多重线性回归与相关
- 格式:ppt
- 大小:2.33 MB
- 文档页数:72
第十三章 多重线性回归与相关[教学要求]了解: 多重共线性的概念及其对回归分析结果的影响;通径分析的基本过程及其应用。
熟悉:多重相关与回归分析的基本原理与方法。
掌握:掌握多重相关与回归分析结果的解释;相关、回归、简单相关、偏相关与复相关,简单回归、偏回归与全回归等概念。
[重点难点]第一节 多重线性回归的概念及其统计描述一、变量(Y )关于k 个自变量()的多重线性回归的数学模型为:k X X X ,...,,21i ki k i i i X X X Y εββββ+++++=...22110。
实质是将每个Y 的观测值用该模型在最小残 差平方和的原则下进行分解。
二、标准回归系数为将各个变量按ii i i S X X X −=*变换后,再进行多重回归计算所得的 回归系数。
因为通过标准化过程消除了各个变量的计量单位不同对回归系数的影响, 所以各个标准回归系数的大小能直接反映该自变量对Y 变量的回归效应的大小。
三、多重回归分析的前提条件完全与简单线性回归相同:线性、独立、正态和等方差,即 LINE 。
第二节 多重线性回归的假设检验一、 整体回归效应的假设检验(方差分析)的原假设为H 0: 0...321=====k ββββ;其过程 是通过对Y 的总变异进行分解,用回归均方与残差均方的比值构造F 检验统计量,然后根 据相应的F 分布决定是否拒绝原假设。
二、偏回归系数的t 检验的的原假设为H 0: βi =0,即第i 个总体偏回归系数为零;其过程是 用第i 个偏回归系数的估计b i 与该偏回归系数的标准误之比值构造t 统计量:bi ibi S b t =然后根据相应的t 分布决定是否拒绝原假设。
第三节 复相关系数与偏相关系数一、 确定系数、复相关系数与调整确定系数1、复相关系数的平方称为确定系数(coefficient of determination)或决定系数,记为R 2,用以反映线性回归模型能在多大程度上解释反应变量Y 的变异性。
第三节 多元线性相关与回归分析一、标准的多元线性回归模型上一节介绍的一元线性回归分析所反映的是1个因变量与1个自变量之间的关系。
但是,在现实中,某一现象的变动常受多种现象变动的影响。
例如,消费除了受本期收入水平的影响外,还会受以往消费和收入水平的影响;一个工业企业利润额的大小除了与总产值多少有关外,还与成本、价格等有关。
这就是说,影响因变量的自变量通常不是一个,而是多个。
在许多场合,仅仅考虑单个变量是不够的,还需要就一个因变量与多个自变量的联系来进行考察,才能获得比较满意的结果。
这就产生了测定与分析多因素之间相关关系的问题。
研究在线性相关条件下,两个和两个以上自变量对一个因变量的数量变化关系,称为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。
多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型相类似,只是在计算上比较麻烦一些而已。
限于本书的篇幅和程度,本节对于多元回归分析中与一元回归分析相类似的内容,仅给出必要的结论,不作进一步的论证。
只对某些多元回归分析所特有的问题作比较详细的说明。
多元线性回归模型总体回归函数的一般形式如下:t kt k t t u X X Y ++⋯++=βββ221 (7.51)上式假定因变量Y 与(k-1)个自变量之间的回归关系可以用线性函数来近似反映.式中,Y t 是变量Y 的第t个观测值;X jt 是第j 个自变量X j 的第t个观测值(j=1,2,……,k);u t 是随机误差项;β1,β2,… ,βk 是总体回归系数。
βj 表示在其他自变量保持不变的情况下,自变量X j 变动一个单位所引起的因变量Y 平均变动的数额,因而又叫做偏回归系数。
该式中,总体回归系数是未知的,必须利用有关的样本观测值来进行估计。
假设已给出了n个观测值,同时1ˆβ,2ˆβ…,k βˆ为总体回归系数的估计,则多元线性回归模型的样本回归函数如下:t kt k t t e X X Y ++⋯++=βββˆˆˆ221 (7.52) (t =1,2,…,n)式中,e t 是Y t 与其估计t Y ˆ之间的离差,即残差。
多元线性相关与回归分析首先,我们来介绍多元线性相关的概念。
多元线性相关是指两个或多个变量之间存在着线性关系。
具体地说,如果我们有变量X1,X2,...,Xp和Y,我们可以通过寻找最佳的线性函数Y = a + b1*X1 + b2*X2+ ... + bp*Xp来拟合这些变量之间的关系。
为了得到最佳的拟合函数,我们使用了回归分析的方法。
回归分析是一种统计学方法,用来估计两个或多个变量之间的关系,并建立相应的回归模型。
回归模型可以用来预测或解释因变量Y。
在多元线性回归分析中,我们通常使用最小二乘估计法来确定回归系数,这样可以使得估计值和实际值的差异最小化。
在回归模型中,我们通常有一个因变量Y和多个自变量X1,X2,...,Xp。
回归模型可以写成以下形式:Y=β0+β1*X1+β2*X2+...+βp*Xp+ε其中,β0,β1,β2,...,βp是回归系数,表示自变量对因变量的影响大小;ε表示误差项,表示不能被回归模型解释的因素。
回归分析的主要目的是通过估计回归系数来确定自变量对因变量的影响。
通过对回归系数进行显著性检验,我们可以判断自变量是否对因变量有统计显著的影响。
此外,还可以通过回归模型进行预测,例如根据给定的自变量值预测因变量的值。
然而,需要注意的是,回归分析有一些前提条件需要满足。
首先,多元线性回归模型假设因变量Y是一个连续的变量,而自变量X1,X2,...,Xp可以是任意的变量类型。
其次,回归模型假设自变量之间没有完全的多重共线性,即自变量之间的线性相关程度不是特别高。
此外,回归模型还假设误差项ε服从正态分布,并且方差是恒定的。
如果这些条件得到满足,我们可以使用各种统计方法来进行回归分析。
常见的方法包括简单线性回归、多元线性回归、逐步回归、回归诊断等。
这些方法可以帮助我们确定最佳的回归模型,并对模型进行检验和解释。
总之,多元线性相关与回归分析是一种重要的统计学方法,用来研究两个或多个变量之间的相关关系,并建立相应的回归模型。