指数函数xa y =(1,0≠>a a 且)的图像和性质如下(1)5.27.1和37.1 (2)1.0-8.0和2.0-8.0 (3)3.07.1和1.39.03.已知下列不等式,比较m,n 的大小(1)n22m< (2) n2.02.0m<4.求下列函数的定义域及值域(1)23y -=x (2)x 1)21(y = (3)1-31y x =5.函数)1a 1()(x≠>=且a a x f 在区间[1,2]上的最大值与最小值之和为6,求a 的值。
6.求函数23·29y -+=xx 的值域。
8.判断下列函数的单调性(1)x2y = (2)x-2y = (3)x y -=1)21(。
2.1.2 指数函数及其性质疱丁巧解牛知识·巧学·升华 一、指数函数及其性质 1.指数函数的定义一般地,函数y=a x(a >0且a ≠1,x ∈R )叫做指数函数,其中x 是自变量.由于当a=0时,若x >0,a x 恒等于0;若x ≤0,a x无意义. 当a <0时,如y=(-2)x,对x=…,-21,41,21,…在实数范围内函数值不存在. 当a=1时,y=1x=1,是一常量,没有研究的必要.综上可知,当a ≤0或a=1时,不是没有意义,就是没有研究的必要,故规定a >0且a ≠1.只有形如y=a x (a >0且a ≠1)且定义域为R 的函数,才是指数函数,又如y=3·2x ,y=2x-1,y=2x+1等,是由指数函数经过某种变换而得到的,它们都不是指数函数.要点提示 因为指数的概念已经从整数扩充到实数,在底数a >0且a ≠1的情况下,对任意一个x 都有唯一确定的值y 与它对应,所以x 是任意实数. 2.指数函数的图象和性质(1)下面先画指数函数y=2x 及y=0.5x图象列出x,y 的对应值表,用描点法化出图象: x …-3 -2 -1 0 1 2 3 … y=2x 0.13 0.25 0.5 1 2 4 8 y=0.5x84210.50.250.13要点提示 函数y=a x与y=a -x的图象关于y 轴对称.xa >10<a <1图象性质①定义域:R ②值域:(0,+∞)③过点(0,1),即x=0时,y=1 ④在R 上是增函数, 当x <0时,0<y <1; 当x >0时,y >1④在R 上是减函数, 当x <0时,y >1; 当x >0时,0<y <1指数函数的单调性是指数函数性质中应用最广的,运用此性质可以求与指数函数有关的一般函数的值域、单调区间等.指数函数的图象变换有两种:一种是平移变换分上下、左右平移,遵循“左加右减,上加下减”.平移前后的形状没有发生变化,只是位置改变了;另一种是对称变换,它会导致前后的形状发生明显改变.指数函数的图象变换可以推广到我们学过的任何函数. 研究函数的性质,可明确图象的形状;通过函数的图象可以进一步加深对性质的理解.二者相辅相成、缺一不可,可通过解决函数的图象来解决与方程和不等式有关的问题,这时作函数的图象应明确其图象的形状,而确定形状的手段主要有:函数关系式的等价变形、图象的变换、通过研究函数的性质等.要点提示 ①指数函数的图象恒在x 轴上方;②指数函数的单调性取决于它的底数;③y=a x (a >1)在 x >0的方向上增幅越来越快;④指数函数由唯一的常量a 确定.⑤y=a x (0<a<1)在x <0的方向上增幅越来越快.方法点拨 遇到求含有字母的表达式等问题可先用待定系数法确定a ,再求值.深化升华 ①底数相同,指数不同的,可构造指数函数,利用函数的单调性比较大小; ②底数、指数都不相同的,可选一中间值比较大小; ③指数相同,底数不同的可用数形结合法比较大小. 问题·思路·探究问题1 为什么说指数函数的图象是研究函数性质的直观工具?思路:对于指数函数问题,我们不仅仅应该知道其表达式及利用表达式进行计算的问题,而且应注重结合其相应的图象掌握相应的知识且能灵活运用图象来分析问题、解决问题,从而领会图象在指数函数应用方面的作用. 探究:因为通过图象我们可以直观地看到,任取a({a|a>0且a ≠1}),图象始终过定点(0,1),图象始终在x 轴的上方;当a>1时第一象限的图象与0<a<1时第二象限的图象始终在直线y=1的上方,当a>1时第二象限的图象与0<a<1时第一象限的图象始终在直线y=1的下方,当a>1时,图象是上升的,当0<a<1时,图象是下降的.所以应用图象进行数形结合,清晰地刻画了指数函数的性质,它们便于我们记忆起函数性质和变化规律.问题2 函数y=2|x|的图象有什么特征?你能根据它的图象指出其值域和单调区间吗?思路:函数y=a |x|:其图象是关于y 轴对称的,所以只要先把y=a x的y轴右边的图象保留,再将y 轴右边部分关于y轴作出对称部分;就得到了y=a |x|的图象.探究:函数y=2|x|的图象关于y 轴对称,这是因为它的图象由y=2x(x ≥0)的图象和y=(21)x(x<0)的图象合并而成,而y=2x(x>0)与y=(21)x(x<0)的图象关于y 轴对称,所以函数y=2|x|的图象关于y 轴对称,由图象可知值域是[1,+∞),递增区间为[0,+∞),递减区间为(-∞,0]问题3 函数y=a x+h+k(a>0且a ≠1)的图象恒过点(-h,1+k ),为什么?思路:一般地,把函数y=f (x )的图象向右平移m 个单位得函数y=f (x-m )的图象(m ∈R ,m <0就是向右平移|m|个单位);把函数y=f (x )的图象向上平移n 个单位,得到函数y=f (x )+n 的图象(n ∈R ,若n <0,就是向下平移|n|个单位=探究:函数y=a x+h +k(a>0且a ≠1)的图象可由y=a x(a>0且a ≠1)的图象向左(当h>0时)或向右(当h<0时)平移|h|个单位,再向上(当k>0时)或向右(当k<0时)平移|k|个单位而得到,因为y=a x (a>0且a ≠1)的图象恒过点(0,1),所以函数y=a x+h+k(a>0且a ≠1)的图象恒过点(-h,1+k ). 典题·热题·新题例1 下列函数中,哪些是指数函数?①y=4x ②y=x 4 ③y=-4x ④y=4-x ⑤y=(-4)x ⑥y=4x+1 ⑦y=4x +1⑧y=e x ⑨y=4x(x>0)⑩y=(a-1)x(a>1且a ≠2)思路解析:①④⑧⑩为指数函数,其中④y=4-x 从形式上看不是指数函数,将它变形为y=(4-1)x,即y=(41)x.它实质上是指数函数. ②中底数x 不是常数,而4不是变数;③是-1与指数函数4x的乘积;⑤中底数-4<0; ⑥中的指数是x 的函数,不是自变量x ;⑦由y=4x向上平移得到的;⑨x 的范围不是R . 答案:②③⑤⑥⑦⑨不是指数函数.误区警示 像y=4x+1,y=4x +1的图象可由y=2x 的图象通过平移或伸缩变换而得到.而y=a -x从形式上看不是指数函数,将它变形为y=(a -1)x,即y=(a1)x.它实质上是指数函数. 例2 若指数函数y=(2a-1)x是减函数.则a 的范围是多少? 思路解析:由题意可知1>2a-1>0,得21<a <1. 答案:21<a <1 深化升华 解与指数有关的问题时,注意对底数分类讨论,这是考试的一个重点.例3 如右图,在同一坐标系下给出四个指数函数的图象,试比较底数a 、b 、c 、d 的大小.思路解析:作直线x=1与四个图象交于四个点,得四个纵坐标为a 、b 、c 、d ,底数都“跑”到纵轴上去了,可在数轴的位置上直观比较底数的大小,则a >b >1>c >d >0 . 答案:a >b >c >d拓展延伸 在同一坐标系中,画出函数y=3x,y=(31)x ,y=2x,y=(21)x 的图象,比一比,看它们之间有何联系.从图中可以看到,图象向下无限地与x 轴靠拢,即x 轴是指数函数的渐近线.任何两个函数图象都是交叉出现的,交叉点是(0,1).在y 轴的右侧,对同一变量x 而言,底数越大,函数值越大;在y 轴的左侧,情况正好相反,即对同一自变量x 而言,底数越大,函数值越小.以此为依据,可定性地分析在同一坐标系中,底数不同的若干个指数函数的底数的大小关系.怎样定量分析同一坐标系中底数不同的指数函数的底数的大小呢?我们知道,对指数函数y=a x(a >0且a ≠1),当x=1时,y=a ,而a 恰好是指数函数的底数,这就启发我们,不妨作直线x=1,它同各个图象相交,交点的纵坐标就是各指数函数的底数,以此可比较底数的大小.深化升华 (1)渐近线是指逐渐靠拢,但永远不能到达的线.(2)从联系的观点研究不同底数的指数函数图象间的关系,对深化理解指数函数的图象和性质是有帮助的.例4 画出下列函数的图象:(1)y=2x-1+2;(2)y=0.5|x|思路解析:利用指数函数的图象及结合函数图象的变换来处理.答案:(1)利用函数y=2x的图象沿x 轴正半轴平移一个单位,纵坐标不变,再把所得图象沿y 轴的正半轴平移2个单位,横坐标不变,得到y=2x-1+2的图象,如图(1)(注:画出虚直线的目的是体现平移变换).(2)由y=0.5|x|=⎪⎩⎪⎨⎧<=≥-,0,25.0,0,5.0x x xx x作y=0.5x的图象但只取y 轴及其右侧部分,再作y=2x的图象但只取y 轴左侧部分,就得到函数y=0.5|x|的图象,如图(2)所示的实线(注:画出虚线的目的是衬托实线的特征).图(1) 图(2) 深化升华 由指数函数的图象,我们还可以总结出图象的变化规律: ①平移规律若已知y=a x 的图象,则把y=a x 的图象向左平移b (b >0)个单位,则得到y=a x+b的图象.把y=a x 的图象向右平移b (b >0)个单位,则得到y=a x-b 的图象,把y=a x的图象向上平移b(b >0)个单位,则得到y=a x +b 的图象.把y=a x的图象向下平移b (b >0)个单位,则得到y=a x-b 的图象. ②对称规律函数y=a x 的图象与y=a -x 的图象关于y 轴对称,y=a x 的图象与y=-a x的图象关于直线x轴对称.函数y=a x 的图象与y=-a -x的图象关于坐标原点对称.函数y=a |x|:其图象是关于y 轴对称的,所以只要先把y=a x的y轴右边的图象保留;再将y轴右边部分关于y轴对称;就得到了y=a |x|的图象.拓展延伸 一般地,把函数y=f (x )的图象向右平移m 个单位得函数y=f (x-m )的图象(m ∈R ,m <0就是向右平移|m|个单位);把函数y=f (x )的图象向上平移n 个单位,得到函数y=f (x )+n 的图象(n ∈R ,若n <0,就是向下平移|n|个单位=.函数y=f (x )的图象与y=f (-x )的图象关于y 轴对称,函数y=f (x )的图象与函数y=-f (x )的图象关于x 轴对称,函数y=f (x )的图象与函数y=-f (1-x )的图象关于原点对称.函数y=f(|x|):其图象是关于y 轴对称的,所以只要先把y轴右边的图象保留;再将y轴右边部分关于y轴对称;就得到了y=f(|x|)的图象.例5 用函数单调性定义证明函数f (x )=2x在(-∞,+∞)上单调递增. 思路解析:函数单调递增:x 1<x 2⇒f (x 1)<f (x 2);或先论证)()(21x f x f <1,又f (x 2)>0⇒f (x 1)<f (x 2).证明:在(-∞,+∞)上任取x 1<x 2,则)()(21x f x f =2121222x x x x -=,∵x 1-x 2<0,∴212xx -<1.又f (x 2)=2x2>0,∴f (x 1)<f (x 2).∴函数f (x )=2x在(-∞,+∞)上单调递增. 深化升华 在用函数单调性定义证明的过程中,除了作差法也可用作商法比较f (x 1)、f (x 2)的大小.例6 求下列函数的单调区间:(1)y=2425.0--x x ;(2)y=x112+.思路解析:将原函数“拆”成两个简单的函数,再依据复合函数的单调性求解. 解:(1)令u=x 2-4x-2,则y=0.5u.因为y=0.5u为减函数,所以y=2425.0--x x 与u=x 2-4x-2的单调性相反.又由u=x 2-4x-2=(x-2)2-6得u=x 2-4x-2在(-∞,2]为减函数,在[2,+∞)为增函数.所以y=2425.0--x x 在(-∞,2)为增函数,在[2,+∞]为减函数;(2)令u=1+x 1,则y=2u ,因为y=2u为增函数,所以y=x 112+的单调性与u=1+x 1的单调性相同.因为u=1+x1(x ≠0)所以在(-∞,0)及(0,+∞)上均为减函数,所以y=x 112+的单调递减区间为(-∞,0)和(0,+∞).拓展延伸 确定函数的单调性,利用复合函数的单调性的方法或可变形函数解析式,利用已有函数的单调性进行由里及外的层层判断,最终得出函数的单调性.但是要证明单调性必须用单调性定义.本题求函数值域也可以利用解析式变形,由里及外层层求出值域最终而得:y=1212+-x x =1-122+x .x ∈(-∞,+∞)⇒2x >0⇒2x+1>1⇒121+x <1,∴-2<-122+x<0.∴-1<y <1.∴值域为(-1,1).例7 已知函数f (x )=a x(a >0,且a ≠1),根据图象判断21[f (x 1)+f (x 2)]与f (221x x +)的大小,并加以证明.思路解析:对a >1及0<a <1两种情形的指数函数图象,分别取两点A (x 1,f (x 1))、B (x 2,f (x 2))连线段,其中21[f (x 1)+f (x 2)]就是这线段中点M 的函数值,f (221x x +)就是图象上弧线段与直线x=221x x +的交点M 的函数值,如下图.显然无论哪一种情形总有点N 在点M 下方. ∴f (221x x +)<21[f (x 1)+f (x 2)]. 证明:f (x 1)+f (x 2)-2f (221x x +)=2222)(2112121x x x x xx a aaa a -=-++.由x 1≠x 2,∴21x ≠22x .∴2221xxa a -≠0,∴222)(21xxa a ->0.∴f (x 1)+f (x 2)-2f (221x x +)>0. 深化升华 通过数形结合我们不难发现凸凹函数的性质. 若f (x )是凸函数,则f (221x x +)≥21[f (x 1)+f (x 2)]; 若f (x )是凹函数,则f (221x x +)≤21[f (x 1)+f (x 2)]. 例8 方程2x-1=2x 的实数解的个数为( )A. 0个B.1个C.2个D.3个 思路解析:这不是我们所学的代数等式,也不可能转化成代数式,只有数形结合观察图象交点才能解决.答案:2x-1=2x 可化为2x=2x+1,令⎩⎨⎧+==122x y y x 在同一坐标系中画出y=2x及y=2x+1的图象.如右图所示,可以看出它们图象有两个交点.故选C.深化升华 遇到等式两边的形式属于不同类型的函数而且直接处理无法进行时,这时应联想到用数形结合来解决.。
指数函数及其性质教案教学目标知识目标:理解指数函数的定义,掌握指数函数的图象、性质及其简单应用.水平目标:通过自主探索,经历“特殊→一般→特殊”的认知过程,完善认知结构,领会数形结合、分类讨论、归纳推理等数学思想方法,增强识图用图的水平.情感目标:感受数学问题探索的乐趣和成功的喜悦,体会数学的理性、严谨及数与形的和谐统一美,体现数学实用价值及其在社会进步、人类文明发展中的重要作用。
教学重点、难点重点:指数函数的图象、性质及其简单使用.难点:指数函数图象和性质的发现过程,及指数函数图象与底数的关系. 教学方法与手段教学方法:启发式、探究式教学法.教学手段:采用多媒体辅助教学.教学过程1.创设情境,建构概念〖学生活动1〗:将一页白纸连续对折,完成表格并写出:(2)设这页纸的面积单位为1,则对折后每页纸的面积s与对折次数x的关系式:______________________〖问题情境1〗某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相对应的细胞个数为y,则细胞个数y 与分裂次数x的表达式:____________________〖问题情境2〗一尺之棰,日取其半,万世不竭.出自《庄子●天下篇》求剩余长度y关于截取次数x的表达式为: ____________________〖问题1〗类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?_____________________________________________________________________〖建构概念〗一般地,形如______________________的函数称为指数函数.它的定义域是R.2.实验探索,汇报交流(1)构建研究方法〖问题2〗我们定义了一个新的函数,你能类比前面讨论函数的思路,提出研究指数函数的方法和内容吗?研究方法:____________________________________研究内容:_____________________________________________〖问题3〗如何来画指数函数的图象呢?_________________________________________________________________ (2)自主探究,汇报交流〖学生活动2〗选择数据,画出图象,观察特点,归纳性质.(在坐标纸上画)x(>0且≠1)具有以下性质:〖学生活动3〗指数函数3.新知使用,巩固深化【例1】比较下列各组数中两个值的大小:①1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.变式探究:①比较a0.3与a3.1的大小(a>0,a≠1)②根据不等式确定x的取值范围.1.5x<1.53.2【例2】①已知3x≥9,求实数x的取值范围;②已知0.2x<25,求实数x的取值范围.4.课堂检测:课本第67页,练习第4题:(2),(4),(6)5.概括知识,总结方法〖问题4〗本节课我们的收获➢1.学习了哪些知识:➢2.实践了一种研究函数的探究模式:➢ 3. 渗透了三种数学思想:5.分层作业,因材施教A组(1)感受理解:课本第70页,习题3.1(2):1,2,3,4;B组(2)思考使用:使用今天的研究方法,你还能得到指数函数的其它性质吗?6、知识扩展〈一〉考古中的指数函数14C是具有放射性的碳同位素,能够自发地实行 衰变,变成氮,半衰期为5730年,活的植物通过光合作用和呼吸作用与环境交换碳元素,体内14C 的比例与大气中的相同。
指数函数有什么性质?如何证明指数函数的单调性? 指数函数是数学中重要的函数。
应用到值e上的这个函数写为exp(x)。
还可以等价的写为ex,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。
在高中数学中占有一定位置。
那幺指数函数有什幺性质?如何证明指数函数的单调性? 指数函数有什幺性质? 指数函数一般具有以下性质:(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑, 同时a等于0函数无意义一般也不考虑。
(2) 指数函数的值域为大于0的实数集合。
(3) 函数图形都是下凹的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
小编推荐:《2018年高考数学备考计划好的复习计划是成功的开始》(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。
(7) 函数总是通过(0,1)这点,(若Y=Ax+B,则函数定过点(0,1+b) (8) 显然指数函数无界。
(9) 指数函数既不是奇函数也不是偶函数。
(10)当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。
指数函数一、根式与分数指数幂1. 根式定义根式:一般地,若x n=a(a为非负实数,n为正整数),则x叫做a的n次方根,记作或。
其中,n叫做根指数,a叫做被开方数。
2. 根式性质当n为奇数时,正数的n次方根为正数,负数的n次方根为负数。
当n为偶数时,正数的n次方根有两个,互为相反数;负数没有偶次方根。
0的任何次方根都是0。
3. 根式运算化简:通过因式分解、合并同类项等方法将复杂的根式化简为最简形式。
求值:将根号下的数按照因数分解的形式写出,然后求出完全平方数的平方根,最后相乘得到最终结果。
和(差):将根式化为最简形式后,合并同类项。
积(商):合并同类项,分解各个项,然后化简得到最终结果。
4. 分数指数幂定义分数指数幂:一个数的指数为分数,如(a>0,m,n∈N∗且n>1),其中a的次幂等于n次根号下a的m次方,即。
二、分数指数幂的运算性质1、同底数幂相乘:底数相同,指数相加2、同底数幂相除:底数相同,指数相减3、幂的乘方:指数相乘4、任何非零数的0次幂都等于15、负指数幂表示倒数三、实数指数幂的运算及其性质1、实数指数幂的基本概念实数指数幂指的是形如 a n 的数,其中 a 为实数(且 a≠0),n 为实数。
实数指数幂包括正整数指数幂、零指数幂、负整数指数幂、分数指数幂以及无理数指数幂。
2、运算性质同底数幂相乘:a m•a n=a m+n同底数幂相除:a m/a n=a m−n(a≠0)幂的乘方:(a m)n=a mn分数指数幂:(a>0,m,n 为正整数,n>1)负整数指数幂:(a≠0)零指数幂:a0=1(a≠0)四、无理数指数幂有理数指数幂逼近无理数指数幂的原理,基于数学中的极限思想和连续性概念。
由于无理数无法直接表示为两个整数的比,我们需要通过一系列越来越接近该无理数的有理数来逼近它,从而计算出对应的指数幂值。
这一过程体现了数学中的逼近和极限思想,是微积分等更高层次数学的基础。
指数函数及其性质(一)
教学目标:
1、 知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。
2、 能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践
的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问
题的能力。
3、 情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、
锲而不舍的治学精神。
4、 教学重点、难点:
1、 重点:指数函数的图像和性质
2、 难点:底数 a 的变化对函数性质的影响,突破难点的关键是利用多媒体
动感显示,通过颜色的区别,加深其感性认识。
教学方法:比较法、讨论法
教学过程:
一、事例引入
上节课学习了指数幂的运算性质,本节课学习与指数有关的函数。
问题:什么是函数?
我们来考虑一个与医学有关的例子:大家对“非典”应该并不陌生,它与其它的传染病一样,
有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。
我们来看一种球菌的分裂过程:
动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,……。
一个这样的球菌分裂x
次后,得到的球菌的个数y 与x 的函数关系式是什么? )
学生归纳出关系式: y = 2 x (x 是正整数) (提醒注意定义域)
这是球菌个数 y 关于分裂次数 x 的函数,该函数是什么样的形式(指数形式), 底数 2 是常量,
而指数 x 却是变量,
回忆章前的结论:y=1.073 x (x *N ∈,且x 20≤) (学生和一次、二次、反比例函数作比较)
我们称这种函数为指数函数——点题。
二、指数函数的定义
(幻灯片展示)定义: 函数 y = a x (a >0且a ≠1)叫做指数函数, x ∈R.。
问题 1:为何要 规定 a > 0 且 a ≠1? (学生分组讨论)
(幻灯片展示) (1)当 a <0 时,a x 有时会没有意义,如 a=﹣3 时,当x=
2
1就没有意义; (2)当 a=0时,a x 有时会没有意义,如x= - 2时,
(3 )当 a = 1 时, 函数值 y 恒等于1,没有研究的必要。
巩固练习1:下列函数哪一项是指数函数()
①2
y x
=②8x
y=③(21)x
y a
=-(
1
2
a>且1
a≠)④(4)x
y=-
⑤x
yπ
=⑥1
22
5+
=x
y⑦x
y x
=⑧10x
y=-.⑨y=xπ
三、函数图像的画法:列表、描点、连线
根据底数a 的规定,考虑两个特定底的指数函数 y = 2x,y =的图像。
学生作图,再投影;后演示动画比较(幻灯片)
四、指数函数的图像和性质
幻灯片展示:(演示画图过程)(列表、描点、连线)
(几何画板演示底数不同时图像的变化情况)
观察思考题 2:两类函数图像有什么共同点?又有何不同特征?:(从图象的升降、点的坐标及经过的特殊点讨论)
a>1 0<a<1
图
象
图
像
特
征
图像分布在一、二象限,与y轴相交,落在y轴的上方。
都过点(0,1)
第一象限的点的纵坐标都大于1;
第二象限的点的纵坐标都大于0且
小于1。
第一象限的点的纵坐标都大于0且
小于1;第二象限的点的纵坐标都大
于1。
从左向右图像逐渐上升。
从左向右图像逐渐下降。
性
质
(1)定义域:R
(2)值域:(0,+∞)
(3)过定点(0,1),即x=0时,y=1
(4)x>0时,y>1;x<0时,0<y<1 (4)x>0时,0<y<1;x<0时,y>1.
(5)在 R上是增函数(5)在R上是减函数
例1.已知指数函数()(0,1)x
f x a a a =>≠的图象经过点(3,)π,求(0),(1),(3)f f f -的值(教材第66页例6)。
提示f(0) 可以由指数函数过定点的性质得到;
小结:确定一个指数函数的条件:确定底数; 例 2、求下列函数的定义域: (1) (2)
T :分析:(1)只要指数位置上的
有意义,则原函数式有意义。
(2)只要指数位置上的 有意义,则原函数式有意义。
C :解:(1)要有意义,则需 有意义,需x ≠ 0,∴ 原函数的定义域为 {x| x ∈R 且 x ≠ 0}。
(2) 要 有意义,则需有意义,需2 x - 1 ≥ 0 即 x ≥ ,又∴原函数定义域为{x | x ≥ }。
课后思考:怎样确定这些函数的值域,以及不用描点做出函数图像?
六、目标训练
1、当 a ∈____________时,函数 y = a x (a > 0 且 a ≠1 ) 为增函数, 这时,当 x ∈_________时, y > 1。
2、若指数函数f(x)=( 2a + 1 ) x 是减函数,则a 的取值范围是________________________。
3、函数 y =
的定义域是______________。
七、归纳小结 本节课的主要内容是:指数函数的定义、图像和性质;会做一个指数函数的大致图像以及能判断它的一些基本性质;
八、布置作业: 课本习题2.1 A 组 5.。