苏教版初二下册:反比例函数
- 格式:doc
- 大小:444.50 KB
- 文档页数:8
初二数学反比例函数知识要点及经典例题解析知识要点梳理知识点一:反比例函数的应用在实际生活问题中,应用反比例函数知识解题,关键是建立函数模型.即列出符合题意的反比例函数解析式,然后根据反比例函数的性质求解.知识点二:反比例函数在应用时的注意事项1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题.2.针对一系列相关数据探究函数自变量与因变量近似满足的函数关系.3.列出函数关系式后,要注意自变量的取值范围.知识点三:综合性题目的类型1.与物理学知识相结合:如杠杆问题、电功率问题等.2.与其他数学知识相结合:如反比例函数与一次函数的交点形成的直角三角形或矩形的面积.规律方法指导这一节是本章的重要内容,重点介绍反比例函数在现实世界中无处不在,以及如何应用反比例函数的知识解决现实世界中的实际问题.学生要学会从现实生活常见的问题中抽象出数学问题,这样可以更好地认识反比例函数概念的实际背景,体会数学与实际的关系,深刻认识数学理论来源于实际又反过来服务实际.经典例题透析类型一:反比例函数与一次函数相结合1.(如图1,已知反比例函数与一次函数的图象在第一象限相交于点.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点的坐标,并根据图象写出使反比例函数的值大于一次函数值的的取值范围.思路点拨:由于A在反比例函数图象上,由反比例函数定义得,从而求出A点的坐标.再由待定系数法求出一次函数解析式.联立一次函数和反比例函数解析式,可求出B点坐标。
根据数形结合的思想,求出反比例的图象在一次函数图象上方时x的取值范围.解析:(1)∵已知反比例函数经过点,∴,即∴∴A(1,2)∵一次函数的图象经过点A(1,2),∴∴∴反比例函数的表达式为,一次函数的表达式为。
(2)由消去,得。
即,∴或。
∴或。
∴或∵点B在第三象限,∴点B的坐标为。
由图象可知,当反比例函数的值大于一次函数的值时,的取值范围是或。
【例3】如果一次函数()的图像与反比例函数x m n y m n mx y -=≠+=30相交于点(22
1
,)
,那么该直线与双曲线的另一个交点为( ) 【解析】
⎩⎨⎧==⎪⎩
⎪⎨⎧=-=+∴⎪⎭⎫ ⎝⎛-=+=12132
212213n m m n n m x x m n y n mx y 解得,,相交于与双曲线直线Θ ⎪⎩⎪⎨⎧==⎩⎨⎧-=-=⎪⎩
⎪
⎨
⎧=+==+=∴2
21111121,12221
1y x y x x y x y x y x y 得解方程组双曲线为直线为
()11--∴,另一个点为
【例4】 如图,在AOB Rt ∆中,点A 是直线m x y +=与双曲线x
m
y =
在第一象限的交点,且2=∆AOB S ,则m 的值是_____.
图
解:因为直线m x y +=与双曲线x
m
y =过点A ,设A 点的坐标为()A A y x ,. 则有A
A A A x m
y m x y =
+=,.所以A A y x m =. 又点A 在第一象限,所以A A A A y y AB x x OB ====,.
所以m y x AB OB S A A AOB 2
1
2121==•=
∆.而已知2=∆AOB S . 所以4=m .
【课堂演练】
1.反比例函数x
y 2
-=的图像位于( )
A .第一、二象限
B .第一、三象限
C .第二、三象限
D .第二、四象限
o
y x
y x
o
y x
o
y x
o
A B C D
2.若y 与x 成反比例,x 与z 成正比例,则y 是z 的( )
A 、正比例函数
B 、反比例函数
C 、一次函数
D 、不能确定
3.如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数图象大致为( )
4.某气球内充满了一定质量的气体,当温度不变时, 气球内气体的气压P ( kPa ) 是气体体积V ( m 3 ) 的反比例函数,其图象如图所示.当气球内气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( )
A 、不小于54m 3
B 、小于5
4m 3
C 、不小于45m 3
D 、小于4
5
m 3
5.如图 ,A 、C 是函数x
y 1
=
的图象上的任意两点,过A 作x 轴的垂线,垂足为B ,过C 作y 轴的垂线,垂足为D ,记Rt ΔAOB
的
面积为S 1,Rt ΔCOD 的面积为S 2则 ( ) A . S 1 >S 2 B . S 1 <S 2
C . S 1=S 2
D . S 1与S 2的大小关系不能确定
6.关于x 的一次函数y=-2x+m 和反比例函数y=1
n x
+的图象都经过点A (-2,1).
求:(1)一次函数和反比例函数的解析式;(2)两函数图象的另一个交点B 的坐标;
(3)△AOB 的面积.
O
y
x
A
B
C
D
(件)是日销售价x 元的反比例函数,且当售价定为100元/件时,每日可售出30件. (1)请写出y 关于x 的函数关系式;
(2)该商场计划经营此种衬衣的日销售利润为1800元,则其售价应为多少元?
10.如图,在直角坐标系xOy 中,一次函数y =kx +b 的图象与反比例函数m
y x
=的图象交于A(-2,1)、B(1,n)两点。
(1)求上述反比例函数和一次函数的表达式; (2)求△AOB 的面积。
【课后提高】:
1.对与反比例函数x
y 2
=
,下列说法不正确的是( ) A .点(1,2--)在它的图像上 B .它的图像在第一、三象限 C .当0>x 时,的增大而增大随x y D .当0<x 时,的增大而减小随x y 2.已知反比例函数()0k
y k x
=≠的图象经过点(1,-2)
,则这个函数的图象一定经过( )。