数学悖论与三次数学危机
- 格式:ppt
- 大小:829.00 KB
- 文档页数:19
三、第三次数学危机数学基础的第三次危机是由1897年的突然冲击而出现的,从整体上看到现在还没有解决到令人满意的程度。
这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。
由于集合概念已经渗透到众多的数学分支,并且实际上集合论已经成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。
1897年,福尔蒂揭示了集合论的第一个悖论;两年后,康托发现了很相似的悖论,它们涉及到集合论中的结果。
1902年,罗素发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。
罗素,英国人,哲学家、逻辑学家、数学家。
1902年著述《数学原理》,继而与怀德海合著《数学原理》(1910年~1913年),把数学归纳为一个公理体系,是划时代的著作之一。
他在很多领域都有大量著作,并于1950年获得诺贝尔文学奖。
他关心社会现象,参加和平运动,开办学校。
1968~1969年出版了他的自传。
罗素悖论曾被以多种形式通俗化,其中最著名的是罗索于1919年给出的,它讲的是某村理发师的困境。
理发师宣布了这样一条原则:他只给不自己刮胡子的人刮胡子。
当人们试图答复下列疑问时,就认识到了这种情况的悖论性质:“理发师是否可以给自己刮胡子?”如果他给自己刮胡子,那么他就不符合他的原则;如果他不给自己刮胡子,那么他按原则就该为自己刮胡子。
罗素悖论使整个数学大厦动摇了,无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷本末尾写道:“一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了。
当本书等待付印的时候,罗素先生的一封信把我就置于这种境地”。
狄德金原来打算把《连续性及无理数》第3版付印,这时也把稿件抽了回来。
发现拓扑学中“不动点原理”的布劳恩也认为自己过去做的工作都是“废话”,声称要放弃不动点原理。
自从在康托的集合论和发现上述矛盾之后,还产生了许多附加的悖论。
集合论的现代悖论与逻辑的几个古代悖论有关系。
数学史上一共发生过三次危机,都是怎么回事?在数学历史上,有三次大的危机深刻影响着数学的发展,三次数学危机分别是:无理数的发现、微积分的完备性、罗素悖论。
第一次数学危机第一次数学危机发生在公元400年前,在古希腊时期,毕达哥拉斯学派对“数”进行了定义,认为任何数字都可以写成两个整数之商,也就是认为所有数字都是有理数。
但是该学派的一个门徒希帕索斯发现,边长为“1”的正方形,其对角线“√2”无法写成两个整数的商,由此发现了第一个无理数。
毕达哥拉斯的其他门徒知道后,为了维护门派的正统性,把希帕索斯杀害了,并抛入大海之中,看来古人也是解决不了问题时,先解决提出问题的人。
即便如此,无理数的发现很快引起了一场数学革命,史称第一次数学危机,这危机影响数学史近两千年的时间。
第二次数学危机微积分是一项伟大的发明,牛顿和莱布尼茨都是微积分的发明者,两人的发现思路截然不同;但是两人对微积分基本概念的定义,都存在模糊的地方,这遭到了一些人的强烈反对和攻击,其中攻击最强烈的是英国大主教贝克莱,他提出了一个悖论:从微积分的推导中我们可以看到,△x在作为分母时不为零,但是在最后的公式中又等于零,这种矛盾的结果是灾难性的,很长一段时间内数学家都找不到解决办法。
直到微积分发明100多年后,法国数学家柯西用极限定义了无穷小量,才彻底解决了这个问题。
第三次数学危机数学家总有一个梦想,试图建立一些基本的公理,然后利用严格的数理逻辑,推导和证明数学的所有定理;康托尔发明集合论后,让数学家们看到了曙光,法国科学家庞加莱认为:我们可以借助结合论,建造起整座数学大厦。
正在数学家高兴之时,英国哲学家、逻辑学家罗素,提出了一个惊人的悖论——罗素悖论:罗素悖论通俗描述为:在某个城市中,有一位名誉满城的理发师说:“我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。
”那么请问理发师自己的脸该由谁来刮?罗素悖论的提出,引发了数学上的又一次危机,数学家辛辛苦苦建立的数学大厦,最后发现基础居然存在缺陷,数学家们纷纷提出自己的解决方案;直到1908年,第一个公理化集合论体系的建立,才弥补了集合论的缺陷。
浅谈数学发展史中的三次危机摘要:在数学发展的历史长河中,危机与发展是并存的。
在数学发展史中出现了三次危机,人们通过对危机的探索,最终消除了它,并促进了数学的不断发展和进步。
第一次数学危机是人们对万物皆数的误解,随着无理数的发现进而度过了把第一次数学危机。
第二次数学危机是人们对无穷小的误解,而微积分的出现产生了一种新的方法——分析法,分析法是算和证的结合,是通过无穷趋近而确定某一结果。
罗素悖论的发现,导致了数学史上的第三次危机。
为了探求其根源和解决难题的途径,数学界、逻辑界进行了不懈的探讨,提出了一系列解决方案,并在不知不觉中大大推动了数学和逻辑学的发展。
归根结底,导致三次危机的原因,是由于人的认识。
关键词:危机;万物皆数;无穷小;分析方法;集合一、前言历史上,数学的发展又顺利也有曲折。
打的挫折也可以叫做危机。
危机也意味着挑战,危机的解决就意味着进步。
所以,危机往往是数学发展的先导。
数学发展史上有三次数学危机。
每一次危机,都是数学的基本部分受到质疑。
实际上,也恰恰是这三次危机,引发了数学上的三次思想解放,大大推动了数学科学的发展。
二、无理数的发现---第一次数学危机大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。
当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和谐规律性。
他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。
这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。
到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。
他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。
数学悖论、三次危机及其深刻影响【摘要】“希帕索斯悖论”导致数学史上的第一次危机,引导人们发现与认识无理数,促使公里几何学、逻辑学的诞生以及公理体系的形成;“贝克莱悖论”导致数学史上第二次危机,使人们认识到当时,无论是牛顿还是莱布尼茨所提出的微积分理论其实并不严格,促使柯西等数学家将极限的定义严格化,造就了18世纪分析学的辉煌;“罗素悖论”发现,动摇了当时的数学基础——集合论,从根本上危及了整个数学体系的确定性和严密性,导致了数学史上第三次危机。
【关键词】数学史;数学悖论;数学危机引言谈及数学,总会给人以严谨、严密,逻辑性强的特点。
然而,数学的这些特点并非从古至今一成不变,而是通过一次次的修正,补充才逐渐形成。
纵观数学科学发展的历史过程,我们不难体会到:数学的发展也和其他事物的发展一样, 不可能是笔直的, 它也经历了曲折的发展过程。
本文就旨在通过回顾、讨论数学史三次危机的产生、解决,从而分析悖论对数学发展的意义与影响。
一、“希帕索斯(Hippasus)悖论”与第一次数学危机(一)背景大约在公元前五世纪,古希腊数学家毕达哥拉斯(pythagoras)创建的毕达哥拉斯学派是一个从事政治、数学、哲学和宗教研究活动具有神秘主义色彩的团体。
同时,这一学派在哲学与数学方面的研究成果突出,在当时占有统治地位。
在哲学上,毕达哥拉斯跟当时的其他希腊思想家一样,也热衷于探索世界构成的本原问题。
与其他哲学学派不同,毕达哥拉斯学派宣称万物的本原不是自然物质,而是数。
由此提出了“数本原说”,主张“整个字宙间的一切现象,都可归结为整数和整数之比”。
在数学上,毕达哥拉斯学派证明了著名的毕达哥拉斯定理(即勾股定理)。
就是指直角三角形三边有如下关系的一个命题:设一直角三角形两直角边长分别为a、b,斜边边长为c,则有如下关系式:222a b c+=(二)“希帕索斯悖论”(即危机的产生和实质)毕达哥拉斯学派在所提出“宇宙间的一切现象都能归结为整数或整数之比”的哲学信条不久,就受到了严重的挑战。
---------------------------------------------------------------最新资料推荐------------------------------------------------------史上数学三大危机简介数学三大危机数学三大危机简述:第一,希帕索斯(Hippasu,米太旁登地方人,公元前 5 世纪)发现了一个腰为 1 的等腰直角三角形的斜边(即根号 2)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的著名理论。
相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希帕索斯抛入大海;第二,微积分的合理性遭到严重质疑,险些要把整个微积分理论推翻;第三,罗素悖论:S 由一切不是自身元素的集合所组成,那 S 包含 S 吗?用通俗一点的话来说,小明有一天说:我正在撒谎!问小明到底撒谎还是说实话。
罗素悖论的可怕在于,它不像最大序数悖论或最大基数悖论那样涉及集合高深知识,它很简单,却可以轻松摧毁集合理论!第一次数学危机毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。
他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。
由毕达哥拉斯提出的著名命题万物皆数是该学派的哲学基石。
毕达哥拉斯学派所说的数仅指整数。
而一切数均可表成整数或整数之比则是这一学派的数学信仰。
1 / 6然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的掘墓人。
毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为 1 的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数的诞生。
小小的出现,却在当时的数学界掀起了一场巨大风暴。
它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。
实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念这都是一个极大的冲击。
数学史上的三次危机第一次危机:希腊数学危机希腊数学家们是数学历史上的伟大人物,他们创造了许多数学概念和理论,如欧几里得几何、三角学、锥曲线等。
但在公元前4世纪到公元前3世纪的时期,希腊数学发生了危机。
这一时期的希腊数学家纷纷开始关注无穷大和无穷小的概念。
然而,这些概念并不符合当时的逻辑和数学标准,他们甚至不能用现代的数学符号来表示。
因此,这些数学家的理论并没有得到广泛的认可和接受。
在这一时期,希腊数学的道路出现了两条分支。
一条是传统的代数学派,他们注重整数、有理数和分数的研究;另一条是几何学派,他们将一切几何测量归纳为单个不可减少的点。
两个学派的意见相左,争论不断,导致了希腊数学的危机。
这一时期的数学发展为数学的发展带来了许多思考,但也让希腊数学陷入了停滞和分化的境地。
第二次危机:19世纪末的非欧几何危机19世纪末期,非欧几何成为了当时的热门话题。
在欧几里得几何中,平行公设是一项基本性质,两条不重合的直线在平面上永远不会相交。
然而,非欧几何学派质疑这一性质,提出了一种名为反射性的新性质,也就是说,两条不重合的直线在特定的情况下是可以相交的。
这种观点的提出,引起了数学界的强烈反响和激烈争议。
欧几里得几何是基础数学,因此许多人认为非欧几何在一定程度上是在否认这一基础。
在这种文化和学术背景下,非欧几何的认可难以达成,成为了数学史上的一次危机。
第三次危机:20世纪初的集合论危机20世纪初,集合论成为了数学的新话题。
然而,当时对于集合论的探讨往往涉及到关于无限的思考,这些思考往往与人的直觉相悖,甚至有些违反逻辑。
其中最著名的例子就是悖论:一个包含所有时空中的点的集合是否存在?如果存在,那么这个集合中是否包含它自身?如果不包含,那么就不能称其为包含所有时空中的点的集合;如果包含,那么这个集合就非常巨大,超出了我们的想象。
这个悖论意味着个体和整体的关系无法解决,出现了数学中的自我矛盾。
这一数学危机的解决需要借鉴哲学和逻辑学的工具,很多数学家因此开始关注哲学基础和逻辑体系,试图建立一个完备的集合论,以应对数学的自我矛盾和前进。
三次数学危机和数学悖论读书笔记一、第一次数学危机。
1. 危机的起源。
- 毕达哥拉斯学派认为“万物皆数”,这里的数指的是整数或整数之比(即有理数)。
当他们研究等腰直角三角形的斜边与直角边的关系时,发现了一个不可公度的量。
例如,对于边长为1的等腰直角三角形,其斜边长度为√(2),√(2)不能表示为两个整数之比,这与他们的信条产生了冲突。
2. 对数学的影响。
二、第二次数学危机。
1. 危机的起源。
- 17世纪,牛顿和莱布尼茨分别独立地创立了微积分。
在微积分的早期发展中,存在着一些概念上的模糊性。
例如,牛顿的流数法中,对于无穷小量的定义和处理不够严谨。
在求导过程中,先把一个量看作无穷小量进行运算,最后又把它当作零舍去,这就引发了逻辑上的矛盾。
例如,对于函数y = x^2,求导时(Δ y)/(Δ x)=frac{(x + Δ x)^2-x^2}{Δ x}=2x+Δ x,当Δ x趋近于0时,牛顿把Δ x既当作非零的量进行运算,最后又当作零舍去得到y' = 2x。
2. 对数学的影响。
- 这次危机促使数学家们对微积分的基础进行深入的思考和研究。
柯西、魏尔斯特拉斯等数学家通过极限理论等方式来完善微积分的基础。
柯西提出了极限的ε - δ定义,使得微积分中的概念如导数、积分等有了严格的定义基础。
魏尔斯特拉斯进一步完善了极限理论,消除了无穷小量概念的模糊性,从而使微积分建立在严格的逻辑基础之上,推动了分析学的蓬勃发展,也为现代数学分析等学科的发展奠定了坚实的基础。
三、第三次数学危机。
1. 危机的起源。
- 19世纪末,集合论成为了数学的基础。
康托尔创立的集合论在处理无穷集合等问题上取得了巨大的成功。
罗素提出了著名的罗素悖论。
考虑集合S={xx∉ x},如果S∈ S,根据S的定义,S∉ S;如果S∉ S,同样根据定义S∈ S,这就产生了矛盾。
这个悖论表明集合论本身存在着逻辑漏洞。
2. 对数学的影响。
- 第三次数学危机引发了数学界的巨大震动。
《“四次”数学危机与世界十大经典数学悖论》“四次"数学危机第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。
这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。
当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。
该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。
希伯索斯的发现被认为是“荒谬"和违反常识的事.它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。
使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。
最后,这场危机通过在几何学中引进不可通约量概念而得到解决.两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。
正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的.很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了.我认为第一次危机的产生最大的意义导致了无理数地产生,比如说我们现在说的,都无法用来表示,那么我们必须引入新的数来刻画这个问题,这样无理数便产生了,正是有这种思想,当我们将负数开方时,人们引入了虚数i(虚数的产生导致复变函数等学科的产生,并在现代工程技术上得到广泛应用),这使我不得不佩服人类的智慧。
但我个人认为第一次危机的真正解决在1872年德国数学家对无理数的严格定义,因为数学是很强调其严格的逻辑与推证性的。
第二次数学危机发生在十七世纪.十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。