卡塞格伦反射面天线73页PPT
- 格式:ppt
- 大小:7.70 MB
- 文档页数:73
标准卡塞格伦天线的组成标准卡塞格伦天线由主反射面、副反射面和馈源组成。
为了获得聚焦特性,主反射面必须是旋转抛物面,副反射面是旋转双曲面,馈源可以是各种形式,但一般用喇叭作馈源,安装在主、副反射面之间,其相位中心应置于旋转双曲面的焦点上,双曲面的安装应使双曲面的虚焦点与抛物面的焦点重合,如图所示。
卡塞格伦天线整个就是一个轴对称结构。
副反射面通常置于喇叭馈源的远区。
如果喇叭辐射的球面波方向图是旋转对称的,侧卡式天线就具有轴对称性能。
卡塞格伦天线的工作原理卡式天线的工作原理与抛物面天线的相似,抛物面天线利用抛物面的反射特性,使得由其焦点处的馈源发出的球面波前,经抛物面反射后转变为在抛物面口径上的平面波前,从而使抛物面天线具有锐波束、高增益的性能。
卡式天线在结构上多了一个双曲面。
天线作发射时,由馈源喇叭发出的球面波首先由双曲面反射,然后再经主反射面(抛物面)反射出去。
根据双曲面和抛物面的性质,由F'发出的任意一条射线到达某一口径面的波程相等,即,则相位中心在F'处的馈源辐射的球面波前,必将在主反射面的口径上变为平面波前,呈现同相场,即S0面为等相位面,使卡式天线具有锐波束、高增益性能。
天线作接收时的过程正好相反,外来平面波前经主、副反射面反射之后,各射线都将汇聚到馈源所在点F',由喇叭接收。
卡氏天线的优缺点:优点:(1)馈线短(2)空间衰减SA小(3)减小漏溢(4)等效焦距长(3)设计灵活(7个参数)等缺点:(1)副反射面的遮挡大,但对要求G很高的天线来说,主反射面很大的话,这个遮挡相对就小。
(2)造价高。
卡塞格伦天线的几何参数卡式天线的几何参数关系如图所示:双曲面的四个参量:抛物面有三个参量:(1) 双曲面直径(1) 抛物面直径dD(2) 双曲面焦距fc (2) 抛物面焦距f(3) 双曲面半张角ϕ0 (3) 半张角ψ0(4) 双曲面顶点到抛物面焦点距离Lv在这七个参量中,只有四个是独立的,其余三个可根据抛物面和双曲面的几何关系求出。
卡塞格伦天线参数1.引言1.1 概述卡塞格伦天线是一种常见的天线类型,常用于通信和广播领域。
它由一个主要由许多金属片组成的反射器和一个位于反射器焦点处的辐射器构成。
卡塞格伦天线的设计旨在提供高增益和方向性,以便在传输信号时能够实现较远的覆盖距离。
反射器是卡塞格伦天线中的关键组件之一。
它的作用是将辐射器发出的信号反射并聚焦在特定方向上,从而增强天线的增益。
通常情况下,反射器由大量金属片组成,这些金属片的形状和排列方式会对天线的性能产生重要影响。
与传统的平面反射器天线相比,卡塞格伦天线具有较高的增益和更窄的方向性。
这是由于卡塞格伦天线的反射器具有抛物形状,可以更有效地将信号反射到辐射器上。
此外,卡塞格伦天线还具有较低的侧瓣辐射和较高的前向增益,这使其在抗干扰和长距离传输方面表现出色。
除了反射器,卡塞格伦天线的辐射器也是至关重要的组成部分。
辐射器通常采用馈源、驱动器和辐射元件的组合,用于将电磁信号转化为空间中的电磁波。
辐射器的设计和参数设置对天线的频率响应、极化特性和效能等性能指标有着重要影响。
总的来说,卡塞格伦天线是一种性能优异的天线类型,具有较高的增益、良好的方向性和较低的侧瓣辐射。
它在通信和广播领域中得到广泛应用,能够满足长距离传输和抗干扰等要求。
通过合理的设计和参数设置,卡塞格伦天线可以进一步提高其性能,适应不同的应用场景。
1.2 文章结构文章结构部分旨在介绍本文的整体结构和各个部分的内容。
本文共包含三个主要部分,即引言、正文和结论。
引言部分包括三个小节。
首先是概述,通过简要介绍卡塞格伦天线的相关背景和概念,为读者提供背景知识。
其次是文章结构,用于说明本文的组织结构和各个部分的内容。
最后是目的,明确本文的研究目标和意义。
正文部分是本文的主体,分为两个要点,分别是卡塞格伦天线参数要点1和卡塞格伦天线参数要点2。
针对每个要点,文章将深入探讨卡塞格伦天线的相关参数,包括其基本原理、设计方法、特点和应用领域等。
反射面抛物面卡塞格伦天线由金属反射面和馈源组成的天线,主要包括单反射面天线(图1)和双反射面天线(图3)两大类。
这是基于光学原理导出的天线形式,广泛用于微波和波长更短的波段。
第二次世界大战前后多种单反射面天线开始大量使用,到60年代出现了以卡塞格伦天线为代表的双反射面天线。
它们已成为最常用的一类微波和毫米波高增益天线,广泛应用于通信、雷达、无线电导航、电子对抗、遥测、射电天文和气象等技术领域。
以卫星通信为例,由于增益高和结构简单,反射面天线是通信卫星地球站的主要天线形式;由于能制成可展开的折伞形结构,它又是宇宙飞船和卫星天线的基本形式。
至今不但已产生了多种多样的反射面形式来满足不同的需要,同时也出现了性能优良的多种馈源结构(见天线馈源)。
有些还采用组合馈源来形成"和差"波束或多波束(见单脉冲天线和多波束天线)。
单反射面天线典型形式是旋转抛物面天线(图1a)。
它的工作原理与光学反射镜相似,是利用抛物反射面的聚焦特性。
抛物面上点P的以O为原点的柱坐标方程为ρ2=4fz;以焦点F为原点的球坐标方程为r=2f/(1+cosθ),f为抛物面的焦距。
因此,由焦点F发出的射线经抛物面反射后,到达焦点所在平面的波程为一常数,即。
这说明各反射线到达该平面时具有相同相位,因而由馈源发出的球面波经抛物面反射后就变换成平面波,形成沿抛物面轴向辐射最强的窄波束。
抛物面直径D和工作波长λ之比越大,则波束越窄,其半功率点宽度为:2θ0.5=(58°~80°)λ/D天线增益G与天线开口面(口径)几何面积A成正比,而与波长平方λ2成反比,即:G=4πAη/λ2=(πD/λ)2η式中η称为天线效率或口径效率,主要由口径利用系数与截获系数的乘积决定。
口径利用系数取决于口径上场分布的均匀程度。
当均匀分布(口径上各点场的相位相同且振幅相等)时,口径利用系数最大,其值为1。
截获系数是馈源投射到反射面上的功率与馈源总辐射功率之比,理论上最大值也是1。