焊接缺陷及防治措施
- 格式:doc
- 大小:44.00 KB
- 文档页数:6
焊接缺陷产生原因及防止措施焊接接头的不完整性称为焊接缺陷,主要有焊接裂纹、未焊透、夹渣、气孔和焊缝外观缺陷等;这些缺陷减少焊缝截面积,降低承载能力,产生应力集中,引起裂纹;降低疲劳强度,易引起焊件破裂导致脆断;一缺陷名称:气孔Blow Hole典型缺陷照片二缺陷名称咬边Undercut典型缺陷照片三缺陷名称:夹渣Slag Inclusion埋弧焊接1焊接方向朝母材倾斜方向,因此焊渣流动超前.2多层焊接时,开槽面受焊丝溶入,焊丝过于靠近开槽的侧边.3在焊接起点有导板处易产生夹渣.4电流过小,第二层间有焊渣留存,在焊接薄板时容易产生裂纹.5焊接速度过低,使焊渣超前.6最后完成层电弧电压过高,使得游离焊渣在焊道端头产生搅卷.1焊接改向相反方向焊接,或将母材尽可能改成水平方向焊接.2开槽侧面和焊丝之间距离,最少要大于焊丝直径以上.3导板厚度及开槽形状,需与母材相同.4提高焊接电流,使残留焊渣容易熔化.5增加焊接电流及焊接速度.6减小电压或提高焊速,必要时盖面层由单道焊改为多道焊接.自保护药芯焊丝1电弧电压过低.2焊丝摆弧不当.3焊丝伸出过长.4电流过低,焊接速度过慢.5第一道焊渣,未充分清除.6第一道结合不良.7坡口太狭窄.1调整适当.2加多练习.3依各种焊丝使用说明.4调整焊接参数.5完全清除6使用适当电压,注意摆弧.7改正适当坡口角度及间隙.典型缺陷照片四缺陷名称:未焊透Incomplete Penetration典型缺陷照片五缺陷名称:裂纹CrackCO2气体保护焊1开槽角度过小,在大电流焊接时,产生梨形和焊道裂纹.2母材含碳量和其它合金量过高焊道及热影区.3多层焊接时,第一层焊道过小.4焊接顺序不当,产生拘束力过强.5焊丝潮湿,氢气侵入焊道.6套板密接不良,形成高低不平,致应力集中.7因第一层焊接量过多,冷却缓慢不锈钢,铝合金等.1注意适当开槽角度与电流的配合,必要时要加大开槽角度.2采用含碳量低的焊条.3第一道焊着金属须充分能抵抗收缩应力.4改良结构设计,注意焊接顺序,焊后进行热处理.5注意焊丝保存.6注意焊件组合之精度.7注意正确的电流及焊接速度.埋弧焊接1对焊缝母材所用的焊丝和焊剂之配合不适当母材含碳量过大,焊丝金属含锰量太少.2焊道急速冷却,使热影响区发生硬化.3焊丝含碳、硫量过大.4在多层焊接之第一层所生焊道力,不足抵抗收缩应力.5在角焊时过深的渗透或偏析.1使用含锰量较高的焊丝,在母材含碳量多时,要有预热之措施.2焊接电流及电压需增加,焊接速度降低,母材需加热措施.3更换焊丝.4第一层焊道之焊着金属须充分抵抗收缩应力.5将焊接电流及焊接速度减低,改变极性.6注意规定的施工方法,并予焊接操典型缺陷照片六缺陷名称:变形Distortion七其他缺陷典型缺陷照片-焊穿--搭叠--焊道蛇形-。
焊缝缺陷的危害及预防措施焊接是工程中常用的连接技术,但由于各种原因,焊接中常常会出现焊缝缺陷。
焊缝缺陷不仅会给结构造成严重的安全隐患,影响使用寿命,还可能导致灾难性的事故发生。
为了确保焊接质量和工程的安全可靠,必须要重视焊缝缺陷的危害,并采取相应的预防措施。
一、焊缝缺陷的危害1. 强度降低:焊缝缺陷会导致接头的强度降低,降低了结构的承载能力。
在受到外力作用时,焊接缺陷容易产生破坏,导致结构失效。
2. 断裂风险增加:焊缝中存在缺陷,会增加材料的应力集中,使得断裂风险增加。
尤其是在动态载荷下,焊缝的材料疲劳寿命会大大缩短。
3. 泄漏和渗透:如果焊缝中存在气孔、裂纹等缺陷,会导致结构在内外压力的作用下发生泄漏和渗透。
对于承压设备或管道,这个问题尤为严重,可能造成环境污染或人员伤亡。
4. 腐蚀加剧:焊缝缺陷是腐蚀的滋生和发展的聚集点,容易引起局部腐蚀速度的加剧。
腐蚀会降低结构的强度和耐久性,严重的话可能导致设备失效。
5. 破坏结构完整性:焊缝缺陷会破坏结构的完整性,使得结构整体变得脆弱,很容易发生局部或整体的破坏。
对于高速公路桥梁、大型建筑等重要工程,这种破坏可能会导致灾难性的后果。
二、预防焊缝缺陷的措施1. 规范化操作:在焊接过程中,按照标准化的工艺操作,严格控制焊接参数和工艺要求,包括电流、电压、焊接速度等因素。
只有在规范化的操作下,才能有效地降低焊缝缺陷的发生概率。
2. 质量检测:在焊接完成后,进行质量检测是非常重要的。
可以采用目测、超声波检测、射线检测等方法,对焊缝进行全面的检查。
及时发现并修补焊缝缺陷,可以有效减少危险因素。
3. 质量培训:针对焊接工人,必须进行全面的培训,提高他们的技术水平和质量意识。
培训内容包括焊接工艺知识、缺陷识别和修补方法等。
只有使焊工具备全面的技术知识,才能减少操作中的疏忽和失误。
4. 合理设计:在结构设计中,要合理布置焊接接头,尽量减少焊接缺陷的发生。
避免焊缝过长或连接件厚度不均匀等设计缺陷。
气孔焊接方式发生原因防止措施手工电弧焊(1)焊条不良或潮湿.(2)焊件有水分、油污或锈.(3)焊接速度太快.(4)电流太强.(5)电弧长度不适合.(6)焊件厚度大,金属冷却过速.(1)选用适当的焊条并注意烘干.(2)焊接前清洁被焊部份.(3)降低焊接速度,使内部气体容易逸出.(4)使用厂商建议适当电流.(5)调整适当电弧长度.(6)施行适当的预热工作.CO2气体保护焊(1)母材不洁.(2)焊丝有锈或焊药潮湿.(3)点焊不良,焊丝选择不当.(4)干伸长度太长,CO2气体保护不周密.(5)风速较大,无挡风装置.(6)焊接速度太快,冷却快速.(7)火花飞溅粘在喷嘴,造成气体乱流.(8)气体纯度不良,含杂物多(特别含水分).(1)焊接前注意清洁被焊部位.(2)选用适当的焊丝并注意保持干燥.(3)点焊焊道不得有缺陷,同时要清洁干净,且使用焊丝尺寸要适当.(4)减小干伸长度,调整适当气体流量.(5)加装挡风设备.(6)降低速度使内部气体逸出.(7)注意清除喷嘴处焊渣,并涂以飞溅附着防止剂,以延长喷嘴寿命.(8)CO2纯度为99.98%以上,水分为0.005%以下.埋弧焊接(1)焊缝有锈、氧化膜、油脂等有机物的杂质.(2)焊剂潮湿.(3)焊剂受污染.(4)焊接速度过快.(5)焊剂高度不足.(6)焊剂高度过大,使气体不易逸出(特别在焊剂粒度细的情形).(7)焊丝生锈或沾有油污.(8)极性不适当(特别在对接时受污染会产生气孔).(1)焊缝需研磨或以火焰烧除,再以钢丝刷清除.(2)约需300℃干燥(3)注意焊剂的储存及焊接部位附近地区的清洁,以免杂物混入.(4)降低焊接速度.(5)焊剂出口橡皮管口要调整高些.(6)焊剂出口橡皮管要调整低些,在自动焊接情形适当高度30-40mm.(7)换用清洁焊丝.(8)将直流正接(DC-)改为直流反接(DC+).设备不良(1)减压表冷却,气体无法流出.(2)喷嘴被火花飞溅物堵塞.(3)焊丝有油、锈.(1)气体调节器无附电热器时,要加装电热器,同时检查表之流量.(2)经常清除喷嘴飞溅物.并且涂以飞溅附着防止剂.(3)焊丝贮存或安装焊丝时不可触及油类.自保护药芯焊丝(1)电压过高.(2)焊丝突出长度过短.(3)钢板表面有锈蚀、油漆、水分.(4)焊枪拖曳角倾斜太多.(5)移行速度太快,尤其横焊.(1)降低电压.(2)依各种焊丝说明使用.(3)焊前清除干净.(4)减少拖曳角至约0-20°.(5)调整适当.咬边焊接方式发生原因防止措施手工电弧焊(1)电流太强.(2)焊条不适合.(3)电弧过长.(4)操作方法不当.(5)母材不洁.(6)母材过热.(1)使用较低电流.(2)选用适当种类及大小之焊条.(3)保持适当的弧长.(4)采用正确的角度,较慢的速度,较短的电弧及较窄的运行法.(5)清除母材油渍或锈.(6)使用直径较小之焊条.CO2气体保护焊(1)电弧过长,焊接速度太快.(2)角焊时,焊条对准部位不正确.(3)立焊摆动或操作不良,使焊道二边填补不足产生咬边.(1)降低电弧长度及速度.(2)在水平角焊时,焊丝位置应离交点1-2mm.(3)改正操作方法.夹渣焊接方式发生原因防止措施手工电弧焊(1)前层焊渣未完全清除.(2)焊接电流太低.(3)焊接速度太慢.(4)焊条摆动过宽.(5)焊缝组合及设计不良.(1)彻底清除前层焊渣.(2)采用较高电流.(3)提高焊接速度.(4)减少焊条摆动宽度.(5)改正适当坡口角度及间隙.CO2气体电弧焊(1)母材倾斜(下坡)使焊渣超前.(2)前一道焊接后,焊渣未清洁干净.(3)电流过小,速度慢,焊着量多.(4)用前进法焊接,开槽内焊渣超前甚多.(1)尽可能将焊件放置水平位置.(2)注意每道焊道之清洁.(3)增加电流和焊速,使焊渣容易浮起.(4)提高焊接速度埋弧焊接(1)焊接方向朝母材倾斜方向,因此焊渣流动超前.(2)多层焊接时,开槽面受焊丝溶入,焊丝过于靠近开槽的侧边.(3)在焊接起点有导板处易产生夹渣.(4)电流过小,第二层间有焊渣留存,在焊接薄板时容易产生裂纹.(5)焊接速度过低,使焊渣超前.(6)最后完成层电弧电压过高,使得游离焊渣在焊道端头产生搅卷.(1)焊接改向相反方向焊接,或将母材尽可能改成水平方向焊接.(2)开槽侧面和焊丝之间距离,最少要大于焊丝直径以上.(3)导板厚度及开槽形状,需与母材相同.(4)提高焊接电流,使残留焊渣容易熔化.(5)增加焊接电流及焊接速度.(6)减小电压或提高焊速,必要时盖面层由单道焊改为多道焊接.自保护药芯焊丝(1)电弧电压过低.(2)焊丝摆弧不当.(3)焊丝伸出过长.(4)电流过低,焊接速度过慢.(5)第一道焊渣,未充分清除.(6)第一道结合不良.(7)坡口太狭窄.(8)焊缝向下倾斜.(1)调整适当.(2)加多练习.(3)依各种焊丝使用说明.(4)调整焊接参数.(5)完全清除(6)使用适当电压,注意摆弧.(7)改正适当坡口角度及间隙.(8)放平,或移行速度加快.未焊透焊接方式发生原因 防止措施手工 电弧焊(1)焊条选用不当.(2)电流太低.(3)焊接速度太快温度上升不够,又进行速度太慢电弧冲力被焊渣所阻挡,不能给予母材.(4)焊缝设计及组合不正确.(1)选用较具渗透力的焊条. (2)使用适当电流. (3)改用适当焊接速度.(4)增加开槽度数,增加间隙,并减少根深.CO2气体 保护焊 (1)电弧过小,焊接速度过低. (2)电弧过长. (3)开槽设计不良. (1)增加焊接电流和速度. (2)降低电弧长度.(3)增加开槽度数.增加间隙减少根深. 自保护药芯焊丝(1)电流太低. (2)焊接速度太慢. (3)电压太高. (4)摆弧不当. (5)坡口角度不当.(1)提高电流. (2)提高焊接速度. (3)降低电压. (4)多加练习.(5)采用开槽角度大一点.手工电弧焊(1)焊件含有过高的碳、锰等合金元素.(2)焊条品质不良或潮湿.(3)焊缝拘束应力过大.(4)母条材质含硫过高不适于焊接.(5)施工准备不足.(6)母材厚度较大,冷却过速.(7)电流太强.(8)首道焊道不足抵抗收缩应力.(1)使用低氢系焊条.(2)使用适宜焊条,并注意干燥.(3)改良结构设计,注意焊接顺序,焊接后进行热处理.(4)避免使用不良钢材.(5)焊接时需考虑预热或后热.(6)预热母材,焊后缓冷.(7)使用适当电流.(8)首道焊接之焊着金属须充分抵抗收缩应力.CO2气体保护焊(1)开槽角度过小,在大电流焊接时,产生梨形和焊道裂纹.(2)母材含碳量和其它合金量过高(焊道及热影区).(3)多层焊接时,第一层焊道过小.(4)焊接顺序不当,产生拘束力过强.(5)焊丝潮湿,氢气侵入焊道.(6)套板密接不良,形成高低不平,致应力集中.(7)因第一层焊接量过多,冷却缓慢(不锈钢,铝合金等).(1)注意适当开槽角度与电流的配合,必要时要加大开槽角度.(2)采用含碳量低的焊条.(3)第一道焊着金属须充分能抵抗收缩应力.(4)改良结构设计,注意焊接顺序,焊后进行热处理.(5)注意焊丝保存.(6)注意焊件组合之精度.(7)注意正确的电流及焊接速度.埋弧焊接(1)对焊缝母材所用的焊丝和焊剂之配合不适当(母材含碳量过大,焊丝金属含锰量太少).(2)焊道急速冷却,使热影响区发生硬化.(3)焊丝含碳、硫量过大.(4)在多层焊接之第一层所生焊道力,不足抵抗收缩应力.(5)在角焊时过深的渗透或偏析.(6)焊接施工顺序不正确,母材拘束力大.(7)焊道形状不适当,焊道宽度与焊道(1)使用含锰量较高的焊丝,在母材含碳量多时,要有预热之措施.(2)焊接电流及电压需增加,焊接速度降低,母材需加热措施.(3)更换焊丝.(4)第一层焊道之焊着金属须充分抵抗收缩应力.(5)将焊接电流及焊接速度减低,改变极性.(6)注意规定的施工方法,并予焊接操作施工指导.(7)焊道宽度与深度的比例约为1:1:25,电流降低,电压加大.变形焊接方式发生原因 防止措施手焊、CO2气体保护焊、 自保护药芯焊丝焊接、自动埋弧焊接.(1)焊接层数太多.(2)焊接顺序不当. (3)施工准备不足. (4)母材冷却过速. (5)母材过热.(薄板) (6)焊缝设计不当. (7)焊着金属过多. (8)拘束方式不确实.(1)使用直径较大之焊条及较高电流. (2)改正焊接顺序(3)焊接前,使用夹具将焊件固定以免发生翘曲.(4)避免冷却过速或预热母材. (5)选用穿透力低之焊材. (6)减少焊缝间隙,减少开槽度数. (7)注意焊接尺寸,不使焊道过大. (8)注意防止变形的固定措施.其他缺陷焊道外观形状不良(Bad Appearanc e)(1)焊条不良.(2)操作方法不适.(3)焊接电流过高,焊条直径过粗.(4)焊件过热.(5)焊道内,熔填方法不良.(6)导电嘴磨耗.(7)焊丝伸出长度不变.(1)选用适当大小良好的干燥焊条.(2)采用均匀适当之速度及焊接顺序.(3)选用适当电流及适当直径的焊接.(4)降低电流.(5)多加练习.(6)更换导电嘴.(7)保持定长、熟练.凹痕(Pit)(1)使用焊条不当.(2)焊条潮湿.(3)母材冷却过速.(4)焊条不洁及焊件的偏析.(5)焊件含碳、锰成分过高.(1)使用适当焊条,如无法消除时用低氢型焊条.(2)使用干燥过的焊条.(3)减低焊接速度,避免急冷,最好施以预热或后热.(4)使用良好低氢型焊条.(5)使用盐基度较高焊条.偏弧(Arc B low)(1)在直流电焊时,焊件所生磁场不均,使电弧偏向.(2)接地线位置不佳.(3)焊枪拖曳角太大.(4)焊丝伸出长度太短.(5)电压太高,电弧太长.(6)电流太大.(7)焊接速度太快.(1)电弧偏向一方置一地线.·正对偏向一方焊接.·采用短电弧.·改正磁场使趋均一.·改用交流电焊(2)调整接地线位置.(3)减小焊枪拖曳角.(4)增长焊丝伸出长度.(5)降低电压及电弧.(6)调整使用适当电流.(7)焊接速度变慢.烧穿(1)在有开槽焊接时,电流过大.(2)因开槽不良焊缝间隙太大.(1)降低电流.(2)减少焊缝间隙.焊道不均匀(1)导电嘴磨损,焊丝输出产生摇摆.(2)焊枪操作不熟练.(1)将焊接导电嘴换新使用.(2)多加操作练习.焊泪(1)电流过大,焊接速度太慢.(2)电弧太短,焊道高.(3)焊丝对准位置不适当.(角焊时)(1)选用正确电流及焊接速度.(2)提高电弧长度.(3)焊丝不可离交点太远.火花飞溅过多(1)焊条不良.(2)电弧太长.(3)电流太高或太低.(4)电弧电压太高或太低.(5)焊丝突出过长.(6)焊枪倾斜过度,拖曳角太大.(7)焊丝过度吸湿.(8)焊机情况不良.(1)采用干燥合适之焊条.(2)使用较短之电弧.(3)使用适当之电流.(4)调整适当.(5)依各种焊丝使用说明.(6)尽可能保持垂直,避免过度倾斜.(7)注意仓库保管条件.(8)修理,平日注意保养.焊道成蛇行状(1)焊丝伸出过长.(2)焊丝扭曲.(3)直线操作不良.(1)采用适当的长度,例如实心焊丝在大电流时伸出长20-25mm.在自保护焊接时伸出长度约为40-50mm.(2)更换新焊丝或将扭曲予以校正.(3)在直线操作时,焊枪要保持垂直.电弧不稳定(1)焊枪前端之导电嘴比焊丝心径大太多.(2)导电嘴发生磨损.(3)焊丝发生卷曲.(4)焊丝输送机回转不顺.(5)焊丝输送轮子沟槽磨损.(6)加压轮子压紧不良.(7)导管接头阻力太大.(1)焊丝心径必须与导电嘴配合.(2)更换导电嘴.(3)将焊丝卷曲拉直.(4)将输送机轴加油,使回转润滑.(5)更换输送轮.(6)压力要适当,太松送线不良,太紧焊丝损坏.(7)导管弯曲过大,调整减少弯曲量.喷嘴与母材间发生电弧(1)喷嘴,导管或导电嘴间发生短路.(1)火花飞溅物粘及喷嘴过多须除去,或是使用焊枪有绝缘保护之陶瓷管.焊枪喷嘴过热(1)冷却水不能充分流出.(2)电流过大.(1)冷却水管不通,如冷却水管阻塞,必须清除使水压提升流量正常.(2)焊枪使用在容许电流范围及使用率之内.。
焊接常见缺陷产生的原因及其预防措施1 2 3 45 6 7 8 焊接缺陷咬边火渣、火鸨气孔或者群孔裂纹未焊透未融合根部氧化i焊瘤、内凹产生因素1、焊接电流大;2、焊接过程中,在母材位置停留时间短,铁水不足。
预防措施1、在电流范围内适当减小焊接电流;2、调整焊接手法,给足铁水。
1、正确选用焊接材料;2、减少单层焊道熔1、层问活理』、干净;2、焊接敷厚度,使熔渣充分浮到熔池外表;3、增时焊条不摆动或者摆动幅度小;3、焊接材料选用不当;4、焊件太大;5、电弧电压太局。
1、母材坡口有铁锈、水、油污;2、焊条受潮;3、焊丝有锈蚀;4、焊接电流过大或者过小;5、电弧电压太高;6、焊接速度过快;7、焊件太大;8、焊接环境风大。
1、焊接材料选用不当;2、焊件太大,冷却速度快;3、焊接热输入量过大;4、拘束应力过大。
1、对口间隙小;2、焊接电流小;3、焊件大,冷却速度快。
1、焊接电流小;2、焊件大,冷却速度快。
、焊件根部保护效果不好。
1、对口间隙过大;2、焊接电流大;3、焊接速度慢,焊件温度过高。
大焊接电流,有规律性的运条、搅拌熔池、使熔渣与熔池金届充分别离;4、子细活理层间焊渣;5、降低电弧电压;6、氧弧焊时焊工手法要稳,防止鸨极短路。
1、焊接前活除焊件、焊丝上的污锈或者油质;2、焊条按规定烘烤,烘烤后放包温箱内备用,焊工使用时采用保温筒;3、正确选用焊接材料;4、控制焊接工艺条件,适当预热,采用短弧焊接;5、采用防风雨棚。
1、合理选择焊材、改善焊缝组织、提高焊缝金届的塑性;2、适当焊前预热,降低焊件的冷却速度;3、改善工艺因素,采用小的焊接标准,降低组织过热产生的晶粒粗大;4、调整焊接顺序,降低焊接应力。
1、对口间隙调整到规定的尺寸;2、在电流范围内选择较大的焊接电流;3、适当预热,调整焊条、焊炬的角度。
1、在电而围内选择较大的焊接电流;2、适当预热,降低焊件的冷却速度。
1、米取根部氧气保护措施,到达保护效果。
压力管道安装的焊接缺陷产生及防治范本一、背景介绍在压力管道的安装过程中,焊接是最常见且重要的工艺。
然而,由于各种原因,焊接缺陷很容易出现,这对管道的安全运行产生了很大的威胁。
因此,理解焊接缺陷产生的原因以及相应的防治措施是非常必要的。
二、焊接缺陷的产生原因1. 焊工技术不过关:焊工的技术水平直接影响焊接质量,如果焊工的技术不到位,焊接缺陷就会频繁出现。
2. 电流、电压不稳定:焊接过程中,如果电流、电压波动较大,会导致焊缝处温度变化不稳定,从而产生焊接缺陷。
3. 材料质量问题:焊接材料的质量直接影响焊缝的强度和可靠性。
如果使用劣质材料进行焊接,易导致焊接缺陷。
4. 焊接设备不良:如果所使用的焊接设备不符合标准或者设备损坏严重,将会影响焊接质量,增加焊接缺陷的风险。
三、焊接缺陷的分类及影响1. 裂纹:焊接缺陷中最严重的是裂纹,它会导致焊缝的破裂,从而影响管道的密封性和强度。
2. 气孔:气孔是焊接过程中产生的气体在焊缝中形成的孔洞,会降低焊缝的强度。
3. 夹渣:夹渣是焊接过程中产生的渣滓被夹在焊缝中,会影响焊缝的质量。
4. 针孔:针孔是焊接过程中产生的小孔洞,会降低焊缝的强度和密封性。
四、焊接缺陷的防治范本1. 提高焊工技术水平:加强焊工的培训和技术提升,确保焊工具备良好的焊接技术,减少焊接缺陷的出现。
2. 调整焊接参数:合理调整焊接参数,保证电流、电压的稳定性,降低焊接缺陷的发生率。
3. 选择高质量材料:选择质量可靠的焊接材料,确保焊缝的强度和可靠性。
4. 检查焊接设备:定期检查焊接设备的工作状态,确保设备符合标准,并及时维修或更换损坏的设备。
五、应对焊接缺陷的措施1. 裂纹治理:对于出现裂纹的焊缝,应及时进行处理,可以采取填充焊、再焊或加工修复等方式。
2. 气孔处理:气孔较大的焊缝可进行焊后处理,如打磨、填充焊等,将气孔填平。
3. 夹渣修复:在焊接过程中及时清理和防止夹渣产生。
4. 针孔处理:对于针孔较小的焊缝,可采取打磨、填充焊等方式修复。
焊接问题分析及防治措施常见缺陷有圆形缺陷(气孔、夹渣、夹钨等)、条形缺陷(条孔,条渣)、焊接裂纹、未焊透、未熔合、焊缝外形尺寸与形状不符合要求、咬边、焊瘤、弧坑等1、圆形缺陷定义:长宽比小于等于3得非裂纹、未焊透与未熔合缺陷。
圆形缺陷包括气孔、块状夹渣、夹钨等缺陷。
a、气孔得成像:呈暗色斑点,中心黑度较大,边缘较浅平滑过渡,轮廓较清晰。
b、夹渣(非金属)得成像:呈暗色斑点,黑度分布无规律,轮廓不圆滑,小点状夹渣轮廓较不清晰。
c、夹钨(金属夹渣)成像:呈亮点,轮廓清晰。
气孔就是指在焊接时,熔池中得气泡在凝固时未能逸出而形成得空穴。
产生气孔得。
主要原因有:坡口边缘不清洁,有水份、油污与锈迹;焊条或焊剂未按规定进行焙烘,焊芯锈蚀或药皮变质、剥落等。
由于气孔得存在,使焊缝得有效截面减小,过大得气孔会降低焊缝得强度,破坏焊缝金属得致密性。
雨天作业,未做好防风措施,焊条选择不合适。
预防产生气孔得办法就是:选择合适得焊接电流与焊接速度,认真清理坡口边缘水份、油污与锈迹。
严格按规定保管、清理与焙烘焊接材料2、条形缺陷定义:不属于裂纹、未焊透与未熔合得缺陷,当缺陷得长宽比大于3时,定义为条状缺陷,包括条渣与条孔。
夹渣就就是残留在焊缝中得熔渣。
夹渣也会降低焊缝得强度与致密性。
产生夹渣得原因主要就是:焊缝边缘有氧割或碳弧气刨残留得熔渣;坡口角度或焊接电流太小,或焊接速度过快。
在使用酸性焊条时,由于电流太小或运条不当形成“糊渣”;使用碱性焊条时,由于电弧过长或极性不正确也会造成夹渣。
防止产生夹渣得措施就是:选择合适种类得焊条、焊剂;多层焊时,认真清理前层得熔渣;正确选取坡口尺寸,认真清理坡口边缘,选用合适得焊接电流与焊接速度,运条摆动要适当。
3、未焊透定义:未焊透就是指母材金属之间没有熔化,焊缝金属没有进入接头得部位根部造成得缺陷。
影像特征:未焊透得典型影像就是细直黑线,两侧轮廓都很整齐,为坡口钝边痕迹,宽度恰好就是钝边得间隙宽度。
焊接内部缺陷原因分析及预防措施一、气孔1、现象在焊缝中出现的单个、条状或群体气孔,是焊缝内部最常见的缺陷。
2、原因分析根本原因是焊接过程中,焊接本身产生的气体或外部气体进入熔池,在熔池凝固前没有来得及溢出熔池而残留在焊缝中。
3、防治措施预防措施主要从减少焊缝中气体的数量和加强气体从熔池中的溢出两方面考虑,主要有以下几点:(1)焊条要求进行烘培,装在保温筒内,随用随取;(2)焊丝清理干净,无油污等杂质;(3)焊件周围10~15㎜范围内清理干净,直至发出金属光泽;(4)注意周围焊接施工环境,搭设防风设施,管子焊接无穿堂风;⑸氩弧焊时,氩气纯度不低于99.95%,氩气流量合适;⑹尽量采用短弧焊接,减少气体进入熔池的机会;⑺焊工操作手法合理,焊条、焊枪角度合适;⑻焊接线能量合适,焊接速度不能过快;⑼按照工艺要求进行焊件预热。
4、治理措施(1)严格按照预防措施执行;(2)加强焊工练习,提高操作水平和责任心;(3)对在探伤过程中发现的超标气孔,采取挖补措施。
二、夹渣1、现象焊接过程中药皮等杂质夹杂在熔池中,熔池凝固后形成的焊缝中的夹杂物。
2、原因分析(1)焊件清理不干净、多层多道焊层间药皮清理不干净、焊接过程中药皮脱落在熔池中等;(2)电弧过长、焊接角度部队、焊层过厚、焊接线能量小、焊速快等,导致熔池中熔化的杂质未浮出而熔池凝固。
3、防治措施(1)焊件焊缝破口周围10~15㎜表面范围内打磨清理干净,直至发出金属光泽;(2)多层多道焊时,层间药皮清理干净;(3)焊条按照要求烘培,不使用偏芯、受潮等不合格焊条;(4)尽量使用短弧焊接,选择合适的电流参数;⑸焊接速度合适,不能过快。
4、治理措施(1)焊前彻底清理干净焊件表面;(2)加强练习,焊接操作技能娴熟,责任心强;(3)对探伤过程中发现的夹渣超标缺陷,采取挖补等措施处理。
三、未熔合1、现象未熔合主要时根部未熔合、层间未熔合两种。
根部未熔合主要是打底过程中焊缝金属与母材金属以及焊接接头未熔合;层间未熔合主要是多层多道焊接过程中层与层间的焊缝金属未熔合。
焊接缺陷及防止措施1、外观缺陷:外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。
常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。
单面焊的根部未焊透等。
A、咬边是指沿着焊趾,在母材部分形成的凹陷或沟槽, 它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。
产生咬边的主要原因是电弧热量太高,即电流太大,运条速度太小所造成的。
焊条与工件间角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造成咬边。
直流焊时电弧的磁偏吹也是产生咬边的一个原因。
某些焊接位置(立、横、仰)会加剧咬边。
咬边减小了母材的有效截面积,降低结构的承载能力,同时还会造成应力集中,发展为裂纹源。
矫正操作姿势,选用合理的规范,采用良好的运条方式都会有利于消除咬边。
焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。
B、焊瘤焊缝中的液态金属流到加热不足未熔化的母材上或从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。
焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿势不当等都容易带来焊瘤。
在横、立、仰位置更易形成焊瘤。
焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。
同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。
管子内部的焊瘤减小了它的内径,可能造成流动物堵塞。
防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无偏芯焊条,合理操作。
C、凹坑凹坑指焊缝表面或背面局部的低于母材的部分。
凹坑多是由于收弧时焊条(焊丝)未作短时间停留造成的(此时的凹坑称为弧坑),仰立、横焊时,常在焊缝背面根部产生内凹。
凹坑减小了焊缝的有效截面积,弧坑常带有弧坑裂纹和弧坑缩孔。
防止凹坑的措施:选用有电流衰减系统的焊机,尽量选用平焊位置,选用合适的焊接规范,收弧时让焊条在熔池内短时间停留或环形摆动,填满弧坑。
D、未焊满未焊满是指焊缝表面上连续的或断续的沟槽。
填充金属不足是产生未焊满的根本原因。
机器人焊接出现的缺陷及应对措施随着现代制造业的发展,机器人焊接在工业生产中得到广泛应用。
然而,机器人焊接仍然存在一些缺陷,这些缺陷可能会影响焊接质量和生产效率。
在以下内容中,我将讨论机器人焊接出现的缺陷,并提出相应的应对措施。
1.焊缝质量不稳定:在焊接过程中,机器人焊接可能导致焊缝质量不稳定的问题。
这可能是由于焊枪的晃动、焊接参数的不准确或焊接头部的不一致等原因造成的。
应对措施:首先,可以通过改进焊接工艺,优化焊接参数,提高焊接质量的一致性。
其次,可以加强对焊枪的控制,减少晃动,提高焊接的稳定性。
此外,还可以使用自适应控制技术,实时调整焊接参数,以适应焊接过程中的变化,从而提高焊缝质量的稳定性。
2.焊接变形:焊接过程中,由于焊接热量的作用,工件可能会发生变形,导致焊接质量下降。
机器人焊接的速度较快,焊接热量较高,可能会增加焊接变形的风险。
应对措施:首先,可以通过优化焊接工艺,控制焊接温度和焊接速度,减少焊接变形。
其次,可以在焊接前进行预变形补偿,通过通过对设计加入一定量的变形来抵消焊接后所引起的变形,以达到保持工件形状稳定的目的。
此外,还可以使用焊接夹具来固定工件,减少焊接变形。
3.焊接质量不达标:机器人焊接在一些情况下,可能会产生焊接质量不达标的问题,如焊缝的气孔、咬边、裂纹等。
应对措施:首先,可以通过优化焊接工艺,调整焊接参数,控制焊接过程中的气氛,减少气孔的产生。
其次,可以增加焊接监控系统,实时监测焊接过程中的质量变量,及时发现问题并进行调整。
此外,还可以增加自动化检测设备,对焊缝进行在线检测,提高焊接质量的可靠性。
4.可编程性差:机器人焊接系统的可编程性可能较差,导致难以实现对不同焊接任务的灵活调整和切换。
应对措施:首先,可以采用可编程控制器和灵活的编程语言,提高机器人焊接系统的可编程性。
其次,可以增加离线编程功能,通过在离线环境中对焊接任务进行预先编程,以减少对生产线的影响,并提高焊接系统的适应性和灵活性。
1、外观缺陷:外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。
常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。
单面焊的根部未焊透等。
A、咬边是指沿着焊趾,在母材部分形成的凹陷或沟槽, 它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。
产生咬边的主要原因是电弧热量太高,即电流太大,运条速度太小所造成的。
焊条与工件间角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造成咬边。
直流焊时电弧的磁偏吹也是产生咬边的一个原因。
某些焊接位置(立、横、仰)会加剧咬边。
咬边减小了母材的有效截面积,降低结构的承载能力,同时还会造成应力集中,发展为裂纹源。
矫正操作姿势,选用合理的规范,采用良好的运条方式都会有利于消除咬边。
焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。
B、焊瘤焊缝中的液态金属流到加热不足未熔化的母材上或从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。
焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿势不当等都容易带来焊瘤。
在横、立、仰位置更易形成焊瘤。
焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。
同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。
管子内部的焊瘤减小了它的内径,可能造成流动物堵塞。
防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无偏芯焊条,合理操作。
C、凹坑凹坑指焊缝表面或背面局部的低于母材的部分。
凹坑多是由于收弧时焊条(焊丝)未作短时间停留造成的(此时的凹坑称为弧坑),仰立、横焊时,常在焊缝背面根部产生内凹。
凹坑减小了焊缝的有效截面积,弧坑常带有弧坑裂纹和弧坑缩孔。
防止凹坑的措施:选用有电流衰减系统的焊机,尽量选用平焊位置,选用合适的焊接规范,收弧时让焊条在熔池内短时间停留或环形摆动,填满弧坑。
D、未焊满未焊满是指焊缝表面上连续的或断续的沟槽。
填充金属不足是产生未焊满的根本原因。
规范太弱,焊条过细,运条不当等会导致未焊满。
未焊满同样削弱了焊缝,容易产生应力集中,同时,由于规范太弱使冷却速度增大,容易带来气孔、裂纹等。
防止未焊满的措施:加大焊接电流,加焊盖面焊缝。
E、烧穿烧穿是指焊接过程中,熔深超过工件厚度,熔化金属自焊缝背面流出,形成穿孔性缺。
焊接电流过大,速度太慢,电弧在焊缝处停留过久,都会产生烧穿缺陷。
工件间隙太大,钝边太小也容易出现烧穿现象。
烧穿是锅炉压力容器产品上不允许存在的缺陷,它完全破坏了焊缝,使接头丧失其联接飞及承载能力。
选用较小电流并配合合适的焊接速度,减小装配间隙,在焊缝背面加设垫板或药垫,使用脉冲焊,能有效地防止烧穿。
F、其他表面缺陷:(1)成形不良指焊缝的外观几何尺寸不符合要求。
有焊缝超高,表面不光滑,以及焊缝过宽,焊缝向母材过渡不圆滑等。
(2)错边指两个工件在厚度方向上错开一定位置,,它既可视作焊缝表面缺陷,又可视作装配成形缺陷。
(3)塌陷单面焊时由于输入热量过大,熔化金属过多而使液态金属向焊缝背面塌落, 成形后焊缝背面突起,正面下塌。
(4)表面气孔及弧坑缩孔。
(5)各种焊接变形如角变形、扭曲、波浪变形等都属于焊接缺陷O角变形也属于装配成形缺陷。
2、气孔和夹渣A、气孔气孔是指焊接时,熔池中的气体未在金属凝固前逸出,残存于焊缝之中所形成的空穴。
其气体可能是熔池从外界吸收的,也可能是焊接冶金过程中反应生成的。
(1)气孔的分类气孔从其形状上分,有球状气孔、条虫状气孔;从数量上可分为单个气孔和群状气孔。
群状气孔又有均匀分布气孔,密集状气孔和链状分布气孔之分。
按气孔内气体成分分类,有氢气孔、氮气孔、二氧化碳气孔、一氧化碳气孔、氧气孔等。
熔焊气孔多为氢气孔和一氧化碳气孔。
(2)气孔的形成机理常温固态金属中气体的溶解度只有高温液态金属中气体溶解度的几十分之一至几百分之一,熔池金属在凝固过程中,有大量的气体要从金属中逸出来。
当凝固速度大于气体逸出速度时,就形成气孔。
(3)产生气孔的主要原因母材或填充金属表面有锈、油污等,焊条及焊剂未烘干会增加气孔量,因为锈、油污及焊条药皮、焊剂中的水分在高温下分解为气体,增加了高温金属中气体的含量。
焊接线能量过小,熔池冷却速度大,不利于气体逸出。
焊缝金属脱氧不足也会增加氧气孔。
(4)气孔的危害气孔减少了焊缝的有效截面积,使焊缝疏松,从而降低了接头的强度,降低塑性,还会引起泄漏。
气孔也是引起应力集中的因素。
氢气孔还可能促成冷裂纹。
(5)防止气孔的措施a.清除焊丝,工作坡口及其附近表面的油污、铁锈、水分和杂物。
b.采用碱性焊条、焊剂,并彻底烘干。
c.采用直流反接并用短电弧施焊。
d.焊前预热,减缓冷却速度。
e.用偏强的规范施焊。
B、夹渣夹渣是指焊后溶渣残存在焊缝中的现象。
(1).夹渣的分类a.金属夹渣:指钨、铜等金属颗粒残留在焊缝之中,习惯上称为夹钨、夹铜。
b.非金属夹渣:指未熔的焊条药皮或焊剂、硫化物、氧化物、氮化物残留于焊缝之中。
冶金反应不完全,脱渣性不好。
(2)夹渣的分布与形状有单个点状夹渣,条状夹渣,链状夹渣和密集夹渣(3)夹渣产生的原因a.坡口尺寸不合理;b.坡口有污物;c.多层焊时,层间清渣不彻底;d.焊接线能量小;e.焊缝散热太快,液态金属凝固过快;f.焊条药皮,焊剂化学成分不合理,熔点过高;g. 钨极惰性气体保护焊时,电源极性不当,电、流密度大, 钨极熔化脱落于熔池中。
h.手工焊时,焊条摆动不良,不利于熔渣上浮。
可根据以上原因分别采取对应措施以防止夹渣的产生。
(4)夹渣的危害点状夹渣的危害与气孔相似,带有尖角的夹渣会产生尖端应力集中,尖端还会发展为裂纹源,危害较大。
3、裂纹焊缝中原子结合遭到破坏,形成新的界面而产生的缝隙称为裂纹。
A、.裂纹的分类根据裂纹尺寸大小,分为三类1)宏观裂纹:肉眼可见的裂纹。
(2)微观裂纹:在显微镜下才能发现。
(3)超显微裂纹:在高倍数显微镜下才能发现,一般指晶间裂纹和晶内裂纹。
从产生温度上看,裂纹分为两类:(1)热裂纹:产生于Ac3线附近的裂纹。
一般是焊接完毕即出现,又称结晶裂纹。
这种二裂纹主要发生在晶界,裂纹面上有氧化色彩,失去金属光泽。
(2)冷裂纹:指在焊毕冷至马氏体转变温度M3点以下产生的裂纹,一般是在焊后一段时间(几小时,几天甚至更长)才出现,故又称延迟裂纹。
按裂纹产生的原因分,又可把裂纹分为:(1)再热裂纹:接头冷却后再加热至500~700℃时产生的裂纹。
再热裂纹产生于沉淀强化的材料(如含Cr、Mo、V、Ti、Nb的金属)的焊接热影响区内的粗晶区,一般从熔合线向热影响区的粗晶区发展,呈晶间开裂特征。
(2)层状撕裂主要是由于钢材在轧制过程中,将硫化物(MnS)、硅酸盐类等杂质夹在其中,形成各向异性。
在焊接应力或外拘束应力的使用下,金属沿轧制方向的杂物开裂。
(3)应力腐蚀裂纹:在应力和腐蚀介质共同作用下产生的裂纹。
除残余应力或拘束应力的因素外,应力腐蚀裂纹主要与焊缝组织组成及形态有关。
B、.裂纹的危害裂纹,尤其是冷裂纹,带来的危害是灾难性的。
世界上的压力容器事故除极少数是由于设计不合理,选材不当的原因引起的以外,绝大部分是由于裂纹引起的脆性破坏。
C、.热裂纹(结晶裂纹)(1)结晶裂纹的形成机理热裂纹发生于焊缝金属凝固末期,敏感温度区大致在固相线附近的高温区,最常见的热裂纹是结晶裂纹,其生成原因是在焊缝金属凝固过程中,结晶偏析使杂质生成的低熔点共晶物富集于晶界,形成所谓"液态薄膜",在特定的敏感温度区(又称脆性温度区)间,其强度极小,由于焊缝凝固收缩而受到拉应力,最终开裂形成裂纹。
结晶裂纹最常见的情况是沿焊缝中心长度方向开裂,为纵向裂纹,有时也发生在焊缝内部两个柱状晶之间,为横向裂纹。
弧坑裂纹是另一种形态的,常见的热裂纹。
热裂纹都是沿晶界开裂,通常发生在杂质较多的碳钢、低合金钢、奥氏体不锈钢等材料气焊缝中(2)影响结晶裂纹的因素a合金元素和杂质的影响碳元素以及硫、磷等杂质元素的增加,会扩大敏感温度区,使结晶裂纹的产生机会增多。
b.冷却速度的影响冷却速度增大,一是使结晶偏析加重,二是使结晶温度区间增大,两者都会增加结晶裂纹的出现机会;c.结晶应力与拘束应力的影响在脆性温度区内,金属的强度极低,焊接应力又使这飞部分金属受拉,当拉应力达到一定程度时,就会出现结晶裂纹。
(3)防止结晶裂纹的措施a.减小硫、磷等有害元素的含量,用含碳量较低的材料焊接。
b.加入一定的合金元素,减小柱状晶和偏析。
如铝、锐、铁、镜等可以细化晶粒。
,c.采用熔深较浅的焊缝,改善散热条件使低熔点物质上浮在焊缝表面而不存在于焊缝中。
d.合理选用焊接规范,并采用预热和后热,减小冷却速度。
e.采用合理的装配次序,减小焊接应力。
D、.再热裂纹(1)再热裂纹的特征a.再热裂纹产生于焊接热影响区的过热粗晶区。
产生于焊后热处理等再次加热的过程中。
b.再热裂纹的产生温度:碳钢与合金钢550~650℃奥氏体不锈钢约300℃c.再热裂纹为晶界开裂(沿晶开裂)。
d.最易产生于沉淀强化的钢种中。
e.与焊接残余应力有关。
(2)再热裂纹的产生机理a.再热裂纹的产生机理有多种解释,其中模形开裂理论的解释如下:近缝区金属在高温热循环作用下,强化相碳化物(如碳化铁、碳化饥、碳化镜、碳化错等)沉积在晶内的位错区上,使晶内强化强度大大高于晶界强化,尤其是当强化相弥散分布在晶粒内时,阻碍晶粒内部的局部调整,又会阻碍晶粒的整体变形,这样,由于应力松弛而带来的塑性变形就主要由晶界金属来承担,于是,晶界应力集中,就会产生裂纹,即所谓的模形开裂。
(3)再热裂纹的防止a.注意冶金元素的强化作用及其对再热裂纹的影响。
b.合理预热或采用后热,控制冷却速度。
c.降低残余应力避免应力集中。
d.回火处理时尽量避开再热裂纹的敏感温度区或缩短在此温度区内的停留时间。
E、.冷裂纹.(1)冷裂纹的特征a.产生于较低温度,且产生于焊后一段时间以后,故又称延迟裂纹。
b.主要产生于热影响区,也有发生在焊缝区的。
c.冷裂纹可能是沿晶开裂,穿晶开裂或两者混合出现。
d.冷裂纹引起的构件破坏是典型的脆断。
(2)冷裂纹产生机理a.瘁硬组织(马氏体)减小了金属的塑性储备。
b.接头的残余应力使焊缝受拉。
c.接头内有一定的含氢量。
含氢量和拉应力是冷裂纹(这里指氢致裂纹)产生的两个重要因素。
一般来说,金属内部原子的排列并非完全有序的,而是有许多微观缺陷。
在拉应力的作用下,氢向高应力区(缺陷部位)扩散聚集。
当氢聚集到一定浓度时,就会破坏金属中原子的结合键,金属内就出现一些微观裂纹。
应力不断作用,氢不断地聚集,微观裂纹不断地扩展,直致发展为宏观裂纹,最后断裂。
决定冷裂纹的产生与否,有一个临界的含氢量和一个临界的应力值o当接头内氢的浓度小于临界含氢量,或所受应力小于临界应力时,将不会产生冷裂纹(即延迟时间无限长)。