小学六年级奥数 比例类行程问题之柳卡图_PDF压缩
- 格式:pdf
- 大小:121.25 KB
- 文档页数:3
行程问题中的图示解法一、S-T图竖轴表示路程,一般为出发后的每一时刻离出发的距离,出发时此距离为0。
横轴表示时间,一般从出发开始计时,出发点处时间为0。
图形中的每个点均表示在某一时刻时的位置。
如下图,小明从家出发去上学,家和学校的距离为2千米。
规定竖轴为离家的距离,横轴为出发的时间。
其中A点表示出发5分钟后小明在离家1千米的位置,B点表示出发10分钟后小明在离家2千米的位置,即到达学校。
可以看到B点之后,随着时间的改变小明的位置并未发生改变,即这个阶段小明均在学校里,距离家都是2千米。
在S-T图中,每个点的路程数值和时间数值的比值即为速度。
图中OB为一条直线,由三角形相似的知识我们可以知道,此直线上的任意一点的路程与时间的比值都相等,即由O到B这个阶段速度是不变的。
我们可以用OB上任意一点的数据求出速度,如看A点,路程为1千米,时间为5分钟,速度为1÷5=0.2千米/分钟。
二、柳卡图法国数学家柳卡·施斗姆生于瑞士,因数学上的成就,于1836年当选为法国科学院院士。
在十九世纪的一次国际数学会议期间,有一天,正当来自世界各国的许多著名数学家晨宴快要结束的时候,法国数学家柳卡向在场的数学家提出困扰他很久、自认“最困难”的题目:“某轮船公司每天中午都有一艘轮船从哈佛开往纽约,并且每天的同一时刻也有一艘轮船从纽约开往哈佛。
轮船在途中所花的时间来去都是七昼夜,而且都是匀速航行在同一条航线上。
问今天中午从哈佛开出的轮船,在开往纽约的航行过程中,将会遇到几艘同一公司的轮船从对面开来?”(此即著名的“柳卡趣题”)【分析】法一:推理从哈佛开出的轮船遇到的纽约开来的轮船有两类,一类是该船出发前已从纽约发出且尚未到达哈佛的轮船,即该船出发前7天内纽约发出的轮船,除出发时纽约刚到达伦敦的一艘船外途中共遇到6艘。
另一类是该船出发后从纽约发出的轮船,即该船出发后7天内纽约发出的轮船,除到达伦敦时刚发出的船外途中共遇到7艘。
比率类行程问题之柳卡图加油站某轮船公司每天中午都有一艘轮船从哈佛开往纽约,而且每天的同一时辰也有一艘轮船从纽约开往哈佛。
轮船在途中所花的时间来往都是七昼夜,而且都是匀速航行在同一条航线上。
问今天中午从哈佛开出的轮船,在开往纽约的航行过程中,将会遇到几艘同一公司的轮船从对面开来 ?【例 2】(★★)如图,是某汽车在公路上行驶的行程 s(千米)与时间 t(分钟 )的关系图,观察图中的信息,解以下题:⑴汽车在前 8 分钟内的平均速度是多少?⑵汽车在中途停了多少时间?⑶汽车在前 40 分钟内的平均速度是多少?s( 千米)40【例 1】(★★)龟兔从同一起点起跑,快跑的兔子在途中休息,直到乌龟从身边跑过一段时间后,兔子再起身以原来的速度向前跑去。
依照图中的信息可知,若兔子能在到达终点时追上乌龟,则竞赛的行程最少应为 ______米。
150530 40时间(分钟)【例 3】(★★★)甲、乙两地相距 60 千米,清早 6 点小明与警车同时从甲地出发。
小明以每小时 5 千米的速度向乙地走,警车以每小时 20 千米的速度在甲、乙两地往返巡逻。
不算起点与终点,一路上看到警车从他身边驶过很多次,最后一次是 ( )点( )分。
12t (分钟 )8 20401【例 4】(★★★)甲、乙两人在一条长为30 米的直路上往返跑步,甲的速度是每秒1 米,乙的速度是每秒 0.6 米。
若是他们同时分别从直路的两端出发,当他们跑了 10 分钟后,共相遇几次 (从反面追上也算相遇 )?【例 6】(★★★)一条大河,水由 A 港流向 B 港,流速 4 千米 /时,甲、乙两船同时由 A 向 B 行驶,各自不停的在 A、B 之间往返航行,甲船在静水中的速度是千米时,乙船在静水中的速度是千米时,已知两船第二次迎面相遇的地点与两船第五次迎面相遇的地点相距 50 千米,那么 A、B 两港相距千米。
【例 5】(★★★)甲、乙两地之间有一条公路,佳佳从甲地出发步行去乙地,同时海海从乙地出发骑摩托车去甲地, 80 分钟后两人在途中相遇。
第八讲 行程问题(二)教学目标:1、 能够利用以前学习的知识理清变速变道问题的关键点;2、 能够利用线段图、算术、方程方法解决变速变道等综合行程题;3、 变速变道问题的关键是如何处理“变”;4、 掌握寻找等量关系的方法来构建方程,利用方程解行程题.知识精讲:比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。
比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况: 1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比 2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。
行程问题常用的解题方法有⑴公式法即根据常用的行程问题的公式进行求解,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式;有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件;⑵图示法在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具.示意图包括线段图和折线图.图示法即画出行程的大概过程,重点在折返、相遇、追及的地点.另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法;⑶比例法行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题;⑷分段法在非匀速即分段变速的行程问题中,公式不能直接适用.这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来;⑸方程法在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解.例题精讲:模块一、时间相同速度比等于路程比【例 1】甲、乙二人分别从A、B 两地同时出发,相向而行,甲、乙的速度之比是4: 3,二人相遇后继续行进,甲到达 B 地和乙到达A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点30千米,则A、 B 两地相距多少千米?【解析】两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为4: 3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了3个全程,三个全程中甲走了453177⨯=个全程,与第一次相遇地点的距离为542(1)777--=个全程.所以 A、 B 两地相距2301057÷= (千米).【例 2】 B 地在A,C 两地之间.甲从B 地到A 地去送信,甲出发10分后,乙从B 地出发到C 地去送另一封信,乙出发后10分,丙发现甲、乙刚好把两封信拿颠倒了,于是他从B 地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间。
行程问题中的图示解法一、S-T图竖轴表示路程,一般为出发后的每一时刻离出发的距离,出发时此距离为0。
横轴表示时间,一般从出发开始计时,出发点处时间为0。
图形中的每个点均表示在某一时刻时的位置。
如下图,小明从家出发去上学,家和学校的距离为2千米。
规定竖轴为离家的距离,横轴为出发的时间。
其中A点表示出发5分钟后小明在离家1千米的位置,B点表示出发10分钟后小明在离家2千米的位置,即到达学校。
可以看到B点之后,随着时间的改变小明的位置并未发生改变,即这个阶段小明均在学校里,距离家都是2千米。
在S-T图中,每个点的路程数值和时间数值的比值即为速度。
图中OB为一条直线,由三角形相似的知识我们可以知道,此直线上的任意一点的路程与时间的比值都相等,即由O到B这个阶段速度是不变的。
我们可以用OB上任意一点的数据求出速度,如看A点,路程为1千米,时间为5分钟,速度为1÷5=0.2千米/分钟。
二、柳卡图法国数学家柳卡·施斗姆生于瑞士,因数学上的成就,于1836年当选为法国科学院院士。
在十九世纪的一次国际数学会议期间,有一天,正当来自世界各国的许多著名数学家晨宴快要结束的时候,法国数学家柳卡向在场的数学家提出困扰他很久、自认“最困难”的题目:“某轮船公司每天中午都有一艘轮船从哈佛开往纽约,并且每天的同一时刻也有一艘轮船从纽约开往哈佛。
轮船在途中所花的时间来去都是七昼夜,而且都是匀速航行在同一条航线上。
问今天中午从哈佛开出的轮船,在开往纽约的航行过程中,将会遇到几艘同一公司的轮船从对面开来?”(此即著名的“柳卡趣题”)【分析】法一:推理从哈佛开出的轮船遇到的纽约开来的轮船有两类,一类是该船出发前已从纽约发出且尚未到达哈佛的轮船,即该船出发前7天内纽约发出的轮船,除出发时纽约刚到达伦敦的一艘船外途中共遇到6艘。
另一类是该船出发后从纽约发出的轮船,即该船出发后7天内纽约发出的轮船,除到达伦敦时刚发出的船外途中共遇到7艘。
小学奥数比例法行程问题(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--小升初之行程问题的解法---比例法根据近千套各类奥数竞赛和"小升初"数学考试试题的分析,平均每套试卷按12道题,满分100分计算,就有道试题为行程问题(即每120道试题中有18道是行程问题),分值为21分。
行程问题占一套试卷分值的1/5左右,所以行程问题不论在奥数竞赛中还是在"小升初"的升学考试中,都拥有非常显赫的地位,都是命题者偏爱的题型之一。
小学生"行程问题"普遍是弱项,有几下几个原因:一、行程分类较细,变化较多。
行程跟工程不一样,工程抓住工作效率和比例关系就可以解决绝大部分问题,但是行程则没有关键点可以抓住,因为每一个类型关键点都不一样。
二、要求对动态过程进行演绎和推理。
行程问题的题目语言叙述本身就很长,加上所描绘的是一个动态过程,一般很难从复杂的语言叙述中提炼出过程中量的变化关系。
三、行程是一个壳,可以将各类知识往里面加。
很多题目看似行程问题,但是本质不是行程问题。
因为行程的复杂,所以学习行程一定要循序渐进,掌握各类行程问题的解题关键点。
下面举例讲解用比例法求解一类行程问题。
方法指导:复杂行程问题经常运用到比例知识:速度一定,时间和路程成正比;时间一定,速度和路程成正比;路程一定,速度和时间成反比。
分析时可以抓住题中含有比的句子进行分析,以此作为突破口,一步一步求得结果。
也可以从题意的叙述中找出等量关系,从而得出所需的数量之比,再根据比与分数的关系求解。
能用比例法解决的行程问题的特点:能直接或间接地求出速度比或同一时间内的路程比例1:甲、乙两车的速度比是4:7,两车同时从两地相对出发,在距中点15千米处相遇,两地相距多少千米?边讲边练:1、甲、乙两车同时从AB两地相对而行,甲、乙两车速度比7:5,相遇时距中点12千米,AB两地相距多少千米?例2:两列火车同时从两个城市相对开出,小时相遇。
2013睿源小升初行程之间隔发车与柳卡图问题(一)发车间隔问题【知识点分析】发车问题是行程问题里面一种很常见的题型,解决发车问题需要一定的策略和技巧。
为便于叙述,现将发车问题进行一般化处理:某人以匀速行走在一条公交车线路上,线路的起点站和终点站均每隔相等的时间发一次车。
他发现从背后每隔a 分钟驶过一辆公交车,而从迎面每隔b 分钟就有一辆公交车驶来。
问:公交车站每隔多少时间发一辆车?(假如公交车的速度不变,而且中间站停车的时间也忽略不计。
)1、原型因为车站每隔相等的时间发一次车,而且车速不变,所以同向的、前后的两辆公交车间的距离相等。
这个相等的距离也是公交车在发车间隔时间内行驶的路程。
所以对于紧挨着的两辆车,有以下关系式:两车间隔距离(发车间隔)=发车时间间隔×车速2、背后追上,追及问题由图可以知道,人车行驶方向相同,人所在的位置与前一辆车相同,和下一辆车的距离就是发车间隔,下一辆车想追上人,那么就要比人多走这个发车间隔。
所以,根据“同向追及”,追及路程=发车间隔=(车速-人速)×追及时间,我们知道:公交车与行人a 分钟所走的路程差是1,即公交车比行人每分钟多走1a ,1a 就是公交车与行人的速度差。
即:(车速-人速)=1a 。
3、迎面开来,相遇问题由图可以知道,人车行驶方向相反,人所在的位置与前一辆车相同,和下一辆车的距离就是发车间隔,下一辆车和人相遇,那么人车的路程和就是这个发车间隔。
所以,根据“相向相遇”,路程和=发车间隔=(车速+人速)×相遇时间,我们知道:公交车与行人b 分钟所走的路程和是1,即公交车与行人每分钟一共走1b ,1b 就是公交车与行人的速度和。
即:(车速+人速)=1b。
这样,我们把发车问题化归成了“和差问题”。
第七讲行程问题(一)教学目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;ﻩ4、单位“1”变化的比例问题5、方程解比例应用题知识点拨:发车问题(1)、一般间隔发车问题。
用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔ﻫ汽车间距=(汽车速度-行人速度)×追及事件时间间隔ﻫ汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。
(3)当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:ﻫ(1)车速不变-班速不变-班数2个(最常见)ﻫ(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个ﻫ(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
时钟问题:时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
_________________ 个性化辅导讲义年级:时间年月日课题比例解行程问题教学目标 1. 了解物体匀速运动的特点。
2.掌握运用比例知识解决行程问题的方法。
3.培养想像力,增强思维力。
教学内容【知识梳理】我们常常会应用比例的工具分析 2 个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用v , v ;t ,t ;s s来表示,大体可分为以下两种情况:甲乙甲乙甲,乙1.当 2 个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s甲v甲t甲,这里因为时间相同,即 t甲t乙t ,所以由 t甲s甲, t乙s乙s乙v乙t乙v甲v乙得到 t s甲s乙,s甲v甲,甲乙在同一段时间 t 内的路程之比等于速度比v甲v乙s乙v乙2.当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时, 2 个物体所用的时间之比等于他们速度的反比。
s甲v甲t甲,这里因为路程相同,即 s甲 s乙s ,由 s甲 v甲 t甲,s乙 v乙 t乙s乙v乙t乙得 s v甲t甲v乙 t乙,v甲t乙,甲乙在同一段路程 s 上的时间之比等于速度比的反比。
v乙t甲比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。
比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
【例题精讲】例题 1 甲、乙两人同时A地出发,在A、B两地之间匀速往返行走,甲的速度大于乙的速度,甲每次到达 A 地、 B 地或遇到乙都会调头往回走,除此以外,两人在AB 之间行走方向不会改变,已知两人第一次相遇的地点距离 B 地 1800米,第三次的相遇点距离 B 地 800 米,那么第二次相遇的地点距离 B 地。