高等数学1-1 数列的极限
- 格式:ppt
- 大小:1.92 MB
- 文档页数:31
第二章 数列极限引 言为了掌握变量的变化规律,往往需要从它的变化过程来判断它的变化趋势.例如有这么一个变量,它开始是1,然后为1111,,,,,234n如此,一直无尽地变下去,虽然无尽止,但它的变化有一个趋势,这个趋势就是在它的变化过程中越来越接近于零.我们就说,这个变量的极限为0.在高等数学中,有很多重要的概念和方法都和极限有关(如导数、微分、积分、级数等),并且在实际问题中极限也占有重要的地位.例如求圆的面积和圆周长(已知:2,2S r l r ππ==),但这两个公式从何而来?要知道,获得这些结果并不容易!人们最初只知道求多边形的面积和求直线段的长度.然而,要定义这种从多边形到圆的过渡就要求人们在观念上,在思考方法上来一个突破.问题的困难何在?多边形的面积其所以为好求,是因为它的周界是一些直线段,我们可以把它分解为许多三角形.而圆呢?周界处处是弯曲的,困难就在这个“曲”字上面.在这里我们面临着“曲”与“直”这样一对矛盾.在形而上学看来,曲就是曲,直就是直,非此即彼,辩证唯物主义认为,在一定条件下,曲与直的矛盾可以相互转化.恩格斯深刻提出:“高等数学的主要基础之一是这样一个矛盾,在一定的条件下直线和曲线应当是一回事”.整个圆周是曲的,每一小段圆弧却可以近似看成是直的;就是说,在很小的一段上可以近似地“以直代曲”,即以弦代替圆弧.执照这种辩证思想,我们把圆周分成许多的小段,比方说,分成n 个等长的小段,代替圆而先考虑其内接正n 边形.易知,正n 边形周长为2sinn l nR nπ=显然,这个n l 不会等于l .然而,从几何直观上可以看出,只要正n 边形的边数不断增加.这些正多边形的周长将随着边数的增加而不断地接近于圆周长.N 越大,近似程度越高.但是,不论n 多么大,这样算出来的总还只是多边形的周长.无论如何它只是周长的近似值,而不是精确值.问题并没有最后解决.为了从近似值过渡到精确值,我们自然让n 无限地增大,记为n →∞.直观上很明显,当n →∞时,n l l →,记成lim n n l l →∞=.——极限思想.即圆周长是其内接正多边形周长的极限.这种方法是我国刘微(张晋)早在第3世纪就提出来了,称为“割圆术”.其方法就是——无限分割.以直代曲;其思想在于“极限”.除之以外,象曲边梯形面积的计算均源于“极限”思想.所以,我们有必要对极限作深入研究.§1 数列极限的概念一 什么是数列1 数列的定义数列就是“一列数”,但这“一列数”并不是任意的一列数,而是有一定的规律,有一定次序性,具体讲数列可定义如下;若函数f 的定义域为全体正整数集合N +,则称:f N R +→为数列.注:1)根据函数的记号,数列也可记为(),f n n N +∈;2)记()n f n a =,则数列()f n 就可写作为:12,,,,n a a a ,简记为{}n a ,即{}{}()|n f n n N a +∈=;3)不严格的说法:说()f n 是一个数列.2 数列的例子(1)(1)111:1,,,,234n n ⎧⎫---⎨⎬⎩⎭;(2)11111:2,1,1,1,435n ⎧⎫++++⎨⎬⎩⎭ (3){}2:1,4,9,16,25,n ;(4){}11(1):2,0,2,0,2,n ++-二、什么是数列极限1.引言对于这个问题,先看一个例子:古代哲学家庄周所著的《庄子. 天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”.把每天截下的部分的长度列出如下(单位为尺):第1天截下12, 第2天截下2111222⋅=,第3天截下23111222⋅=,第n 天截下1111222n n -⋅=,得到一个数列:231111,,,,,2222n 不难看出,数列12n ⎧⎫⎨⎬⎩⎭的通项12n 随着n 的无限增大而无限地接近于零. 一般地说,对于数列{}n a ,若当n 无限增大时,n a 能无限地接近某一个常数a ,则称此数列为收敛数列,常数a 称为它的极限.不具有这种特性的数列就不是收敛的数列,或称为发散数列.据此可以说,数列12n ⎧⎫⎨⎬⎩⎭是收敛数列,0是它的极限. 数列{}{}21,1(1)n n ++-都是发散的数列.需要提出的是,上面关于“收敛数列”的说法,并不是严格的定义,而仅是一种“描述性”的说法,如何用数学语言把它精确地定义下来.还有待进一步分析.以11n ⎧⎫+⎨⎬⎩⎭为例,可观察出该数列具以下特性: 随着n 的无限增大,11n a n =+无限地接近于1→随着n 的无限增大,11n+与1的距离无限减少→随着n 的无限增大,1|11|n +-无限减少→1|11|n+-会任意小,只要n 充分大. 如:要使1|11|0.1n +-<,只要10n >即可; 要使1|11|0.01n+-<,只要100n >即可;任给无论多么小的正数ε,都会存在数列的一项N a ,从该项之后()n N >,1|11|n ε⎛⎫+-< ⎪⎝⎭.即0,N ε∀>∃,当n N >时,1|11|n ε⎛⎫+-< ⎪⎝⎭.如何找N?(或N存在吗?)解上面的数学式子即得:1n ε>,取1[]1N ε=+即可.这样0,ε∀>当n N >时,111|11|n n N ε⎛⎫+-=<< ⎪⎝⎭.综上所述,数列11n ⎧⎫+⎨⎬⎩⎭的通项11n +随n 的无限增大,11n+无限接近于1,即是对任意给定正数ε,总存在正整数N,当n N >时,有1|11|n ε⎛⎫+-< ⎪⎝⎭.此即11n ⎧⎫+⎨⎬⎩⎭以1为极限的精确定义,记作1lim 11n n →∞⎛⎫+= ⎪⎝⎭或1,11n n →∞+→. 2.数列极限的定义定义1 设{}n a 为数列,a 为实数,若对任给的正数ε,总存在正整数N,使得当n N >时有||n a a ε-<, 则称数列{}n a 收敛于a,实数a 称为数列{}n a 的极限,并记作lim n n a a →∞=或()n a a n →→∞.(读作:当n 趋于无穷大时,n a 的极限等于a 或n a 趋于a). 由于n 限于取正整数,所以在数列极限的记号中把n →+∞写成n →∞,即lim n n a a →∞=或()n a a n →→∞.若数列{}n a 没有极限,则称{}n a 不收敛,或称{}n a 为发散数列. [问题]:如何表述{}n a 没有极限? 3.举例说明如何用N ε-定义来验证数列极限 要证,lim a a n n =∞→关键是:对任正数ε,解不等式ε<-a a n找出n 的范围,进而确定. (1) 直接解不等式 ε<-a a n例1 证明1(1)lim 0(0)n n nαα+→∞-=> 同理可证:12(1)lim 0n n n +→∞-=,13(1)lim 0,n n n+→∞-= . (2)适当放大),)((k n nAn a a =≤-ϕ转化为解不等式εϕ<)(n . 例2 证明 lim 0(||1)nn q q →∞=<.同理可证:1lim 02n n →∞⎛⎫= ⎪⎝⎭,12lim 0,lim(1)0,,23n nn n n →∞→∞⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭ .例3.证明 321lim097n n n →∞-=+.例4.证明 223lim 33n n n →∞=-. 例5.证明1n =,其中0a >.4 关于数列的极限的N ε-定义的几点说明 (1) 关于ε:①ε的任意性.定义1中的正数ε的作用在于衡量数列通项n a 与常数a 的接近程度,ε越小,表示接近得越好;而正数ε可以任意小,说明n a 与常数a 可以接近到任何程度;②ε的暂时固定性.尽管ε有其任意性,但一经给出,就暂时地被确定下来,以便依靠它来求出N;③ε的多值性.ε既是任意小的正数,那么2,3,2εεε等等,同样也是任意小的正数,因此定义1中的不等式||n a a ε-<中的ε可用2,3,2εεε等来代替.从而“||n a a ε-<”可用“||n a a ε-≤”代替;④正由于ε是任意小正数,我们可以限定ε小于一个确定的正数.(2) 关于N:① 相应性,一般地,N随ε的变小而变大,因此常把N定作()N ε,来强调N是依赖于ε的;ε一经给定,就可以找到一个N;②N多值性.N的相应性并不意味着N是由ε唯一确定的,因为对给定的ε,若100N =时能使得当n N >时,有||n a a ε-<,则101N =或更大的数时此不等式自然成立.所以N不是唯一的.事实上,在许多场合下,最重要的是N的存在性,而不是它的值有多大.基于此,在实际使用中的N也不必限于自然数,只要N是正数即可;而且把“n N >”改为“n N ≥”也无妨.(3)数列极限的几何理解:在定义1中,“当n N >时有||n a a ε-<”⇔“当n N >时有n a a a εε-<<+” ⇔“当n N >时有(),(;)n a a a U a εεε∈-+=” ⇔所有下标大于N的项n a 都落在邻域(;)U a ε内;而在(;)U a ε之外,数列{}n a 中的项至多只有N个(有限个).反之,任给0ε>,若在(;)U a ε之外数列{}n a 中的项只有有限个,设这有限个项的最大下标为N,则当n N >时有(;)n a U a ε∈,即当n N >时有||n a a ε-<,由此写出数列极限的一种等价定义(邻域定义): 定义1' 任给0ε>,若在(;)U a ε之外数列{}n a 中的项只有有限个,则称数列{}n a 收敛于极限a.由此可见:1)若存在某个00ε>,使得数列{}n a 中有无穷多个项落在0(;)U a ε之外,则{}n a 一定不以a 为极限;2)数列是否有极限,只与它从某一项之后的变化趋势有关,而与它前面的有限项无关. 所以,在讨论数列极限时,可以添加、去掉或改变它的有限项的数值,对收敛性和极限都不会发生影响.例1 证明{}2n 和{}(1)n-都是发散数列.例2.设lim lim n n n n x y a →∞→∞==,作数列如下:{}1122:,,,,,,,n n n z x y x y x y . 证明 lim n n z a →∞=.例3.设{}n a 为给定的数列,{}n b 为对{}n a 增加、减少或改变有限项之后得到的数列.证明:数列{}n b 与{}n a 同时收敛或发散,且在收敛时两者的极限相等.三、无穷小数列在所有收敛数列中,在一类重要的数列,称为无穷小数列,其定义如下: 定义2 若lim 0n n a →∞=,则称{}n a 为无穷小数列.如1211(1)1,,,2n n n n n +⎧⎫-⎧⎫⎧⎫⎧⎫⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭都是无穷小数列.数列{}n a 收敛于a 的充要条件:定理2.1 数列{}n a 收敛于a 的充要条件是{}n a a -为无穷小数列. 作业 P27 2(2)(3),3(1)(4)(6),4,5(1),6。
第一章 极限与连续 §1.1 数列极限(1)教学目标:1° 使学生初步掌握数列极限这一重要概念的内涵与外延; 2° 使学生学会用定义证明极限的基本方法;3° 通过知识学习,加深对数学的抽象性特点的认识;体验数学概念形成的抽象化思维方法;体验数学“符号化”的意义及“数形结合”方法;4° 了解我国古代数学家关于极限思想的论述,增强爱国主义观念。
教学重点:数列极限的定义及性质 教学难点:数列极限的定义理解 课时:四课时 教学过程:第一课时我们已经有了函数的概念,但如果我们只停留在函数概念本身去研究运动,即如果仅仅把运动看成物体在某一时刻在某一地方,那我们就还没有达到揭示变量变化的内部规律的目的,我们就事实上还没有脱离初等数学的领域,只有我们用动态的观点揭示出函数y =f (x )所确定的两个变量之间的变化关系时,我们才算真正开始进入高等数学的研究领域。
极限是进入高等数学的钥匙和工具。
我们从最简单的也是最基本的数列极限开始研究。
一、极限思想数列极限来自实践,它有丰富的实际背景。
例1 曲边梯形的面积问题:设给了一个如图所示的曲边梯形,其中只有一个曲边,它是抛物线2y x =的一段。
试计算这个曲边梯形的面积s.222211121110()()...()n n S n n n n n n n -=⋅+⋅+⋅++⋅])1(...321[122222-++++=n n=6)12()1(12--⋅n n n n=2111(362n n +-→13 这种全新的方法就是:极限方法。
我们的祖先也很早就对数列进行了研究,早在战国时期就有了极限的概念例2 战国时代哲学家庄周所著的《庄子。
天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭。
”也就是说一根一尺长的木棒,每天截去一半,这样的过程可以一直无限制的进行下去。
将每天截后的木棒排成一列,如图所示, 其长度组成的数列为1{}2n,随着n 无限的增加, 木棒的长度无限的趋近于零。
《高等数学教程》第一章 习题答案习题1-1 (A)1.(1)),2()2,1()1,(+∞⋃⋃-∞ (2)]1,0()0,1[⋃-(3)),1()1,1()1,(+∞⋃-⋃--∞ (4)πk x ≠且),2,1,0(2±±=+≠k k x ππ (5)),2,1,0()352,32( ±±=++k k k ππππ(6)]3,1[- 2.202)(6,916,6h x +++ 3.0,22,22,21 5.(1)奇函数 (2)非奇非偶函数 (3)偶函数 (4)奇函数 (5)奇函数(6)当)(x f 为奇函数或偶函数时,该函数为偶函数;当)(x f 为非奇非偶函数时,该函数为非奇非偶函数. (7)偶函数 (8)奇函数6.(1)是周期函数,π2=T (2)是周期函数,4=T (3)是周期函数,4=T (4)不是周期函数7.(1)a cx b dx y -+-=(2)2arcsin 31xy = (3)21-=-x e y (4)xxy -=1log 2(5)2xx e e y --=8.(1)2,x a u u y -== (2)2,x u e y u == (3)cos ,lg ==u u y (4)x v tgv u u y 6,,2=== (5)21,,cos ,xw e v v u arctgu y w -==== (6)22,ln ,ln ,x w w v v u u y ====9.(1)]1,1[- (2) zk k k ∈+])12(,2[ππ (3)]1,[a a --(4)若210≤<a ,则]1,[a a D -=;若21>a ,则=D Ф. 10.4)]([x x =ϕϕ,xx 22)]([=ψψ,x x 22)]([=ψϕ,22)]([x x =ϕψ. 11.1,4-==b a12.⎪⎩⎪⎨⎧>-=<=0,10,00,1)]([x x x x g f ,⎪⎪⎩⎪⎪⎨⎧>=<=-1,1,11,)]([1x e x x e x f g13.)20(,])2([22r h h r h V <<-=π14.πααπααππ20,4)2(242223<<--=r V 15.),2(,])[(32232+∞--=r r r h h r V π16.(1)⎪⎩⎪⎨⎧≥<<⋅--≤≤=1600,751600100,01.0)100(901000,90x x x x p(2) ⎪⎩⎪⎨⎧≥<<-≤≤=-=1600,151600100,01.0311000,30)60(2x x x x x x x x p p(3)21000=p (元)习题1-1 (B)1.)(x f 为偶函数.2.41)1(,2)(222-+=--=xx xx f x x f 3.⎩⎨⎧≥<=0,0,0)]([2x x x x g f ,⎩⎨⎧≥<=0,0,0)]([2x x x x f g4.22123x x ++ 8.⎩⎨⎧-≤-<<--=-1,101,1)(x x e x f x9.]0,(,)1ln()(-∞-=x x g10.奇函数,偶函数,偶函数,偶函数. 12.1)2005(=f习题1-2 (A)1.(1)121+n ,0 (2)11)1(1+-+n n ,0 (3)2+n n,1 (4)1)1()1(+-⋅+n n ,没有极限(5)222)1(1)1(2)1(1+++++++n n n n ,21 (6)2)2)(1()1(++-n n ,没有极限.2.(1)17; (2)24; (3)]3[ε3.0,]1[ε习题1-3 (A)3.0002.0=δ4.397≥Z6.1)(lim )(lim 00==+-→→x f x f x x ,1)(lim 0=→x f x 1)(lim 0-=-→x x ϕ,1)(lim 0=+→x x ϕ,)(lim 0x x ϕ→不存在.习题1-4 (A)3.(1)0; (2)0; (3)04.0lim 1=-→y x ; ∞=→y x 1lim 习题1-4 (B)3.x x y cos =在),(+∞-∞上无界,但当+∞→x 时,此函数不是无穷大. 5.当1,0==b a 时,)(x f 是无穷小量; 当b a ,0≠为任意实数时,)(x f 是无穷大量.习题1-5 (A)1.(1)0; (2)1; (3)1; (4)103; (5)231aa -; (6)23x ; (7)34; (8)1-. 2.(1)43-; (2)0; (3)∞; (4)41-;(5)503020532⋅; (6) 41-.3.(1)⎪⎩⎪⎨⎧>-=<<1,11,010,1a a a ; (2)3; (3)34; (4)21-4.(1)10; (2)2)(m n mn -; (3)n m; (4)0; (5)0; (6)21; (7)43; (8)21.习题1-5 (B)1.(1)2; (2)21-; (3)561-; (4)2)13(2-a (5)23; (6)⎪⎩⎪⎨⎧<∞=>2,2,12,0k k k ; (7)2; (8)0 .2.1,1-==βα3.9=a4.1,1-==b a5.不一定.习题1-6 (A)1.(1)2; (2)3; (3)21; (4)-1; (5)a cos ; (6)2π; (7)1; (8)2; (9)1; (10)x . 2.(1)1-e ; (2)2e ; (3)2-e ; (4)2-e ; (5)1-e ; (6)2e .习题1-6 (B)1.(1)21; (2)π2; (3)1; (4)0;(5)0; (6)1; (7)0; (8)1-e . 2.(4)3; (5)251+. 习题1-7 (A)1. 当0→x 时,34x x -比32x x +为高阶无穷小.2. (1)同阶,但不是等价; (2)同阶,且为等价.3.21=α 4.m =α6.(1)23; (2)⎪⎩⎪⎨⎧>∞=<nm n m nm ,,1,0; (3)21;(4)21; (5)b a ; (6)41.习题1-7 (B)1.(1)32; (2)2e ; (3)21; (4)0; (5)1; (6)41-; (7)∞; (8)1. 5.x x x x p 32)(23++=. 6.a A ln .习题1-8 (A)1.1=a2.)(x f 在0=x 处连续3.(1)1=x 为可去间断点,补充2)1(-=f2=x 为第二类间断点(2)0=x 和2ππ+=k x 为可去间断点,补充0)2(,1)0(=+=ππk f f ;)0(≠=k k x π为第二类间断点.(3)1=x 为第一类间断点 (4)0=x 为第二类间断点.4.(1)1=x 为可去间断点,补充32)1(=f ;(2)0=x 为可去间断点,补充21)0(=f ;(3)1=x 为可去间断点,补充2)1(π-=f ;0=x 为第二类间断点;(4)2=x 为可去间断点,补充41)2(=f ;0=x 为第一类间断点;2-=x 为第二类间断点. (5)0=x 为第一类间断点; (6)a x =为第一类间断点; (7)1=x 为第一类间断点; (8)1-=x 为第二类间断点.习题1-8 (B)1. 1±=x 为第一类间断点.2. 1,0==b a3. 25=a 4. ),2,1,0(22 ±±=-=n n a ππ5. 0,=-=b a π6. (1)当1,0≠=b a 时,有无穷间断点0=x ; (2)当e b a =≠,1时,有无穷间断点1=x .习题1-9 (A)1.连续区间为:),2(),2,3(),3,(+∞---∞21)(l i m 0=→x f x ,58)(lim 3-=-→x f x ,∞=→)(lim 2x f x .2.连续区间为:),0(),0,(+∞-∞.3. (1) -1; (2) 1; (3) h ; (4) -1; (5) 22-; (6) -2; (7) 1; (8) 1; (9) ab ; (10) 5e ; (11) -1; (12) 2. 4. 1=a 5. 1=a习题1-9 (B)1. (1)0=x 为第一类间断点; (2)1-=x 为第一类间断点; (3)0=x 为第一类间断点; (4)1±=x 为第一类间断点; (5)无间断点.2. 1,0==b a3. (1)1-e ; (2)21-e ; (3)a e cot ; (4)0;(5)0; (6)-2; (7)21; (8)82π.4.21总复习题一一. 1. D 2. D 3. D 4. B 5. C 6. D 7. D 8. C 9. D 10. D二.1. ⎪⎩⎪⎨⎧≥<-=-0,0,)(22x x x x x x f2. ]2,2[,)1arcsin(2--x3. -14. 必要,充分5. 必要,充分6. 充分必要7.21 8. b a = 9.56 10. 第二类,第一类 三. 1. 11)(-+=x x x ϕ 2. 20051,20052004=-=βα 3. 1lim =∞→n n x 4. 4 5. 4e 6. -50 7.a ln 218. 当0≤α时,)(x f 在0=x 处不连续;当1,0-=>βα时,)(x f 在0=x 处不连续; 当1,0-≠>βα时,)(x f 在0=x 处不连续. 9. 82-部分习题选解 习题1-2 (B)1. 根据数列极限的定义证明:(1))0(1lim 时>=∞→a a nn证明:(ⅰ) 0>∀ε当1>a 时,令)0(1>+=n n n h h a n nn n n n n nh h h n n nh h a >++-++=+=∴ 22)1(1)1( εεan na h n ><<<∴0∴取1][+=εaN ,当N n >时,有ε<<=-nah a n n 1,即1lim =∞→n n a(ⅱ)当1=a 时,显然成立. (ⅲ)当10<<a 时,令11>=ab ∴11lim lim ==∞→∞→nn nn ab∴1lim =∞→nn a 综合(ⅰ),(ⅱ),(ⅲ),∴当0>a 时,有1lim =∞→nn a . 习题1-6 (B)3.设0,00>y x ,n n n y x x =+1,21nn n y x y +=+. 证明:n n n n y x ∞→∞→=lim lim 证明:2nn n n y x y x +≤),2,1,0(011 =≤≤∴++n y x n nnnn n n n nn n n n n y y y y x y x x x y x x =+≤+==≥=∴++2211),2,1,0( =n 由此可知数列}{n x 单调增加,数列}{n y 单调减少, 又011110y y y y x x x x n n n n ≤≤≤≤≤≤≤≤≤++ ∴}{n x 与}{n y 都是有界的.由“单调有界数列必有极限”准则, ∴}{n x ,}{n y 都收敛.设b y a x n n n n ==∞→∞→lim ,lim由21n n n y x y +=+,2lim lim n n n n n y x y +=∴∞→∞→ b a b a b =⇒+=∴2即n n n n y x ∞→∞→=lim lim . 习题1-10 (B)3.设函数)(x f 在]1,0[上非负连续,且0)1()0(==f f ,试证:对)1,0(∈∀l ,必存在一点]1,0[0l x -∈,使)()(00l x f x f +=. 证明:令)1,0(,)()()(∈∀+-=l l x f x f x F )(x f 在]1,0[上连续,)(l x f +在]1,[l l --上连续, )(x F ∴在]1,0[l -上连续.又 0)1()1()1()1(0)()()0()0(≥-=--=-≤-=-=l f f l f l F l f l f f F )0)((≥x f 0)1()0(≤-⋅∴l F F(ⅰ)若0)0(=F ,取00=x ,即)()0(l f f = (ⅱ)若0)1(=-l F ,取l x -=10,即)1()1(f l f =- (ⅲ))01(,0)0(≠-≠l F F 0)1()0(<-⋅∴l F F 由零点存在定理,必存在一点]1,0[0l x -∈,使0)(0=x F , 即)()(00l x f x f +=.综合(ⅰ),(ⅱ),(ⅲ),对)1,0(∈∀l ,必存在一点]1,0[0l x -∈,使)()(00l x f x f +=.总复习题一三.11.设)(x f 在],[b a 上连续,且)(x f 在],[b a 上无零点. 证明)(x f 在],[b a 上不变号.证明:(反证法)假设)(x f 在],[b a 变号, 即],[,21b a x x ∈∃,使0)(,0)(21<>x f x f 即0)()(21<⋅x f x f )(x f 在],[b a 上连续,∴)(x f 在],[21x x 上连续. 由零点存在定理知,),(),(21b a x x ⊂∈∃ξ,使0)(=ξf 即ξ是)(x f 在],[b a 上的一个零点. 这与)(x f 在],[b a 上无零点矛盾, )(x f ∴在],[b a 上不变号.。