分式方程的解法总结
- 格式:doc
- 大小:119.00 KB
- 文档页数:6
分式方程的概念,解法知识要点梳理要点一:分式方程的定义分母里含有未知数的方程叫分式方程。
要点诠释:1.分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。
2.分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.要点二:分式方程的解法1。
解分式方程的其本思想把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解.2.解分式方程的一般方法和步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。
(2)解这个整式方程。
(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根。
注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。
3. 增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.规律方法指导1.一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解.经典例题透析:类型一:分式方程的定义1、下列各式中,是分式方程的是()A.B.C.D.举一反三:【变式】方程中,x为未知量,a,b为已知数,且,则这个方程是( )A.分式方程B.一元一次方程C.二元一次方程D.三元一次方程类型二:分式方程解的概念2、请选择一组的值,写出一个关于的形如的分式方程,使它的解是x=0这样的分式方程可以是______________。
【数学知识点】分式方程的解法
解分式方程的时候要先去分母,再移项,然后在求出未知数的值后验根,检验所得解
的是否满足方程式,是否符合题意。
一、去分母
方程两边同时乘以最简公分母,将分式方程化为整式方程;若遇到互为相反数时。
不
要忘了改变符号。
(最简公分母:①系数取最小公倍数②未知数取最高次幂③出现的因式取最高次幂)
二、移项
移项,若有括号应先去括号,注意变号,合并同类项,把系数化为1 求出未知数的值;
三、验根
求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知
数的取值范围,可能产生增根。
验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根。
否则这个根就是原分式方程的根。
若解出的根都是增根,则原方程无解。
如果分式本身约
分了,也要代入进去检验。
在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合
题意。
一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因
此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解。
(1)注意去分母时,不要漏乘整式项。
(2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的根。
(3)増根使最简公分母等于0。
(4)分式方程中,如果x为分母,则x应不等于0。
感谢您的阅读,祝您生活愉快。
分式方程的解法多年的教学,总结了一下分式方程的解法,供大家参考,希望对大家有所帮助。
方法1:计算法例 解方程 32223=-++x x x 解:移项,得()()()()是原方程的根时,检验:当计算,得4,022440164022164-032223=≠-+===+-=-++=--++x x x x x x x x x x x x原理:分式的值为0,分子为0,分母不为0.方法是把所有的项集中于方程左边,右边为0 ,从而利用分式的值为0求出未知数。
方法2:分式相等法例 解方程 32223=-++x x x 解:原方程化为()()()()()()()()()()()()416412344322322232222322222322=-=--=+--+=++--+-+=-+++-x x x x x x x x x x x x x x x x x x x经检验,x=4是原方程的解。
原理:两分式相等,分母相等,分子也相等。
方法3:等式性质法例 解方程 32223=-++x x x 解:方程两边同乘()()22-+x x 得()()()()4164123443223222322=-=--=+--+=++-x x x x x x x x x x经检验,x=4是原方程的解。
原理:利用等式性质,去分母化为整式方程。
方法2结合方法3,降低去分母的难度。
方法4:比例式法例 解方程 415+=x x解:两外项的乘积等于两內项的乘积 ()55554154-==-+=+=x x x x x x经检验,x=-5是原方程的解。
分式方程的几种解法分式方程是初中数学教材重点内容之一,它是一元二次方程的应用和深化,同时又是列分式方程解应用题及解分式方程组的基础,所以分式方程有承上启下的作用,至关重要,它的解法很多,这里略谈一二。
一、 去分母法方法导析:它是分式方程的基本解法,即:方程两边同乘以各分母的最简公分母,化分式方程为整式方程,解出这个整式方程,最后把所得结果代入最简公分母中检验,便得分式方程的根。
例1:解方程:4121235222---=++-x x x x x 解:方程两边同乘以)2)(2)(1(-++x x x 去分母得:)1(4)2)(1()2)(52(+-++=--x x x x x整理得:01282=+-x x 解之得:6,221==x x检验:把2=x 代入)2)(2)(1(-++x x x ,它等于0,所以2=x 不是原方程的根。
把6=x 代入)2)(2)(1(-++x x x ,它不等于0,所以6=x 是原方程的根。
∴原方程的根为6=x 。
二、 换元法方法导析:根据方程特点用另一字母代替方程中的未知项式,得到一个关于这一字母的新方程,再进行解方程,其宗旨是换得的方程较原方程简单。
例2:解方程:21333322=-+-x x x x 解,设a x x =-32,则ax x 13332⨯=-,原方程变形为: 2133=+a a 去分母,得:061322=+-a a 解之得:61=a 212=a当6=a ,即632=-x x ,去分母,整理得0362=--x x 323±=∴x 当21=a ,即2132=-x x ,去分母,整理得0622=--x x 23,221-==∴x x 检验,把323+=x ,323-=x ,2=x , 23-=x 分别代入原方程分母中其计算结果都不为0,所以他们都是原方程的根。
∴原方程的根是323±=∴x ,2=x , 23-=x 三、 通分法方法导析:根据方程特点,原方程式适当变形后,两边进行通分,再结合分式性质解题。
分式方程知识点归纳总结分式方程(也称有理方程)是含有分式的等式,其中分子和(或)分母中至少有一个包含一个或多个未知量。
解分式方程的过程是确定使得等式成立的未知量的值。
下面是分式方程的一些常见知识点的总结:1.分式的定义域:对于一个分式,需要注意其定义域,即分母不能为零。
当分母为零时,分式没有意义。
因此,在解分式方程时,需要排除使分母为零的解。
2.分式方程的简化:可以通过约分的方法,将分式方程进行简化。
约分是将分子和分母同时除以他们的最大公约数。
这样可以简化方程,使求解更易于处理。
3.分式方程的通分:当分式方程中出现了不同的分母时,可以通过通分的方式将分式方程转换为求解多项式方程。
通分是将所有分母进行相同因式的乘法,使所有分母都相同。
然后分别将分子相加或相减,并保持分母不变。
这样,就可以将分式方程转化为多项式方程。
4.分式方程的解的确定性:一般而言,分式方程的解并不唯一、因此,在解分式方程时,需要注意是否有解,以及解的个数。
当方程的分子和分母为多项式时,可以通过将方程转化为多项式方程的方式来求解。
而对于含有绝对值、根号等特殊函数的分式方程,可能存在特殊解或无解的情况。
5.分式方程的解法:求解分式方程的常用方法有以下几种:a.通过消去分母的方式来求解。
首先将方程中的每一个分式都通分,这样可以得到一个多项式方程。
然后通过求解得到的多项式方程,找到使方程成立的未知量的值。
b.通过移项和合并同类项的方式转化为多项式方程。
首先将方程中的每一个分式都移动到一个方程的一边,将所有未知量合并,并将同类项相加。
最终得到一个多项式方程,通过求解多项式方程来求解分式方程。
c.通过换元的方式转化为多项式方程。
首先令一个新的未知量等于原方程中的一个分式,将分式方程转化为一个多项式方程。
然后通过求解新的多项式方程,找到使方程成立的未知量的值。
最后,将得到的解代入原方程中,验证是否是原方程的解。
以上是分式方程的一些常见知识点的总结。
分式方程知识点归纳分式方程是指含有分子和分母的方程,分子和分母分别为代数式或数字,并且方程中包含有未知数的方程。
下面将分式方程的知识点进行归纳,以便更好地理解和应用分式方程。
一、基本概念:1.分式方程的定义:含有未知数、带有分式形式的等式称为分式方程。
2.分式的定义:分式是由一个或多个代数式构成的比。
二、分式方程的解的性质:1.分式方程的等价方程:分式方程可以转化为多项式方程进行求解,这样可以得到等价的方程,两者的解是相同的。
2.分式方程的根的性质:一个分式方程的解,如果使得分式方程中的分子等于0,则该解就是方程的根。
三、分数的性质:1.分式的约分:分式的分子和分母同时除以它们的公因式,可以得到分式的约分式。
2.分式的通分:将不同分母的分式通过找到它们的最小公倍数,转化为具有相同分母的等价分式。
3.分数的四则运算:分数之间可以进行加减乘除的运算,需要注意分子和分母的相应运算。
四、分式方程的解法:1.乘法解法:对分式方程的两边同乘以一个使得方程中的分母消去的数,从而化简为一个多项式方程。
2.加减消去解法:对分式方程的两边同乘以使得方程中的分母消去的数,然后将方程中的分式整理为一个多项式,并进行求解。
3.代入解法:将分式方程中的一个未知数表示成另一个未知数的代数式,再代入到分式方程中,得到一个不含有代入的未知数的分式方程,进而进行求解。
4.通分解法:对分式方程的两边同时乘以方程中所有的分母的积,将分式方程化简为一个多项式方程进行求解。
五、分式方程的解的判定:1.当方程的分式的分子为0时,方程的解为0。
2.当方程的分式的分子和分母存在着相同的因式时,方程的解为使得分式方程中的分子等于0的值。
3.当分式方程的分母的值等于0时,方程没有解。
六、应用:分式方程在实际问题中的应用非常广泛,例如在物理学和金融学中,经常需要使用分式方程来解决实际问题。
比如计算财务利润率、财务收益率、物体的运动速度等。
七、常见的分式方程:1.一次方程:分式方程的分子和分母都是一次函数的方程。
分式方程的解法与技巧【典型例题】1. 局部通分法(分组分解法):例1. 解方程:x x x x x x x x -----=-----34456778分析:该方程的特点是等号两边各是两个分式,相邻两个分式的分子与分子,分母与分母及每个分式的分子与分母都顺序相差1,象这类通常采取局部通分法。
解:方程两边分别通分并化简,得:145178()()()()x x x x --=--去分母得:()()()()x x x x --=--4578解之得:x =6 经检验:x =6是原分式方程的根。
点拨:此题如果用常规法,将出现四次项且比较繁,而采用局部通分法,就有明显的优越性。
但有的时候采用这种方法前需要考虑适当移项,组合后再进行局部通分。
变式:解方程32411423---=---x x x x 分析:要整个方程一起通分,计算量大又易出错。
观察方程中分母的特点可联想分组通分求解。
解:方程两边分别通分,相减得)3)(4(5)1)(2(5---=---x x xx x x当05≠-x 时,)3)(4()1)(2(--=--x x x x ,解得251=x 当05=-x 时,解得52=x 经检验,251=x 52=x 都是原方程的解 2.换元法:例2. 解方程:7643165469222x x x x x x ----+=--+分析:此方程中各分式的分母都是含未知数x 的二次三项式,且前两项完全相同,故可考虑用换元法求解。
令或或或k x x k x x k x x =--=-+=-+222646569 k x x =-26均可。
解:设,则原方程可化为:k x x =-+265793144k k k --=-+ 去分母化简得:20147111602k k --=∴()()k k -+=1220930∴,k k ==-129320当时,k x x =--=126702()()x x -+=710解之得:,x x 1217=-=当时,k x x =--+=-932065932022012019302x x -+=解此方程此方程无解。
1.一般法所谓一般法,就是先去分母,将分式方程转化为一个整式方程。
然后解这个整式方程。
解原方程就是方程两边同乘以(x+3)(x-3),约去分母,得4(x-3)+x(x+3)=x2-9-2x。
2.换元法换元法就是恰当地利用换元,将复杂的分式简单化。
分析本方程若去分母,则原方程会变成高次方程,很难求出方程的解设x2+x=y,原方程可变形为解这个方程,得y1=-2,y2=1。
当y=-2时,x2+x=-2。
∵Δ<0,∴该方程无实根;当y=1时,x2+x=1,∴经检验,是原方程的根,所以原方程的根是。
3.分组结合法就是把分式方程中各项适当结合,再利用因式分解法或换元法来简化解答过程。
4.拆项法拆项法就是根据分式方程的特点,将组成分式方程的各项或部分项拆项,然后将同分母的项合并使原方程简化。
特别值得指出的是,用此法解分式方程很少有增根现象。
例4 解方程解将方程两边拆项,得即x=-3是原方程的根。
5.因式分解法因式分解法就是将分式方程中的各分式或部分分式的分子、分母分解因式,从而简化解题过程。
解将各分式的分子、分母分解因式,得∵x-1≠0,∴两边同乘以x-1,得检验知,它们都是原方程的根。
所以,原方程的根为x1=-1,x2=0。
6.配方法配方法就是先把分式方程中的常数项移到方程的左边,再把左边配成一个完全平方式,进而可以用直接开平方法求解。
∴x2±6x+5=0,解这个方程,得x=±5,或x=±1。
检验知,它们都是原方程的根。
所以,原方程的根是x1=5,x2=-5,x3=1,x4=-1。
7.应用比例定理上述例5,除了用因式分解法外,还可以应用合比和等比定理来解。
分式方程与分式不等式的解法分式方程和分式不等式是涉及分数的方程和不等式,其解法与一般的代数方程和不等式有一些不同之处。
本文将介绍分式方程和分式不等式的解法,并给出一些实例说明。
一、分式方程的解法分式方程是包含有分数的方程,一般形式为:$\frac{a}{x}+\frac{b}{y}=c$解分式方程的一般步骤如下:1. 将方程的两边通分,以消去分母。
2. 将分子相加,将方程转化为一个整式方程。
3. 解得整式方程的解。
4. 检验解,将解代入原方程验证是否成立。
例如,解方程$\frac{3}{x}-\frac{2}{y}=5$:解:首先将方程的两边通分,得到$3y-2x=5xy$。
接着整理方程,得到$5xy+2x-3y=0$。
将该方程转化为整式方程:$5xy+2x-3y=0$。
解得整式方程$5xy+2x-3y=0$的解。
程$5xy+2x-3y=0$的解。
二、分式不等式的解法分式不等式是包含有分数的不等式,一般形式为:$\frac{a}{x}>\frac{b}{y}$解分式不等式的一般步骤如下:1. 将不等式的两边通分,以消去分母。
2. 根据分数的正负和大小关系确定不等式符号。
3. 将分子相减,得到一个整式不等式。
4. 解得整式不等式的解。
5. 检验解,将解代入原不等式验证是否成立。
例如,解不等式$\frac{5}{x}>\frac{2}{y}$:解:首先将不等式的两边通分,得到$5y>2x$。
根据分数的正负和大小关系,确定不等式符号为>。
接着整理不等式,得到$2x-5y<0$。
将该不等式转化为整式不等式:$2x-5y<0$。
解得整式不等式$2x-5y<0$的解。
等式$2x-5y<0$的解。
结论本文简要介绍了分式方程和分式不等式的解法。
对于分式方程,我们通过通分和整理方程,将其转化为整式方程来求解。
对于分式不等式,我们通过通分和整理不等式,将其转化为整式不等式来求解。
分式方程的解法及应用(基础)【学习目标】1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程.2. 会列出分式方程解简单的应用问题.【要点梳理】要点一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.要点二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.要点三、解分式方程产生增根的原因方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根.要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根.(2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的.要点四、分式方程的应用分式方程的应用主要就是列方程解应用题.列分式方程解应用题按下列步骤进行:(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验是否是增根;(6)写出答案. 【典型例题】 类型一、判别分式方程 1、下列方程中,是分式方程的是( ).A .3214312x x +−−=B .124111x x x x x −+−=+−− C .21305x x += D .x ax a b +=,(a ,b 为非零常数)【答案】B ;【解析】A 、C 两项中的方程尽管有分母,但分母都是常数;D 项中的方程尽管含有分母,但分母中不含未知数,由定义知这三个方程都不是分式方程,只有B 项中的方程符合分式方程的定义.【总结升华】要判断一个方程是否为分式方程,就看其有无分母,并且分母中是否含有未知数.类型二、解分式方程2、 解分式方程(1)10522112x x +=−−;(2)225103x x x x −=+−.【答案与解析】解:(1)10522112x x +=−−,将方程两边同乘(21)x −,得10(5)2(21)x +−=−.解方程,得74x =. 检验:将74x =代入21x −,得52102x −=≠.∴ 74x =是原方程的解.(2)225103x x x x −=+−,方程两边同乘以(3)(1)x x x +−,得5(1)(3)0x x −−+=.解这个方程,得2x =.检验:把2x =代入最简公分母,得2×5×1=10≠0.∴ 原方程的解是2x =.【总结升华】将分式方程化为整式方程时,乘最简公分母时应乘原分式方程的每一项,不要漏乘常数项.特别提醒:解分式方程时,一定要检验方程的根.举一反三:【变式】解方程:21233xx x −=−−−.【答案】 解:21233x x x−=−−−, 方程两边都乘3x −,得212(3)x x −=−−−,解这个方程,得3x =,检验:当3x =时,30x −=,∴ 3x =是增根,∴ 原方程无解.类型三、分式方程的增根3、(2015春•安岳县期中)若解关于x 的分式方程会产生增根,求m 的值.【思路点拨】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m 的值.【答案与解析】解:方程两边都乘(x+2)(x ﹣2),得2(x+2)+mx=3(x ﹣2)∵最简公分母为(x+2)(x ﹣2),∴原方程增根为x=±2,∴把x=2代入整式方程,得m=﹣4.把x=﹣2代入整式方程,得m=6.综上,可知m=﹣4或6.【总结升华】增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.举一反三:【变式】如果方程11322x x x−+=−−有增根,那么增根是________. 【答案】2x =;提示:因为增根是使分式的分母为零的根,由分母20x −=或20x −=可得2x =.所以增根是2x =.类型四、分式方程的应用4、甲、乙两班参加绿化校园植树活动,已知乙班每小时比甲班多种2棵树,甲班种60棵树所用的时间与乙班种66棵树所用的时间相等.求甲、乙两班每小时各种多少棵树?【思路点拨】本题的等量关系为:甲班种60棵树所用的时间与乙班种66棵树所用的时间相等.【答案与解析】解:设甲班每小时种x 棵树,则乙班每小时种()2x +棵树.由题意可得60662x x =+,解这个方程,得20x =.经检验20x=是原方程的根且符合题意.所以222x+=(棵).答:甲班每小时种20棵树,乙班每小时种22棵树.【总结升华】解此题的关键是设出未知数后,用含x的分式表示甲、乙两班种树所用的时间.举一反三:【变式】(2016•淮安)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?【答案】解:设原计划每小时检修管道x米.由题意,得60060021.2x x−=.解得50x=.经检验,50x=是原方程的解.且符合题意.答:原计划每小时检修管道50米.。
分式方程的解法分式方程是一种涉及分数的方程,通常形式为一个分数等于另一个分数。
对于这类方程,需要一些特殊的解法方法。
一般来说,解分式方程需要以下几个步骤:1. 检查分母是否为0如果分式方程中的分母中有变量,那么需要检查这些变量是否能使分母为0。
如果存在这种情况,那么应该把这个值从解集中除去。
2. 通分将分数的分母通分。
这一步通常需要求出分母的最小公倍数,并将整个方程的左右两边同时乘上这个最小公倍数。
这样可以消除分数,使得方程变成一个普通的代数方程。
3. 化简将方程两边的短除,最终得到一个等式。
4. 解方程移项将未知数移到左侧或右侧,然后进行展开和化简,最后得到未知数的解。
如果方程中有多个未知数,可以采用代入法来求解。
下面我们来看几个具体例子。
例1:$\\frac{x}{x+1}-\\frac{1}{x-1}=\\frac{2}{2x-2}$首先检查分母中是否有变量,我们发现$x+1$和$x-1$都不能为0,因此这一步可以省略。
接着,我们通分,求出$x+1$、$x-1$和$2x-2$的最小公倍数为$2(x+1)(x-1)$,因此方程变成:$$\\frac{x(2x-2)-2(x+1)}{2(x+1)(x-1)}=0$$移项得到:$$2x^2-6x-2=0$$将此方程整理得:$$x^2-3x-1=0$$使用求根公式解得:$$x=\\frac{3\\pm\\sqrt{13}}{2}$$因此,方程的解集为:$$\\left\\{\\frac{3+\\sqrt{13}}{2},\\frac{3-\\sqrt{13}}{2}\\right\\}$$ 例2:$\\frac{2}{x-1}-\\frac{5}{4-x}=\\frac{1}{x^2-5x+4}$检查分母,发现$x=1$或$x=4$时分母为0,因此这两个值需要从解集中除去。
通分,得到:$$\\frac{8-10(x-1)}{(x-1)(4-x)}=\\frac{1}{x(x-4)}$$将左侧短除,得到:$$0=11x^2-59x+70$$将右侧转化为分数形式,得到:$$\\frac{1}{x(x-4)}=\\frac{A}{x}+\\frac{B}{x-4}$$化简得到:$$1=Ax-4A+Bx+Bx-4B$$将x和常数项分别对应,得到:$$\\begin{cases} A+B=0 \\\\ -4A+B=1 \\end{cases}$$解得$A=-\\frac{1}{4}$,$B=\\frac{1}{4}$。
分式方程解的几种情况分式方程是含有分数的方程,通常形式为两个分数相等。
在解分式方程时,需要将方程中的分数转化为整数形式,然后通过一系列的运算步骤将方程化简为一个等式,进而求解未知数的值。
下面将介绍几种常见的分式方程解法。
一、分式方程的交叉相乘法交叉相乘法适用于分式方程中含有两个分数的情况。
具体步骤如下:1. 将方程中的分数转化为整数形式,去掉分数线;2. 将等式两边的分数交叉相乘,得到一个新的等式;3. 化简新的等式,求解未知数的值;4. 检查解是否满足原方程,若满足,则为最终解;若不满足,则无解。
例如,解方程(2/x) = (4/5):1. 去掉分数线,得到2x = 4/5;2. 交叉相乘,得到2x * 5 = 4;3. 化简等式,得到10x = 4;4. 求解未知数,得到x = 4/10 = 2/5;5. 检查解是否满足原方程,代入x的值计算左右两边的结果,确保相等性成立。
二、分式方程的通分法通分法适用于分式方程中含有多个分数的情况。
具体步骤如下:1. 将方程中的分数转化为相同的分母,通分;2. 将等式两边的分数相加或相减,得到一个新的等式;3. 化简新的等式,求解未知数的值;4. 检查解是否满足原方程,若满足,则为最终解;若不满足,则无解。
例如,解方程(1/x) + (2/x-1) = (3/2):1. 通分,得到(x-1)/x + 2/x-1 = (3/2);2. 相加,得到(x-1 + 2)/x-1 = (3/2);3. 化简等式,得到(x+1)/x-1 = (3/2);4. 求解未知数,得到x+1 = (3/2)(x-1);5. 解方程得到x = 3。
三、分式方程的倒数法倒数法适用于分式方程中含有倒数的情况。
具体步骤如下:1. 将方程中的分数转化为倒数形式,将分子与分母互换位置;2. 将等式两边的分数相加或相减,得到一个新的等式;3. 化简新的等式,求解未知数的值;4. 检查解是否满足原方程,若满足,则为最终解;若不满足,则无解。
高中数学代数分式方程解法在高中数学学习中,我们经常会遇到各种各样的方程题目,其中代数分式方程是一类常见的题型。
解决代数分式方程需要运用一些特定的方法和技巧,本文将为大家介绍一些常见的代数分式方程解法,并通过具体的例子进行说明。
一、简单的代数分式方程首先,我们来看一个简单的代数分式方程的例子:例题1:求方程 $\frac{2}{x-1} + \frac{3}{x+2} = \frac{1}{x}$ 的解。
解析:首先,我们需要将方程的分母进行通分,得到$\frac{2(x+2)}{(x-1)(x+2)} + \frac{3(x-1)}{(x-1)(x+2)} = \frac{1}{x}$。
然后,我们将分子相加,得到$\frac{2(x+2) + 3(x-1)}{(x-1)(x+2)} = \frac{1}{x}$。
接下来,我们将分母进行约简,得到 $\frac{2x+4+3x-3}{(x-1)(x+2)} = \frac{1}{x}$。
继续化简,得到$\frac{5x+1}{(x-1)(x+2)} = \frac{1}{x}$。
接下来,我们将方程两边的分式进行交叉乘积,得到 $(5x+1)x = (x-1)(x+2)$。
继续计算,得到 $5x^2 + x = x^2 + x - 2$。
化简后,得到 $4x^2 = -2$。
最后,我们解得 $x = \pm \sqrt{\frac{1}{2}}$。
通过这个例子,我们可以看到,解决代数分式方程的关键是将方程进行通分、约简,然后通过交叉乘积等方法进行化简,最后解得未知数的值。
二、含有绝对值的代数分式方程接下来,我们来看一个含有绝对值的代数分式方程的例子:例题2:求方程 $\frac{|x-1|}{x-2} = \frac{x+1}{|x+1|}$ 的解。
解析:首先,我们需要考虑绝对值的取值范围。
当 $x \geq -1$ 时,方程可以化简为 $\frac{x-1}{x-2} = \frac{x+1}{x+1}$。
分式方程知识点总结
一、定义与性质
定义:分母里含有未知数或含有未知数整式的有理方程,称为分式方程。
基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
二、运算与变形
乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
乘方法则:分式乘方时,要将分子、分母各自乘方。
加减法则:同分母的分式相加减时,分母不变,把分子相加减;异分母的分式相加减时,先通分,转化为同分母分式,然后再加减。
约分与通分:分式可以约分,即根据分式的基本性质,把一个分式的分子与分母的公因式约去;分式也可以通分,即把分子、分母同时乘以适当的整式,将异分母的分式转化为同分母的分式。
三、分式方程的解法
去分母:方程两边同时乘以最简公分母,将分式方程化为整式方程。
注意,当分母是多项式时,先分解因式,再找出最简公分母。
解整式方程:通过移项、合并同类项、系数化为1等步骤,求出整式方程的解。
验根:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解;若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解。
注意,解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根。
四、分式方程的应用
分式方程在多个领域都有广泛的应用,如金融和经济领域中的运输和速率问题、货币兑换、利润和成本计算;科学领域中的浓度计算问题、反应速率计算;数学领域中的比例问题等。
通过掌握这些知识点,可以更好地理解和应用分式方程,解决各种实际问题。
如需更深入的学习,建议查阅数学教材或咨询数学老师。
初中数学分式方程的解法
分式方程是指含有分式未知数的方程。
在初中数学中,分式方程的解法主要有以下步骤:
1. 去分母:将分式方程转化为整式方程。
为了去分母,需要找到一个公共的分母,将方程中的所有分式都转化为整式。
这个过程可能需要多次尝试,找到合适的公共分母。
2. 去括号:将整式方程中的括号去掉,得到一个简单的整式方程。
3. 移项:将整式方程中的未知数项移到一边,常数项移到另一边,使方程变为标准的形如ax+b=0的形式。
4. 求解:根据求根公式,求出整式方程的解。
这个解就是原分式方程的解。
5. 检验:将求得的解代入原分式方程,检验是否满足原方程。
如果满足,那么这个解就是正确的;否则,需要重新求解。
需要注意,解分式方程时,要遵循去分母、去括号、移项、求解和检验的步骤。
此外,在解题过程中,要注意分式方程中分母不能为0的情况,以及解的合理性。
总之,初中数学中的分式方程解法主要是通过去分母、去括号、移项、求解和检验等步骤,将分式方程转化为整式方程,然后求解得到原方程的解。
熟练掌握这些解法与步骤,可以帮助学生更好地解决分式方程问题。
分式方程重难点题型一、知识梳理一:分式方程的基本解法1.分式方程的定义:分母中含有未知数的方程叫作分式方程.2.分式方程的解法:(1)解分式方程的基本思想是:把分式方程转化为整式方程.(2)解可化为一元一次方程的分式方程的一般方法和步骤:①去分母,即在方程的两边同时乘以最简公分母,把原方程化为整式方程;②去括号;③移项;④合并同类项;⑤系数化为1;⑥验根:把整式方程的根代入最简公分母中,使最简公分母不等于零的值是原方程的根;使最简公分母等于零的值是原方程的增根.注意:解分式方程一定要验根.二:分式方程的增根和无解1.分式方程的增根(1)产生增根的原因增根的产生是在解分式方程的第一步“去分母”时造成的,根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得的方程是原方程的同解方程,如果方程的两边都乘以的数是0,那么所得的方程与原方程不是同解方程,这时求得的根就是原方程的增根.(2)分式方程增根的应用如果说某个含参数的分式方程无解,但是去分母以后的整式方程是有解的,说明那个解应该是增根.只要把增根求出来(也就是令原来的分母为零),代入整式方程就可以解出参数的值.2.分式方程无解:不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:(1)原方程去分母后的整式方程无解;(2)原方程去分母后的整式方程有解,但这个解使原方程的分母为0,它是原方程的增根,从而原方程无解.3.分式方程无解与增根的区别:分式方程无解时,不一定有增根;分式方程有增根时,不一定无解.二、 例题分析题型一 分式方程的概念与基本解法【例1】 下列方程中哪些是分式方程?(1)3(1)0x x -+= (2)11(1)923x x +-=(3)1371x x-=+(4)22133x x +=(5)2973x x +=-(6)3731y y -+(7)13x x += (8)31=3x x- (9)2927=01x xa a-++(a 为字母系数) (10)2133a a x x ++=-(a 为字母系数) 【解析】 思路与技巧:分式方程首先应为方程,然后还必须满足有分母,并且分母中含有未知数.其中分式方程有(3)、(5)、(7)、(8)、(10)【例2】 解下列分式方程:(1)324x --2x x -1=2(2)2242111x x x x x -+=-+ (3)311(1)(2)x x x x -=++- 【解析】 (1)53x =;(2)12x =-;(3)两边同时乘以(1)(2)x x +-,得(2)(1)(2)3x x x x --+-=. 解这个方程,得1x =-.,检验:1x =-时(1)(2)0x x +-=,1x ∴=-不是原分式方程的解,原分式方程无解.【变1】 解下列分式方程:(1)21622=422x x x x x -++-+- (2)22252571061268x x x x x x x x x --+=+----+ 【解析】 (1)原方程化为1622=(2)(2)22x x x x x x -+++-+- 方程两边同时乘以(2)(2)x x +-,约去分母,得2216(2)=(2)x x -+-+,整理得22412=44x x x x --++,解这个整式方程,得=2x -, 检验:把=2x -代入(2)(2)x x +-,得(22)(22)0-+--= 所以=2x -是原方程的增根,原分式方程无解. (2)原方程可变形为:525710(2)(3)(3)(4)(2)(4)x x x x x x x x x --+=-++---方程两边都乘以(2)(3)(4)x x x -+-,得5(4)(25)(2)(710)(3)x x x x x x -+--=-+,整理,得4040x -=-,∴1x =, 检验,当1x =时,(2)(3)(4)0x x x -+-≠∴原方程的解是1x =.【变2】 设实数k 满足01k <<,解关于x 的分式方程:221211k k x x x x+-=--. 【解析】 由题意得,21(21)(1)kx k x -=+-,即21(21)21kx k x k -=+--,解得2x k =, I .如果12k =,即1x =,则2x k =为原方程的增根; II .如果01k <<且12k ≠,则2x k =为原方程的根. 题型二 分式方程的增根、无解及解范围问题【例3】 (1)若关于x 的方程4122ax x x =+--无解,则a 的值是___________. (2)若关于x 的分式方程311x a x x --=-无解,则a =___________. (3)若关于x 的方程1221(1)(2)x x ax x x x x ++-=+--+无解,求a 的值. 【解析】 (1)1或2;(2)1或2-;原方程化为(2)3a x +=,1x =、0x =、20a +=时,原方程均无解. (3)原方程化为(2)3a x +=-,①∵原方程无解,∴20a +=或10x -=,20x +=,得1x =,2x =-分别代入①,得5a =-,12a =-,综上知2a =-,5-或12-.【例4】 (1)若关于x 的方程2102x mx ++=-的根为正数,则m 取值范围为________. (2)若关于x 的分式方程32122x a x x =---的解是非负数,则a 取值范围是________. (3)若关于x 的方程1101ax x +-=-的解为正数,则a 取值范围为_______. 【解析】 (1)去分母,得:2(2)0x m x ++-=,化简可得:23mx -=, 由题意得:0x >且2x ≠,即:203m ->且223m-≠,解得:2m <且4m ≠-. (2)43a ≥-且23a ≠.(3)1a <且1a ≠-.【例5】 (1)若关于x 的分式方程26111mx x -=--有增根,则增根是________. (2)如果分式方程8877x kx x--=--出现了增根,那么k 的值为________. (3)若分式方程22111x m x x x x x++-=++产生增根,则m 的值为________. (4)如果解方程2251224m x x x x +-=-+-时出现增根,则m 的取值为________. 【解析】 (1)1x =;去分母,得:26(1)1m x x -+=-,移项,得:27(1)m x x -+=,当1x =-时,原方程无解,(分母为0的两种情况讨论),当1x =时为原方程的增根.(2)1;(3)2-或1;(4)12m =±.【变3】 ⑴若分式方程:11222kx x x-+=--有增根,则k 的值为__________ ⑵若关于x 的分式方程2213m x x x+-=-无解,则m 的值为_________ ⑶若分式方程212x ax +=--的解是正数,求a 的取值范围. ⑷解关于x 的方程()0x a cc d b x d-=+≠- 【解析】 ⑴解分式方程得:22x k =-,由于有增根,则2x =,∴222k =-,∴1k = ⑵解分式方程得:621x m =-+,由于方程无解,则0x =或3 当0x =时,m 无解,当3x =时,32m =-⑶解分式方程得:203ax -=>且2x ≠,∴2a <且4a ≠- ⑷∵0c d +≠∴ad bcx c d+=+ 题型三 8大技巧解分式方程对于某些特殊类型的分式方程,如果采用常规方法来解,往往会带来繁琐的运算。
分式方程解法及增根问题例题分式方程解法及增根问题例题在代数学中,分式方程是指方程中含有分式的方程。
在解分式方程时,通常需要使用增根和减根的方法。
本文将介绍分式方程的解法以及增根问题,并提供一些例题进行讲解。
一、分式方程的解法解分式方程的一般步骤如下:1. 化简分式:将分式方程中的分式进行化简,使方程变得更加简单。
2. 通分:将方程中的分式通分,使得方程中的分母相同,便于计算和化简。
3. 求解:利用通分后的方程,进行运算和求解,得出方程的解。
对于分式方程 3/(x+2) = 1/(x-1),首先可以将分式进行通分,得到3(x-1) = (x+2)。
然后进行计算和求解,得出 x 的值。
二、增根问题在解分式方程时,经常会遇到增根问题。
增根指的是在解出方程的根之外,还需要添加一些特殊的值,以满足方程的条件。
解决增根问题的一般步骤如下:1. 求解得到普通根:按照正常的解方程方法,求解得到方程的普通根。
2. 分析增根条件:分析方程中是否存在增根的条件,例如分式方程中的分母不能为零等条件。
3. 添加增根:根据增根的条件,添加符合条件的增根,让方程能够满足所有条件。
对于分式方程 1/(x-3) = 2/(x+2),首先可以求解得到普通根 x=4。
然后分析发现,当 x=3 时,方程中的分母为零,因此需要添加增根 x=3,才能满足方程的条件。
三、例题讲解现在,我们通过一些例题来具体讲解分式方程的解法和增根问题。
例题1:解方程 2/(x-1) - 3/(x+2) = 1/(x-3)解题步骤:1. 化简得到通分形式:2(x+2) - 3(x-1) = (x-3)2. 化简得到普通根:2x+4 - 3x+3 = x-33. 求解得到普通根:-x+7 = x-3,得到 x=54. 分析增根条件:当 x=1 时,分式中的分母为零。
5. 添加增根:添加增根 x=1,使得方程满足所有条件。
例题2:解方程 1/(x-2) + 2/(x+1) = 3/(x-3)解题步骤:1. 化简得到通分形式:(x-2) + 2(x-3) = 3(x+1)2. 化简得到普通根:x-2 + 2x-6 = 3x+33. 求解得到普通根:3x-8 = 3x+3,得到矛盾4. 分析增根条件:由于方程中出现了矛盾,需要分析增根条件。
分式方程的几种特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,换元法,并且要检验。
但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,颇有异曲同工之妙,现举例说明。
一、化归法。
例1. 解方程621(1)(2)2x x x -=+-- 解:移项通分,得:62(1)(1)(2)0(1)(2)x x x x x -+-+-=+- 则260(1)(2)x x x x --=+- (2)(3)0(1)(2)x x x x --+=+- 即301x x +=+ 则 30x +=3x =-所以原方程的解为3x =- 说明:①把分式方程化归为分式值为0时,求字母的值。
②本题方程隐含着1,2x x ≠-≠,否则会出现增根。
③这种解法无需验根。
二、观察比较法。
例2.解方程452175244x x x x -+=- 分析: 观察到左边452x x -与524x x -互为倒数,右边的174也可化为4+14根据这一特征,比较转化后求解。
解:原方程可化为:452145244x x x x -+=+- 所以441452524x x x x ==--或 解之得:1212211x x ==-, 经检验1212211x x ==-,都是原方程的解。
三、分离常数法例3.解方程18272938x x x x x x x x +++++=+++++ 分析:方程中各项的分母与分子之差都为1,根据这一特点把每个分式都化成常数1与较简单分式的和,简化原方程.解:原方程可化为: ()()()()111129382938x x x x x x x x ----+++++=+++++111111112938x x x x -+-=-+-++++11112938x x x x +=+++++11112389x x x x -=-++++,()()()()112389x x x x =++++()()()()2389x x x x =++++112x =-经检验:112x =-是原方程的解.四、逐项通分法例4.解方程24112481111x x x x -++=+-++分析:若整体通分,将很繁,注意到逐项通分时,分母都满足平方差公式,故逐项通分. 解:原方程可化为:()()2422481111x x x x -++=+++-()()422448111x x x -+=+-+()()448811x x -=-+811x -=-,0x =经检验: 0x =是原方程的解.五、利用比例性质。
分式方程解法详细步骤
当我们遇到分式方程时,我们需要找到方程中未知数的值,使得等式两边成立。
下面我将详细介绍解分式方程的步骤。
步骤1,清除分母。
首先,我们需要清除方程中的分母。
这可以通过乘以分母的最小公倍数来实现。
例如,如果方程中有分母为a和b的两个分式,我们可以将方程两边同时乘以a和b的最小公倍数来消除分母。
步骤2,合并同类项。
一旦我们清除了分母,我们需要合并方程两边的同类项。
这意味着将所有包含相同未知数的项相加或相减,并将常数项相加或相减。
步骤3,解方程。
现在我们得到了一个不含分式的方程,我们可以像解普通方程一样来解这个方程。
这可能涉及到移项、因式分解、配方法等。
步骤4,验证解。
最后,我们需要将我们得到的解代入原方程,验证它是否满足原方程。
如果满足,则我们的解是正确的。
以上就是解分式方程的详细步骤。
希望对你有所帮助。
如果你有具体的分式方程需要解决,也可以提供给我,我可以帮你具体分析。
分式方程的解法总结
分式方程的解法
分式方程的解法是数学思想中转化化归思想的又一体现:把分式方程转化为整式方程进行求解,转化的方法是利用等式的性质在分式方程的左右两边分别乘以各分母的最简公分母.
解分式方程的一般步骤:
(1)去分母: 在分式方程的左右两边分别乘以最简公分母,把分式方程转化为整式方程(目前只学习可转化为一元一次方程的分式方程);
(2)解整式方程;
(3)检验: 把整式方程的解代入最简公分母,结果不为0的是原分式方程的解(也叫根),否则就是增根,必须舍去.
例1. 解分式方程:
1132-=+-x x x x . 解: ()1
113-=+-x x x x (此步是为了正确确定分式方程的最简公分母) 方程两边同时乘以()1-x x 得:
()213x x x =-+
解这个整式方程得:
3=x
检验:把3=x 代入()1-x x 得:
()0133≠-⨯
所以3=x 是原分式方程的解.
习题1. 解方程:
(1)
x x 332=-; (2)2
75-=x x .
习题2. 解方程:
(1)
1132-=+x x ; (2)01522=--+x x x x .
例2. 解方程:
12112-=-x x . 解: ()()
11211-+=-x x x 方程两边同时乘以()()11-+x x 得:
21=+x
解这个整式方程得:
1=x
检验:把1=x 代入()()11-+x x 得:
()()01111=-⨯+
所以1=x 是增根,原分式方程无解.
注意: 解分式方程必须检验(即验根),增根表示原分式方程无解.
增根
在例2的解法中,1=x 虽是整式方程21=+x 的解,但却使分式方程左右两边的分式无意义,不适合原分式方程的解,1=x 就是增根.
使分式方程的最简公分母等于0的解,不是原分式方程的解,是增根.
一般地,解分式方程时,去分母后所得整式方程的解可能使最简公分母为0,即产生增根,因此一定要检验:将整式方程的解代入最简公分母,如果最简公分母不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解,是增根,原分式方程无解.
重要的事情说三遍:解分式方程要检验,解分式方程要检验,解分式方程要:
检验
注意:
(1)增根使最简公分母等于0.
(2)增根表示原分式方程无解.
(3)增根是去分母后所得整式方程的解,但不是原分式方程的解.
(4)解分式方程可能会产生增根,因此一定要检验.
习题3. 解方程:
()()21311+-=--x x x x .
习题4. 解方程:
(1)
12422=---x
x x ; (2)114112=-+-+x x x .
解分式方程中的“温柔陷阱”
去分母时,漏乘 例3. 解方程:
x
x x --=+-21322. 错解:21322--=+-x x x 方程两边都乘以()2-x 得:
132-=+x
分析:在转化为整式方程时出错,常数3漏乘了最简公分母()2-x ,这是不符合等
式的性质的,必然得到一个错解.
正解:
忽视分数线的小括号作用
例4. 解方程:
013132=-+--x x x . 错解:()()
011313=-++--x x x x 方程两边都乘以()()11-+x x 得:
()0313=+-+x x
分析:去分母后应对分子3+x 加小括号,正确的结果为()()0313=+-+x x . 正解:
解分式方程不检验(易忽略检验)
例5. 解方程:
22121--=--x
x x 错解:22121---=--x x x 方程两边都乘以()2-x 得:
()2211---=-x x
解这个整式方程得:
2=x
分析: 2=x 并不是原分式方程的解,因为当2=x 时,原分式方程的最简公分母为0,分式无意义,2=x 是增根,所以解分式方程时必须检验,否则,不能作出结论.
正解:
习题5. 解方程:
14122=---x x x .
习题6. 解方程:
x
x x --=+-21221.
拆项法解分式方程
知识回顾
拆项技巧 类型一:()1
1111+-=+x x x x (x 为正整数). 类型二:
()⎪⎭⎫ ⎝⎛+-=+n x x n n x x 1111(n x ,均为正整数)
习题7. 解方程:
()()()()()()()x x x x x x x x x 1120182017132121111+=+++++++++++ .
习题8.解方程:
4
11271651231222+=++++++++x x x x x x x .。