• P54 习题A组 3 4 6
小结
椭圆
双曲线
方程 a b c关系
x2 a2
y2 b2
1( a> b >0)
x2 a2
y2 b2
1
(
a>
0
b>0)
c 2 a 2 b 2 (a> b>0) c 2 a 2 b 2 (a> 0 b>0)
图象
y
M
Y p
F1 0
F2 X
F1 0
F2 X
范围 对称性 顶点
b
(5)离心率: e c a
-b o b x -a
例题讲解
例1 :求双曲线 9y2 16x2 144 的实半轴长,虚半轴长,
焦点坐标,离心率.渐近线方程。
解:把方程化为标准方程
y2 42
x2 32
1
可得:实半轴长a=4
虚半轴长b=3
半焦距c= 42 32 5
焦点坐标是(0,-5),(0,5)
离心率: e c 5
一、研究双曲线
x2 a2
y2 b2
1(a
0, b
0)
的简单几何性质
1、范围
y
x2 a2
1,即x2
a2
x a, x a
(-x,y)
(x,y)
-a o a
x
2、对称性
(-x,-y)
(x,-y)
关于x轴、y轴和原点都是对称。
x轴、y轴是双曲线的对称轴,原点是对称中心, 又叫做双曲线的中心。
3、顶点
(3)e的含义:
b c2 a2 (c )2 1 e2 1
a
a
a
当e (1,)时,b (0,),且e增大, b 也增大