数学悖论与三次数学危机
- 格式:doc
- 大小:34.50 KB
- 文档页数:6
三、第三次数学危机数学基础的第三次危机是由1897年的突然冲击而出现的,从整体上看到现在还没有解决到令人满意的程度。
这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。
由于集合概念已经渗透到众多的数学分支,并且实际上集合论已经成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。
1897年,福尔蒂揭示了集合论的第一个悖论;两年后,康托发现了很相似的悖论,它们涉及到集合论中的结果。
1902年,罗素发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。
罗素,英国人,哲学家、逻辑学家、数学家。
1902年著述《数学原理》,继而与怀德海合著《数学原理》(1910年~1913年),把数学归纳为一个公理体系,是划时代的著作之一。
他在很多领域都有大量著作,并于1950年获得诺贝尔文学奖。
他关心社会现象,参加和平运动,开办学校。
1968~1969年出版了他的自传。
罗素悖论曾被以多种形式通俗化,其中最著名的是罗索于1919年给出的,它讲的是某村理发师的困境。
理发师宣布了这样一条原则:他只给不自己刮胡子的人刮胡子。
当人们试图答复下列疑问时,就认识到了这种情况的悖论性质:“理发师是否可以给自己刮胡子?”如果他给自己刮胡子,那么他就不符合他的原则;如果他不给自己刮胡子,那么他按原则就该为自己刮胡子。
罗素悖论使整个数学大厦动摇了,无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷本末尾写道:“一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了。
当本书等待付印的时候,罗素先生的一封信把我就置于这种境地”。
狄德金原来打算把《连续性及无理数》第3版付印,这时也把稿件抽了回来。
发现拓扑学中“不动点原理”的布劳恩也认为自己过去做的工作都是“废话”,声称要放弃不动点原理。
自从在康托的集合论和发现上述矛盾之后,还产生了许多附加的悖论。
集合论的现代悖论与逻辑的几个古代悖论有关系。
数学悖论与三次数学危机读后感400字今天我看了纪录片《数学的三次危机》,我特别有感触。
它主要讲述的是数学研究史上出现的三个悖论,分别是:毕达哥拉斯悖论、贝克莱悖论、罗素悖论。
这三个悖论,促进了数学研究继续向未知的领域探索,在数学发展史上是有积极的意义的。
在数学研究的路上,因为有了这些不同的声音,才使我们人类不满足于现在,继续向未知的领域探索。
数学在生活当中的应用给我们带来了越来越多的便利。
这些都要归功于数学家的不断研究。
这就好像我们一个人,在成长的过程当中,有人会对我们做的不好的地方,进行指正,指出我们的不足。
这样我们才能够向更完美的自己发展。
结合着我自身的情况,如我的字写得不好。
妈妈和老师都会对我进行有效的教育和指正。
我要虚心接受,要重视起来,认真改正,坚持练字,把字写工整。
而不是无视这个缺点任由其自由发展,这样只会害了我自己。
良药苦口利于病,忠言逆耳利于行。
我们不应该排斥对我们的批评,应该虚心接受,有则改之,无则加勉。
我们在成长的路上经历的一些风雨一定会是我们人生的宝贵财富。
数学史上的三次危机张清利第一次数学危机在古代的数学家看来与有理数对应的点充满了数轴,现在尚未深入了解数轴性质的人也会这样认为。
因此,当发现在数轴上存在不与任何有理数对应的一些点时,在人们的心理上引起了极大震惊,这个发现是早期希腊人的重大成就之一。
它是在公元前5世纪或6世纪的某一时期由毕达哥拉斯学派的成员首先获得的。
这是数学史上的一个里程碑。
毕达哥拉斯学派发现单位正方形的边与对角线不可公度,即对角线的长不能表为q p /的形式,也就是说不存在作为公共度量单位的线段。
后来,又发现数轴上还存在许多点也不对应于任何有理数。
因此,必须发明一些新的数,使之与这样的点对应,因为这些数不能是有理数,所以把它们称为无理数。
例如, ,22,8,6,2等都是无理数。
无理数的发现推翻了早期希腊人坚持的另一信念:给定任何两个线段,必定能找到第三线段,也许很短,使得给定的线段都是这个线段的整数倍。
事实上,即使现代人也会这样认为,如果他还不知道情况并非如此的话。
第一次数学危机表明,当时希腊的数学已经发展到这样的阶段:1. 数学已由经验科学变为演绎科学;2. 把证明引入了数学;3. 演绎的思考首先出现在几何中,而不是在代数中,使几何具有更加重要的地位。
这种状态一直保持到笛卡儿解析几何的诞生。
中国、埃及、巴比伦、印度等国的数学没有经历这样的危机,因而一直停留在实验科学。
即算术阶段。
希腊则走上了完全不同的道路,形成了欧几里得的《几何原本》与亚里士多得的逻辑体系, 而成为现代科学的始祖。
在当时的所有民族中为什么只有希腊人认为几何事实必须通过合乎逻辑的论证而不能通过实验来建立?这个原因被称为希腊的奥秘。
总之,第一次数学危机是人类文明史上的重大事件。
无理数与不可公度量的发现在毕达哥拉斯学派内部引起了极大的震动。
首先,这是对毕达哥拉斯哲学思想的核心,即“万物皆依赖于整数”的致命一击;既然像2这样的无理数不能写成两个整数之比,那么,它究竟怎样依赖于整数呢?其次,这与通常的直觉相矛盾,因为人们在直觉上总认为任何两个线段都是可以公度的。
悖论历史悠久,它的出现,本来并没有引起人们的重视,可是由于19世纪末20世纪初,在集合论中出现了3个著名的悖论,引起了当时数学界、逻辑学界以至于哲学界的震惊,触发了数学史上的第三次危机,才引起了现代数学界和逻辑学界的极大注意。
本文试图对悖论的定义、成因以及由于数学悖论引起的数学史上的三次危机作以简要分析。
1 悖论的历史与悖论的定义悖论的历史源远流长,它的起源可以一直追溯到古希腊和我国先秦时代。
“悖论”一词源于希腊文,意为“无路可走”,转义是“四处碰壁,无法解决问题”。
在古希腊时代,克里特岛的哲学家伊壁门尼德斯(约公元前6世纪)发现的“撒谎者悖论”可以算作人们最早发现的悖论。
公元前4世纪的欧布里德将其修改为“强化了的撒谎者悖论”。
在此基础上,人们构造了一个与之等价的“永恒的撒谎者悖论”。
埃利亚学派的代表人物芝诺(约490B.C.—430B.C.)提出的有关运动的四个悖论(二分法悖论、阿基里斯追龟悖论、飞矢不动悖论与运动场悖论)尤为著名,至今仍余波未息。
在中国古代哲学中也有许多悖论思想,如战国时期逻辑学家惠施(约370B.C.—318B.C.)的“日方中方睨,物方生方死”、“一尺之棰,日取其半,万世不竭”;《韩非子》中记载的有关矛与盾的悖论思想等,这些悖论式的命题,表面上看起来很荒谬,实际上却潜伏着某些辨证的思想内容。
在近代,著名的悖论有伽利略悖论、贝克莱悖论、康德的二律背反、集合论悖论等。
在现代,则有光速悖论、双生子佯谬、EPR悖论、整体性悖论等。
这些悖论从逻辑上看来都是一些思维矛盾,从认识论上看则是客观矛盾在思维上的反映。
尽管悖论的历史如此悠久,但直到本世纪初,人们才真正开始专门研究悖论的本质。
在此之前,悖论只能引起人们的惊恐与不安;此后,人们才逐渐认识到悖论也有其积极作用。
特别是本世纪60、70年代以来,出现了研究悖论的热潮。
悖论的定义有很多说法,影响较大的有以下几种,如“悖论是指这样一个命题A,由A出发可以找到一语句B,然后,若假定B真,就可推出←B真,亦即可推出B假。
数学史上一共发生过三次危机,都是怎么回事?在数学历史上,有三次大的危机深刻影响着数学的发展,三次数学危机分别是:无理数的发现、微积分的完备性、罗素悖论。
第一次数学危机第一次数学危机发生在公元400年前,在古希腊时期,毕达哥拉斯学派对“数”进行了定义,认为任何数字都可以写成两个整数之商,也就是认为所有数字都是有理数。
但是该学派的一个门徒希帕索斯发现,边长为“1”的正方形,其对角线“√2”无法写成两个整数的商,由此发现了第一个无理数。
毕达哥拉斯的其他门徒知道后,为了维护门派的正统性,把希帕索斯杀害了,并抛入大海之中,看来古人也是解决不了问题时,先解决提出问题的人。
即便如此,无理数的发现很快引起了一场数学革命,史称第一次数学危机,这危机影响数学史近两千年的时间。
第二次数学危机微积分是一项伟大的发明,牛顿和莱布尼茨都是微积分的发明者,两人的发现思路截然不同;但是两人对微积分基本概念的定义,都存在模糊的地方,这遭到了一些人的强烈反对和攻击,其中攻击最强烈的是英国大主教贝克莱,他提出了一个悖论:从微积分的推导中我们可以看到,△x在作为分母时不为零,但是在最后的公式中又等于零,这种矛盾的结果是灾难性的,很长一段时间内数学家都找不到解决办法。
直到微积分发明100多年后,法国数学家柯西用极限定义了无穷小量,才彻底解决了这个问题。
第三次数学危机数学家总有一个梦想,试图建立一些基本的公理,然后利用严格的数理逻辑,推导和证明数学的所有定理;康托尔发明集合论后,让数学家们看到了曙光,法国科学家庞加莱认为:我们可以借助结合论,建造起整座数学大厦。
正在数学家高兴之时,英国哲学家、逻辑学家罗素,提出了一个惊人的悖论——罗素悖论:罗素悖论通俗描述为:在某个城市中,有一位名誉满城的理发师说:“我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。
”那么请问理发师自己的脸该由谁来刮?罗素悖论的提出,引发了数学上的又一次危机,数学家辛辛苦苦建立的数学大厦,最后发现基础居然存在缺陷,数学家们纷纷提出自己的解决方案;直到1908年,第一个公理化集合论体系的建立,才弥补了集合论的缺陷。
数学史上的三次危机1 无理数的发现——第一次数学危机大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。
当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算数、天文、音乐称为“四艺”,在其中追求宇宙的和谐规律性。
他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不可能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。
这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的“危机”,从而产生了第一次数学危机。
到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。
他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中,欧多克斯和狄德金于1872年给出的无理数的解释和现代解释基本一致。
今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。
第一次数学危机对古希腊的数学家观点有极大冲击。
这表明,几何学的某些真理和算数无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。
危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的。
从此希腊人开始重视演绎推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命!2 无穷小量是零吗?——第二次数学危机18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。
1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础——无穷小的问题,提出了所谓贝克莱悖论。
他指出:“牛顿在求的导数时,采取了先给以增量0,应用二项式,从中减去以求得增量,并除以0以求出的增量与增量之比,然后又让0消逝,这样得出增量的最终比。
这里牛顿做了违反矛盾律的手续——先设有增量,又令增量为零,也即假设没有增量。
数学悖论、三次危机及其深刻影响【摘要】“希帕索斯悖论”导致数学史上的第一次危机,引导人们发现与认识无理数,促使公里几何学、逻辑学的诞生以及公理体系的形成;“贝克莱悖论”导致数学史上第二次危机,使人们认识到当时,无论是牛顿还是莱布尼茨所提出的微积分理论其实并不严格,促使柯西等数学家将极限的定义严格化,造就了18世纪分析学的辉煌;“罗素悖论”发现,动摇了当时的数学基础——集合论,从根本上危及了整个数学体系的确定性和严密性,导致了数学史上第三次危机。
【关键词】数学史;数学悖论;数学危机引言谈及数学,总会给人以严谨、严密,逻辑性强的特点。
然而,数学的这些特点并非从古至今一成不变,而是通过一次次的修正,补充才逐渐形成。
纵观数学科学发展的历史过程,我们不难体会到:数学的发展也和其他事物的发展一样, 不可能是笔直的, 它也经历了曲折的发展过程。
本文就旨在通过回顾、讨论数学史三次危机的产生、解决,从而分析悖论对数学发展的意义与影响。
一、“希帕索斯(Hippasus)悖论”与第一次数学危机(一)背景大约在公元前五世纪,古希腊数学家毕达哥拉斯(pythagoras)创建的毕达哥拉斯学派是一个从事政治、数学、哲学和宗教研究活动具有神秘主义色彩的团体。
同时,这一学派在哲学与数学方面的研究成果突出,在当时占有统治地位。
在哲学上,毕达哥拉斯跟当时的其他希腊思想家一样,也热衷于探索世界构成的本原问题。
与其他哲学学派不同,毕达哥拉斯学派宣称万物的本原不是自然物质,而是数。
由此提出了“数本原说”,主张“整个字宙间的一切现象,都可归结为整数和整数之比”。
在数学上,毕达哥拉斯学派证明了著名的毕达哥拉斯定理(即勾股定理)。
就是指直角三角形三边有如下关系的一个命题:设一直角三角形两直角边长分别为a、b,斜边边长为c,则有如下关系式:222a b c+=(二)“希帕索斯悖论”(即危机的产生和实质)毕达哥拉斯学派在所提出“宇宙间的一切现象都能归结为整数或整数之比”的哲学信条不久,就受到了严重的挑战。
---------------------------------------------------------------最新资料推荐------------------------------------------------------史上数学三大危机简介数学三大危机数学三大危机简述:第一,希帕索斯(Hippasu,米太旁登地方人,公元前 5 世纪)发现了一个腰为 1 的等腰直角三角形的斜边(即根号 2)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的著名理论。
相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希帕索斯抛入大海;第二,微积分的合理性遭到严重质疑,险些要把整个微积分理论推翻;第三,罗素悖论:S 由一切不是自身元素的集合所组成,那 S 包含 S 吗?用通俗一点的话来说,小明有一天说:我正在撒谎!问小明到底撒谎还是说实话。
罗素悖论的可怕在于,它不像最大序数悖论或最大基数悖论那样涉及集合高深知识,它很简单,却可以轻松摧毁集合理论!第一次数学危机毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。
他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。
由毕达哥拉斯提出的著名命题万物皆数是该学派的哲学基石。
毕达哥拉斯学派所说的数仅指整数。
而一切数均可表成整数或整数之比则是这一学派的数学信仰。
1 / 6然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的掘墓人。
毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为 1 的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数的诞生。
小小的出现,却在当时的数学界掀起了一场巨大风暴。
它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。
实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念这都是一个极大的冲击。
数学悖论与三次数学危机数学悖论与三次数学危机韩雪涛“……古往今来,为数众多的悖论为逻辑思想的发展提供了食粮。
”——N·布尔巴基什么是悖论?笼统地说,是指这样的推理过程:它看上去是合理的,但结果却得出了矛盾。
悖论在很多情况下表现为能得出不符合排中律的矛盾命题:由它的真,可以推出它为假;由它的假,则可以推出它为真。
由于严格性被公认为是数学的一个主要特点,因此如果数学中出现悖论会造成对数学可靠性的怀疑。
如果这一悖论涉及面十分广泛的话,这种冲击波会更为强烈,由此导致的怀疑还会引发人们认识上的普遍危机感。
在这种情况下,悖论往往会直接导致“数学危机”的产生。
按照西方习惯的说法,在数学发展史上迄今为止出现了三次这样的数学危机。
希帕索斯悖论与第一次数学危机希帕索斯悖论的提出与勾股定理的发现密切相关。
因此,我们从勾股定理谈起。
勾股定理是欧氏几何中最著名的定理之一。
天文学家开普勒曾称其为欧氏几何两颗璀璨的明珠之一。
它在数学与人类的实践活动中有着极其广泛的应用,同时也是人类最早认识到的平面几何定理之一。
在我国,最早的一部天文数学著作《周髀算经》中就已有了关于这一定理的初步认识。
不过,在我国对于勾股定理的证明却是较迟的事情。
一直到三国时期的赵爽才用面积割补给出它的第一种证明。
在国外,最早给出这一定理证明的是古希腊的毕达哥拉斯。
因而国外一般称之为“毕达哥拉斯定理”。
并且据说毕达哥拉斯在完成这一定理证明后欣喜若狂,而杀牛百只以示庆贺。
因此这一定理还又获得了一个带神秘色彩的称号:“百牛定理”。
毕达哥拉斯毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。
他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。
由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。
而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。
然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。
毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。
小小√2的出现,却在当时的数学界掀起了一场巨大风暴。
它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。
实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。
对于当时所有古希腊人的观念这都是一个极大的冲击。
这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。
这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。
更糟糕的是,面对这一荒谬人们竟然毫无办法。
这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。
欧多克索斯二百年后,大约在公元前370年,才华横溢的欧多克索斯建立起一套完整的比例论。
他本人的著作已失传,他的成果被保存在欧几里德《几何原本》一书第五篇中。
欧多克索斯的巧妙方法可以避开无理数这一“逻辑上的丑闻”,并保留住与之相关的一些结论,从而解决了由无理数出现而引起的数学危机。
但欧多克索斯的解决方式,是借助几何方法,通过避免直接出现无理数而实现的。
这就生硬地把数和量肢解开来。
在这种解决方案下,对无理数的使用只有在几何中是允许的,合法的,在代数中就是非法的,不合逻辑的。
或者说无理数只被当作是附在几何量上的单纯符号,而不被当作真正的数。
一直到18世纪,当数学家证明了基本常数如圆周率是无理数时,拥护无理数存在的人才多起来。
到十九世纪下半叶,现在意义上的实数理论建立起来后,无理数本质被彻底搞清,无理数在数学园地中才真正扎下了根。
无理数在数学中合法地位的确立,一方面使人类对数的认识从有理数拓展到实数,另一方面也真正彻底、圆满地解决了第一次数学危机。
贝克莱悖论与第二次数学危机第二次数学危机导源于微积分工具的使用。
伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹各自独立发现。
这一工具一问世,就显示出它的非凡威力。
许许多多疑难问题运用这一工具后变得易如翻掌。
但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。
两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。
因而,从微积分诞生时就遭到了一些人的反对与攻击。
其中攻击最猛烈的是英国大主教贝克莱。
贝克莱主教1734年,贝克莱以“渺小的哲学家”之名出版了一本标题很长的书《分析学家;或一篇致一位不信神数学家的论文,其中审查一下近代分析学的对象、原则及论断是不是比宗教的神秘、信仰的要点有更清晰的表达,或更明显的推理》。
在这本书中,贝克莱对牛顿的理论进行了攻击。
例如他指责牛顿,为计算比如说x2 的导数,先将x取一个不为0的增量Δx ,由(x + Δx)2 - x2 ,得到2xΔx + (Δx2) ,后再被Δx 除,得到2x + Δx ,最后突然令Δx = 0 ,求得导数为2x 。
这是“依靠双重错误得到了不科学却正确的结果”。
因为无穷小量在牛顿的理论中一会儿说是零,一会儿又说不是零。
因此,贝克莱嘲笑无穷小量是“已死量的幽灵”。
贝克莱的攻击虽说出自维护神学的目的,但却真正抓住了牛顿理论中的缺陷,是切中要害的。
数学史上把贝克莱的问题称之为“贝克莱悖论”。
笼统地说,贝克莱悖论可以表述为“无穷小量究竟是否为0”的问题:就无穷小量在当时实际应用而言,它必须既是0,又不是0。
但从形式逻辑而言,这无疑是一个矛盾。
这一问题的提出在当时的数学界引起了一定的混乱,由此导致了第二次数学危机的产生。
牛顿与莱布尼兹针对贝克莱的攻击,牛顿与莱布尼兹都曾试图通过完善自己的理论来解决,但都没有获得完全成功。
这使数学家们陷入了尴尬境地。
一方面微积分在应用中大获成功,另一方面其自身却存在着逻辑矛盾,即贝克莱悖论。
这种情况下对微积分的取舍上到底何去何从呢?“向前进,向前进,你就会获得信念!”达朗贝尔吹起奋勇向前的号角,在此号角的鼓舞下,十八世纪的数学家们开始不顾基础的不严格,论证的不严密,而是更多依赖于直观去开创新的数学领地。
于是一套套新方法、新结论以及新分支纷纷涌现出来。
经过一个多世纪的漫漫征程,几代数学家,包括达朗贝尔、拉格朗日、贝努力家族、拉普拉斯以及集众家之大成的欧拉等人的努力,数量惊人前所未有的处女地被开垦出来,微积分理论获得了空前丰富。
18世纪有时甚至被称为“分析的世纪”。
然而,与此同时十八世纪粗糙的,不严密的工作也导致谬误越来越多的局面,不谐和音的刺耳开始震动了数学家们的神经。
下面仅举一无穷级数为例。
无穷级数S=1-1+1-1+1………到底等于什么?当时人们认为一方面S=(1-1)+(1-1)+………=0;另一方面,S=1+(1-1)+(1-1)+………=1,那么岂非0=1?这一矛盾竟使傅立叶那样的数学家困惑不解,甚至连被后人称之为数学家之英雄的欧拉在此也犯下难以饶恕的错误。
他在得到1 + x + x2 + x3 + ..... = 1/(1- x)后,令x = -1,得出S=1-1+1-1+1………=1/2!由此一例,即不难看出当时数学中出现的混乱局面了。
问题的严重性在于当时分析中任何一个比较细致的问题,如级数、积分的收敛性、微分积分的换序、高阶微分的使用以及微分方程解的存在性……都几乎无人过问。
尤其到十九世纪初,傅立叶理论直接导致了数学逻辑基础问题的彻底暴露。
这样,消除不谐和音,把分析重新建立在逻辑基础之上就成为数学家们迫在眉睫的任务。
到十九世纪,批判、系统化和严密论证的必要时期降临了。
柯西使分析基础严密化的工作由法国著名数学家柯西迈出了第一大步。
柯西于1821年开始出版了几本具有划时代意义的书与论文。
其中给出了分析学一系列基本概念的严格定义。
如他开始用不等式来刻画极限,使无穷的运算化为一系列不等式的推导。
这就是所谓极限概念的“算术化”。
后来,德国数学家魏尔斯特拉斯给出更为完善的我们目前所使用的“ε-δ”方法。
另外,在柯西的努力下,连续、导数、微分、积分、无穷级数的和等概念也建立在了较坚实的基础上。
不过,在当时情况下,由于实数的严格理论未建立起来,所以柯西的极限理论还不可能完善。
柯西之后,魏尔斯特拉斯、戴德金、康托尔各自经过自己独立深入的研究,都将分析基础归结为实数理论,并于七十年代各自建立了自己完整的实数体系。
魏尔斯特拉斯的理论可归结为递增有界数列极限存在原理;戴德金建立了有名的戴德金分割;康托尔提出用有理“基本序列”来定义无理数。
1892年,另一个数学家创用“区间套原理”来建立实数理论。
由此,沿柯西开辟的道路,建立起来的严谨的极限理论与实数理论,完成了分析学的逻辑奠基工作。
数学分析的无矛盾性问题归纳为实数论的无矛盾性,从而使微积分学这座人类数学史上空前雄伟的大厦建在了牢固可靠的基础之上。
重建微积分学基础,这项重要而困难的工作就这样经过许多杰出学者的努力而胜利完成了。
微积分学坚实牢固基础的建立,结束了数学中暂时的混乱局面,同时也宣布了第二次数学危机的彻底解决。
罗素悖论与第三次数学危机十九世纪下半叶,康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。
但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。
数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。
因而集合论成为现代数学的基石。
“一切数学成果可建立在集合论基础上”这一发现使数学家们为之陶醉。
1900年,国际数学家大会上,法国著名数学家庞加莱就曾兴高采烈地宣称:“………借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝对的严格性已经达到了……”康托尔可是,好景不长。
1903年,一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的著名的罗素悖论。
罗素构造了一个集合S:S由一切不是自身元素的集合所组成。
然后罗素问:S是否属于S 呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。
因此,对于一个给定的集合,问是否属于它自己是有意义的。
但对这个看似合理的问题的回答却会陷入两难境地。
如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。
无论如何都是矛盾的。
罗素其实,在罗素之前集合论中就已经发现了悖论。
如1897年,布拉利和福尔蒂提出了最大序数悖论。
1899年,康托尔自己发现了最大基数悖论。