12章多重线性回归与相关
- 格式:ppt
- 大小:297.50 KB
- 文档页数:39
统计学第十二章 多元线性回归一. 选择题1. 在多元线性回归分析中,t 检验是用来检验( ) A 总体线性关系的显著性 B.各回归系数的显著性 C.样本线性关系的显著性 D .H 0:β1=β2=…βk =02.在多元线性回归模型中,若自变量x i 对因变量y 的影响不显著,那么它的回归系数 βi 的取值( )A.可能为0B.可能为1C.可能小于0 D 可能大于13.在多元线性回归方程 y i ˆ=βˆ0+x 11ˆβ+x 22ˆβ+…+xkkβˆ中,回归系数βˆi表示( ) A.自变量x i 变动1个单位时,因变量y 的平均变动额为βˆiB.其他变量不变的条件下,自变量x i 变动1个单位时,因变量y的平均变动额为βˆiC.其他变量不变的条件下,自变量x i 变动1个单位时,因变量y的变动总额为βˆiD.因变量y 变动1个单位时,因变量x i 的变动总额为βˆi4.设自变量的个数为5个,样本容量为20。
在多元回归分析中,估计标准误差的自由度为( )A.20B.15C.14D.18 5.在多元回归分析中,通常需要计算调整的多重判定系数R a2,这样可以避免的值()A. 由于模型中自变量个数的增加而越来越接近1B. 由于模型中自变量个数的增加而越来越接近0C. 由于模型中样本容量的增加而越来越接近0D. 由于模型中样本容量的增加而越来越接近16.在多元线性回归分析中,如果F检验表明线性关系显著,则意味着()A.在多个变量中至少有一个自变量与因变量之间的线性关系显著B.所有的自变量与因变量之间的线性关系都显著C.在多个变量中至少有一个自变量与因变量之间的线性关系不显著D.所有的自变量与因变量之间的线性关系都不显著7.在多元线性回归分析中,如果t检验表明回归系数βi不显著,则意味着()A.整个回归方程的线性关系不显著B.整个回归方程的线性关系显著C.自变量x i与因变量之间的线性关系不显著D.自变量x i与因变量之间的线性关系显著8.设多元线性回归方程为Yˆ=βˆ0+x11ˆβ+x22ˆβ+…+xkkβˆ,若自变量x i的回归系数βˆi的取值接近0,这表明()A.因变量y对自变量ix的影响不显著B.因变量y对自变量ix的影响显著C.自变量ix对因变量y的影响不显著D.自变量x对因变量y的影响显著i9.一家出租汽车公司为确定合理的管理费用,需要研究出租车司机每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(a=0.05)根据上表计算的判定系数为()A. 0.9229B. 1.1483C. 0.3852D. 0.851610. 一家出租汽车公司为确定合理的管理费用,需要研究出租车四级每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(α=0.05)根据上表计算的估计标准误差为()A. 306.18B. 17.50C. 16.13D. 41.9311. 一家出租汽车公司为确定合理的管理费用,需要研究出租车司机每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(α=0.05)根据上表计算的用于检验线性关系的统计量F=()A. 306.18B. 48.80C. 5.74D. 41.9312.一家产品销售公司在30个地区设有销售分公司。
第十二章因子分析(大学虎统计)1, 引出因子分析的定义:作个比喻,对面来了一群女生,我们一眼就能够分辨出孰美孰丑,这是判别分析;并且我们的脑海中会迅速的将这群女生分为两类;美的一类,丑的一类,这是聚类分析。
我们之所以认为某个女孩漂亮,是因为她具有漂亮女孩所具有的一些共同点,比如漂亮的脸蛋,高挑的身材,白皙的皮肤,等等。
其实这种从研究对象中寻找公共因子的方法就是因子分析(Factor Analysis )。
因子分析也是利用降维的思想,把每一个原始变量分解成两部分,一部分是少数几个公共因子的线性组合,另一部分是该变量所独有的特殊因子,其中公共因子和特殊因子都是不可观测的隐变量,我们需要对公共因子作出具有实际意义的合理解释。
因子分析的思想源于1904年查尔斯,斯皮曼(charles spearman )对学生考试成绩的研究,目前因子分析已经在很多领域得到广泛应用。
本章主要容包括:因子分析的理论简介,因子分析的matlab 实现,因子分析具体案例。
12.1因子分析简介 12.11 基本因子分析模型设P 维总体'(,,...,)p x x x x =的均值为'12(,,...,)p μμμμ=协方差矩阵为()ij p pσ⨯=∑,相关系数矩阵为()ij p pR ρ⨯=。
因子分析的一般模型为111111221122211222221122.........m m m m p p p p pm m p x a f a f a f x a f a f a f x a f a f a f μεμεμε=+++++⎧⎪=+++++⎪⎨⎪⎪=+++++⎩(12.1)其中,12,,...,mf f f 为m 个公共因子,i ε是变量(1,2,...)i x i p =所独有的特殊因子他们都是不可观测的隐变量。
称(1,2,...;1,2,...,)ij a i p j m ==为变量ix 在公共公共因子jf 上的截荷,它反映了公共因子对变量的重要程度,对解释公共因子具有重要的作用。
第十二章直线相关与回归A型选择题〔、若计算得一相关系数r=0.94,则()A、x与y之间一定存在因果关系B、同一资料作回归分析时,求得回归系数一定为正值C、同一资料作回归分析时,求得回归系数一定为负值D求得回归截距a>0E、求得回归截距a^ 02、对样本相关系数作统计检验(H o =0),结果r r°.05(v),统计结论是()。
A、肯定两变量为直线关系B、认为两变量有线性相关C、两变量不相关B. 两变量无线性相关E、两变量有曲线相关3、若A「0.05(如」2血。
^),则可认为()。
A. 第一组资料两变量关系密切B. 第二组资料两变量关系密切C. 难说哪一组资料中两变量关系更密切D两组资料中两变量关系密切程度不一样E、以上答案均不对4、相关分析可以用于()有无关系的研究A、性别与体重B、肺活量与胸围C、职业与血型D国籍与智商E、儿童的性别与体重5、相关系数的假设检验结果,则在〉水平上可认为相应的两个变量间()A、有直线相关关系B、有曲线相关关系C、有确定的直线函数关系D有确定的曲线函数关系E、不存在相关关系6根据样本算得一相关系数r,经t检验,P v 0.01说明()A、两变量有高度相关B、r来自高度相关的相关总体C、r来自总体相关系数p的总体D r来自卩工0的总体E、r来自p>0的总体7、相关系数显著检验的无效假设为()A、r有高度的相关性B、r来自p工0的总体C、r来自p = 0的总体D r与总体相关系数p差数为0E、r来自p>0的总体8、计算线性相关系数要求()A. 反应变量Y呈正态分布,而自变量X可以不满足正态分布的要求B. 自变量X呈正态分布,而反应变量丫可以不满足正态分布的要求C. 自变量X和反应变量丫都应满足正态分布的要求D. 两变量可以是任何类型的变量E. 反应变量Y要求是定量变量,X可以是任何类型的变量9、对简单相关系数r进行检验,当检验统计量t r>t 0.05(V)时,可以认为两变量x 与丫间()A. 有一定关系B. 有正相关关系C. 无相关关系D. 有直线关系E. 有负相关关系10、相关系数反映了两变量间的()A、依存关系B、函数关系C、比例关系D相关关系E、因果关系11、|r| “0.05/2,(2)时,则在G =0.05水准上可认为相应的两变量X、丫间()。
第11章 一元线性回归分析11.1(1)散点图(略),产量与生产费用之间正的线性相关关系。
(2)920232.0=r(3) 检验统计量2281.24222.142=>=αt t ,拒绝原假设,相关系数显著。
11.2(1)散点图(略)。
11.3 (1)0ˆβ表示当0=x 时y 的期望值。
(2)1ˆβ表示x 每变动一个单位y 平均下降0.5个单位。
11.4 (1)%902=R(2)1=e s 11.5 一家物流公司的管理人员想研究货物的运输距离和运输时间的关系,为此,他抽出了公司最近10个卡车运货记录的随机样本,得到运送距离(单位:km)和运送时间(单位:天)的数据如下:要求:(1)绘制运送距离和运送时间的散点图,判断二者之间的关系形态:(2)计算线性相关系数,说明两个变量之间的关系强度。
(3)利用最小二乘法求出估计的回归方程,并解释回归系数的实际意义。
解:(1)可能存在线性关系。
(2)x 运送距离(km )y 运送时间(天)x 运送距离(km )Pearson 相关性 1.949(**) 显著性(双侧)0.000 N10 10y运送时间(天)Pearson 相关性.949(**) 1显著性(双侧)0.000N**. 在 .01 水平(双侧)上显著相关。
有很强的线性关系。
(3)模型非标准化系数标准化系数t 显著性B 标准误Beta1 (常量)0.118 0.355 0.333 0.748x运送距离0.004 0.000 0.949 8.509 0.000a. 因变量: y运送时间(天)回归系数的含义:每公里增加0.004天。
11.6 下面是7个地区2000年的人均国内生产总值(GDP)和人要求:(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。
(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。
(3)利用最小二乘法求出估计的回归方程,并解释回归系数的实际意义。
第十二章相关与回归分析一、填空1. 如果两变量的相关系数为0,说明这两变量之间__ 。
2.相关关系按方向不同,可分为_____ 和________ 。
3. 相关关系按相关变量的多少,分为和复相关。
4.在数量上表现为现象依存关系的两个变量,通常称为自变量和因变量。
自变量是作为(变化根据)的变量,因变量是随(自变量)的变化而发生相应变化的变量。
5.对于表现为因果关系的相关关系来说,自变量一般都是确定性变量,因变量则一般是(随机性)变量。
6.变量间的相关程度,可以用不知Y与 X有关系时预测 Y的全部误差 E1,减去知道 Y与 X有关系时预测Y的联系误差E2,再将其化为比例来度量,这就是(削减误差比例)。
7.依据数理统计原理,在样本容量较大的情况下,可以作出以下两个1)实际观察值 Y 围绕每个估计值 Y c是服假定:从();(2)分布中围绕每个可能的 Y c 值的()是相同的。
7. 已知:工资(元)倚劳动生产率(千元)的回归方程为yc 10 80x,因此,当劳动生产率每增长 1 千元,工资就平均增加 80 元。
8.根据资料,分析现象之间是否存在相关关系,其表现形式或类型如何,并对具有相关关系的现象之间数量变化的议案关系进行测定,即建立一个相关的数学表达式,称为(回归方程),并据以进行估计和预测。
这种分析方法,通常又称为(回归分析)。
9.积差系数 r 是(协方差)与 X 和 Y 的标准差的乘积之比。
二、单项选择1.欲以图形显示两变量 X 和 Y 的关系,最好创建( D )。
A 直方图 B 圆形图 C 柱形图 D 散点图2.在相关分析中,对两个变量的要求是(A )。
A 都是随机变量B 都不是随机变量C 其中一个是随机变量,一个是常数D 都是常数3.相关关系的种类按其涉及变量多少可分为()。
A. 正相关和负相关B. 单相关和复相关C. 线性相关和非线性相关D. 不相关、不完全相关、完全相关4.关于相关系数,下面不正确的描述是(B )。
回归多重相关系数
多重相关系数是用来衡量一个因变量和多个自变量之间的相关
性的统计指标。
它可以帮助我们理解多个自变量对因变量的综合影响。
在多元线性回归分析中,多重相关系数通常用R来表示。
它的
取值范围在-1到1之间,绝对值越接近1表示自变量和因变量之间
的关系越强,越接近0表示关系越弱。
多重相关系数的计算涉及到各个自变量与因变量之间的相关性,以及自变量之间的相关性。
通过计算这些相关系数的加权平均值,
就可以得到多重相关系数。
多重相关系数的平方则表示了自变量对
因变量变化的解释比例,即R^2。
R^2越接近1,说明自变量对因变
量的解释能力越强。
在实际应用中,多重相关系数可以帮助我们判断自变量对因变
量的贡献程度,从而选择最相关的自变量来建立模型。
此外,多重
相关系数还可以用来评估模型的拟合程度,以及预测因变量的准确性。
需要注意的是,多重相关系数并不能说明自变量之间的因果关系,只能说明它们与因变量之间的相关程度。
因此,在解释多重相
关系数时,需要谨慎地避免混淆相关性与因果关系。
总的来说,多重相关系数在多元线性回归分析中扮演着重要的角色,它能够帮助我们理解自变量与因变量之间的复杂关系,从而更好地进行建模和预测分析。