第三章植物生理学 矿质营养-1
- 格式:ppt
- 大小:19.82 MB
- 文档页数:98
植物生理学期末复习3第3章植物的矿质营养-自测题及参考答案+重点第 3 章植物的矿质营养自测题:一、名词解释1.矿质营养2.灰分元素3.必需元素4.大量元素5.微量元素6.有利元素7.水培法8.砂培法9.气栽法10.营养膜技术11.离子的被动吸收12.离子的主动吸收13.单盐毒害 14.离子对抗 15.平衡溶液 16.生理酸性盐 17.生理碱性盐18.生理中性盐 19.胞饮作用 20.叶片营养 21.诱导酶 22.可再利用元素23.生物固氮 24.易化扩散 25.通道蛋白 26.载体蛋白 27.转运蛋白 28.植物营养临界期 29.植物营养最大效率期 30.缺素症二、缩写符号翻译1.AFS2.Fd3.Fe-EDTA4.NiR5.NR6.WFP7.GOGAT8.GS9.GDH 10..NFT 11.PCT 12.FAD二、填空题1.在植物细胞内钙主要分布在中。
2.土壤溶液的pH对于植物根系吸收盐分有显著影响。
一般来说,阳离子的吸收随pH的增大而;阴离子的吸收则随pH的增大而。
3.所谓肥料三要素是指、和三种营养元素。
4.参与光合作用水的光解反应的矿质元素是、和。
5.参与吲哚乙酸代谢的两个矿质元素是和。
6.在植物体内充当氨的解毒形式、运输形式、临时贮藏形式的两种化合物是和。
7.在植物体内促进糖运输的矿质元素是、和。
8.亚硝酸还原酶的两个辅基分别是和。
9.硝酸还原酶的三个辅基分别是、和。
10.植物体缺钼往往同时还出现缺症状。
11.对硝酸还原酶而言,NO3 - 既是又是。
12.应用膜片-钳位技术现已了解到质膜上存在的离子通道有、和等离子通道。
13.作为固氮酶结构组成的两个金属元素为和。
14.离子跨膜转移是由膜两侧的梯度和梯度共同决定的。
15.促进植物授粉、受精作用的矿质元素是。
16.以镍为金属辅基的酶是。
17.驱动离子跨膜主动转运的能量形式是和。
18.盐生植物的灰分含量最高,可达植物干重的。
19.植物体内的元素种类很多,已发现种,其中植物必需矿质元素有种。
植物生理学答案(1)第一章植物的水分生理一、名词解释。
渗透势(solute potential):由于溶液中溶质颗粒的存在,降低了水的自由能而引起的水势低于纯水水势的值,此值为负值.其也称为溶质势.质外体途径(apoplast pathway): 指水分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻力小,移动方式速度快。
共质体途径(symplast pathway): 指水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢。
渗透作用(osmosis):物质依水势梯度而移动,指溶液中的溶剂分子通过半透膜扩散的现象.对于水溶液而言,就是指水分子从水势高的系统通过半透膜向水势低的系统移动的现象.蒸腾作用(transpiration): 指水分以气体状态,通过植物体的表面,从体内散失到体外的现象。
二、思考题1、将植物细胞分别放在纯水和1mo l/L蔗糖溶液中,细胞的渗透势、压力势、水势及细胞体积各会发生什么变化?答:在正常情况下,植物细胞的水势为负值,在土壤水分充足的条件下,一般植物的叶片水势为-0.8~-0.2MPa。
将植物细胞放在纯水中时,纯水的水势为0,故植物细胞会吸水,渗透势、压力势及水势均上升,细胞体积变大。
当吸水达到饱和时,细胞体积达最大,水势最终变为0,渗透势和压力势绝对值相等、符号相反,各组分不再变化。
当植物细胞放于1mo l /L蔗糖溶液中时,根据公式计算蔗糖溶液的水势(设温度为27 ℃,已知蔗糖的解离系数i=1)=-icRT=-1mol /L×0.0083L·MPa/(mol·K)×(273+27)K=-2.49MPa,由于细胞的水势大于蔗糖溶液的水势,因此细胞放入溶液后会失水,渗透势、压力势及水势均减少,体积也缩小,严重时还会发生质壁分离现象。
如果细胞处于初始质壁分离状态,其压力势为0,水势等于渗透势。
植物生理学李合生第二版绪论至第六章课后题绪论:1.什么是植物生理学植物生理学研究的内容和任务是什么答:植物生理学是研究植物生命活动规律及其相互关系,揭示植物生命现象本质的科学。
P1内容:细胞生理、代谢生理、生长发育生理、信息生理、逆境生理、分子生理(及其生产应用)。
P2任务:研究和了解植物在各种环境条件下进行生命活动的规律和机制,并将这些研究成果应用于植物生产。
P22.植物生理学是如何诞生和发展的从中可以得到哪些启示答:孕育:1627年荷兰学者凡·海尔蒙做柳枝盆栽称重实验开始,19世纪40年代德国化学家李比希创立植物矿质营养学,约400年;p2诞生:至1904年《植物生理学》出版(半个世纪);p3发展:于20世纪进入快速发展时期。
P4启示:3.21世纪植物生理学发展趋势如何答:①.与其他学科交叉渗透,微观与宏观相结合,向纵向领域拓展;p5②.对植物信号传递和转导深入研究,(将为揭示植物生命活动本质,调控植物生长发育开辟新的途径);p6③.物质代谢和能量转换的分子机制及其基因表达调控仍将是研究重点;p6④.植物生理学和农业科学技术的关系更加密切。
P74.如何看待中国植物生理学的过去、现在和未来答:中国古代人民在生产实践中总结出许多有关植物生理学的知识。
我国现代植物学起步较晚,由于封建体制的限制。
新中国成立后,中国的植物生理学取得了很大的发展。
现在在某些方面的研究已经进入了国际先进水平。
P6、p75.如何理解“植物生理学是合理农业的基础”答:植物生理学的每一次突破性进展都为农业生产技术的进步起到了巨大的推动作用。
P7.6.怎样学好植物生理学答:①.必须有正确的观点和学习方法;②.要坚持理论联系实际。
第一章、植物细胞的亚显微结构和功能(一)名词解释真核细胞:体积较大,有核膜包裹的典型细胞核,有各种结构与功能不同的细胞器分化,有复杂的内膜系统和细胞骨架系统存在,细胞分裂方式为有丝分裂和减数分裂。
《植物⽣理学》第七版课后习题答案第⼀章植物的⽔分⽣理⽔势:⽔溶液的化学势与纯⽔的化学势之差,除以⽔的偏摩尔体积所得商。
渗透势:亦称溶质势,是由于溶质颗粒的存在,降低了⽔的⾃由能,因⽽其⽔势低于纯⽔⽔势的⽔势下降值。
压⼒势:指细胞的原⽣质体吸⽔膨胀,对细胞壁产⽣⼀种作⽤⼒相互作⽤的结果,与引起富有弹性的细胞壁产⽣⼀种限制原⽣质体膨胀的反作⽤⼒。
质外体途径:指⽔分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻⼒⼩,移动速度快。
共质体途径:指⽔分从⼀个细胞的细胞质经过胞间连丝,移动到另⼀个细胞的细胞质,形成⼀个细胞质的连续体,移动速度较慢。
渗透作⽤:⽔分从⽔势⾼的系统通过半透膜向⽔势低的系统移动的现象。
根压:由于⽔势梯度引起⽔分进⼊中柱后产⽣的压⼒。
蒸腾作⽤:指⽔分以⽓体状态,通过植物体的表⾯(主要是叶⼦),从体内散失到体外的现象。
蒸腾速率:植物在⼀定时间内单位叶⾯积蒸腾的⽔量。
蒸腾⽐率:光合作⽤同化每摩尔CO2 所需蒸腾散失的⽔的摩尔数。
⽔分利⽤率:指光合作⽤同化CO2 的速率与同时蒸腾丢失⽔分的速率的⽐值。
内聚⼒学说:以⽔分具有较⼤的内聚⼒⾜以抵抗张⼒,保证由叶⾄根⽔柱不断来解释⽔分上升原因的学说。
⽔分临界期:植物对⽔分不⾜特别敏感的时期。
1. 将植物细胞分别放在纯⽔和1mol/L 蔗糖溶液中,细胞的渗透势、压⼒势、⽔势及细胞体积各会发⽣什么变化?答:在纯⽔中,各项指标都增⼤;在蔗糖中,各项指标都降低。
2. 从植物⽣理学⾓度,分析农谚“有收⽆收在于⽔”的道理。
答:⽔,孕育了⽣命。
陆⽣植物是由⽔⽣植物进化⽽来的,⽔是植物的⼀个重要的“先天”环境条件。
植物的⼀切正常⽣命活动,只有在⼀定的细胞⽔分含量的状况下才能进⾏,否则,植物的正常⽣命活动就会受阻,甚⾄停⽌。
可以说,没有⽔就没有⽣命。
在农业⽣产上,⽔是决定收成有⽆的重要因素之⼀。
⽔分在植物⽣命活动中的作⽤很⼤,主要表现在4个⽅⾯:⽔分是细胞质的主要成分。
第一章信号转导一、名词解释1.G蛋白:GTP binding regulatory protein,即GTP结合调节蛋白或偶联蛋白,是细胞膜受体与其调节的相应生理过程之间的信号转换着。
结合GTP时呈活化状态,启动信号转换过程将胞间信号转换为胞内信号;GTP水解为GDP时,失去转换功能。
2.第二信使:secondary singal,又称次级信使,由胞外刺激信号激活或抑制的具有生理调节活性的细胞因子,植物中的第二信使主要是cAMP、钙离子、DAG和IP3。
3.钙调素:calmodulin,CaM,是最重要的多功能Ca2+信号受体,为单链的小分子酸性蛋白,具有4个Ca2+结合位点。
当外界信号刺激引起胞内Ca2+浓度上升到一定阈值,Ca2+与CaM 构象改变而活化CaM,后者与靶酶结合,使其活化而引起生理反应。
目前已知有十多种酶受Ca2+-CaM的调控。
4.IP3:inosiol1,4,5-triphosphate,肌醇-1,4,5-三磷酸,是水溶性的,可从质膜扩散到细胞质,然后与内质网或液泡膜上的IP3-Ca2+通道结合,使通道打开。
5.DAG:diacylglycerol,二酯酰甘油,是脂溶性的,停留在膜上,与蛋白激酶C结合并使其活化。
二、问答题1.什么叫细胞信号转导?受体和G蛋白与信号转导有何关系?答:是指偶联个胞外刺激信号(包括各种内、外源刺激信号)与其相应的生理反应之间的一系列分子反应机制。
受体是存在于细胞表面或亚细胞表面组分中的天然物质,可特异地识别并结合化学信号物质,并在细胞内放大、传递信号,启动一系列生化反应,最终导致特定的细胞反应。
由于受体与信号物质结合是将细胞感应胞外信号,并将此信号转换为胞内信号的第一步,所以受体是将胞外信号转换为胞内信号的第一步;在受体接受胞外信号分子到产生胞内信号分子的过程中,需经过G蛋白实现信号转换。
2. 简要说明细胞如何感受内外因子变化的刺激,并最终引发生理生化反应。
第一章植物的水分生理名词解释水势water potential:水溶液的化学势与纯水的化学势之差除以水的偏摩尔体积所得的商;渗透势osmotic potential:由于溶质颗粒的存在,降低了水的自由能因而其水势低于纯水的水势;压力势pressure potential:细胞的原生质体吸水膨胀,对细胞壁产生一种作用,与此同时引起富有弹性的细胞壁产生一种原生质体膨胀的反作用力;质外体apoplast:由细胞壁及细胞间隙等空间组成的体系;共质体symplast:由穿过细胞壁的胞间连丝把细胞相连,构成一个相互联系的原生质的整体;渗透作用osmosis:水分从水势高的系统通过半透膜向水势低的系统移动的现象;根压root pressure:靠根部水势梯度使水沿导管上升的动力;蒸腾作用transpiration:指水分以气体状态通过植物体表面从体内散失到体外的现象;蒸腾速率transpiration rate:植物在一定时间内单位面积蒸腾的水量;蒸腾比率transpiration ratioTR:蒸腾作用丧失水分与光合作用同化CO2物质的量比值;水分利用率water use efficiencyWUE:TR的倒数;内聚力学说cohesion theory:以水分具有较大的内聚力是以抵抗张力,保证由叶至根水柱不断来解释水分上升的学说;水分临界期critical period of water:植物在生命周期中,对水最敏感、最易受伤害的时期;简答1、2、从植物生理学角度分析“有收无收在于水”;①水是细胞质主要成分②代谢作用过程的反应物质③植物对物质吸收和运输的溶剂④保持植物固有形态第二章第三章植物的矿质营养名词解释矿质营养mineral nutrition:植物对矿物质的吸收、转运和同化;大量元素macroelement:植物对某些元素需要量相对较大大于10mmol/kg干重,C、H、O、N、P、S、K、Ca、Mg微量元素microelement:植物需要量极微小于10mmol/kg干重,稍多即发生毒害,Cl、Fe、B、Mn、Zn、Cu、Ni、Mo溶液培养solution culture:在含有全部或部分营养元素的溶液中栽培植物;透性permeability:细胞质膜具有让物质通过的性质;选择透性selective permeability:质膜对各种物质的通过难易不一,有些容易通过,有些则不易或不能通过;胞饮作用pinocytosis:细胞通过膜的内陷从外界直接摄取物质进入细胞的过程;被动运输passive transport:离子或溶质跨过生物膜不需要代谢供给能量,是顺电化学势梯度向下运输的方式;主动运输active transport:离子或溶质跨过生物膜需要代谢供给能量,逆电化学势梯度向上进行运输的方式;转运蛋白transport protein:在叶绿体内膜上有很多运输蛋白;离子通道ion channel:细胞膜中由通道蛋白构成的孔道,控制离子通过细胞膜;载体carrier:跨膜运输的内在蛋白,在跨膜区域不形成明显的孔道结构;单项运输载体uniport carrier:协助阳离子如K+、NH4+顺着电势进入细胞, 这是一种被动的单向传递体;同向运输器symporter:将溶质与H+同向转运过膜;反向运输器antiporter:将溶质与H+异向转运过膜;离子泵ion pump:利用ATP水解释放的能量,逆着电化学势跨膜转运离子,实际上是膜载体蛋白;生物固氮biological nitrogen fixation:某些微生物把空气中的游离氮固定转化为含氮化合物的过程;诱导酶induced enzyme:植物本来不含某种酶,但在特定外来物质的诱导下可以生成这种酶;临界含量critical concentration:获得最高产量的最低养分含量;生物膜biomembranes:细胞的外周膜和内膜系统统称生物膜;简答题1、2、无土栽培技术在农业生产上有哪些应用无土栽培中用人工配制的培养液,供给植物矿物营养的需要;为使植株得以竖立,可用石英砂、蛭石、泥炭、锯屑、塑料等作为支持介质,并可保持根系的通气;多年的实践证明,大豆、黄豆、菜豆、豌豆、小麦、水稻、燕麦、甜菜、马铃薯、甘蓝、叶莴苣、番茄、黄瓜等作物,无土栽培的产量都比土壤栽培的高;3、4、在作物栽培时为什么不能施用过量的化肥怎样施肥才比较合理①作物根部细胞吸收矿质元素的离子载体和通道时有限的,当施肥过多,不仅会烧伤作物,而且植物也吸收不了;②充足的基肥,分期追肥,具体施肥时期和数量根据植株生长情况决定;5、6、叶子变黄可能是哪些因素引起的请分析并提出证明的方法①缺乏N、Mg、Fe、Mn、Cu、Zn:N和Mg是组成叶绿素的成分,其他元素可能是叶绿素形成过程中某些酶的活化剂,在叶绿素形成过程中起间接作用;可用溶液培养法或砂基培养法;②光照强度:光线过弱,会不利于叶绿素的合成,使叶片变黄;可以在同等条件下培养两份植株,一份维持原状,另一份在光线较弱的条件下培养,比较两份植株哪一份先出现叶片变黄的现象;第三章第四章植物的光合作用名词解释光合作用photosynthesis:绿色植物吸收阳光的能量,同化二氧化碳和水,制造有机物并释放氧气的过程;吸收光谱absorption spectrum:反映某种物质吸收光波的光谱;增益效应enhancement effect:因两种波长的光协同作用而增加光合效率的现象;光反应light reaction:必须在光下才能进行的,由光引起的光化学反应;碳反应carbon reaction:在暗处或光处都能进行的,由若干酶催化的化学反应;光合单位photosynthetic unit:结合于类囊体膜上能完成光化学反应的最小结构的功能单位;包括了聚光色素系统和光合反应中心;聚光色素天线色素light harvesting pigment:光系统中只收集光能并将其传递给中心色素,本身不直接参与光化学反应的色素;原初反应primary reaction:光合作用中从叶绿素分子受光激发到引起第一个光化学反应为止的过程;反应中心reaction center:在光合作用中,接受聚光性叶绿素的电子激发能,变成电荷分离的能量系统,是由具有特殊的叶绿素的蛋白复合体构成产生的电子和电子穴,为光合作用中电子传递反应的动力;希尔反应Hill reaction:在光照下,离体叶绿体类囊体能将含有高铁的化合物还原为低铁化合物,并释放氧;光合链photosynthetic chain:在类囊体膜上的PS II和PS I之间几种排列紧密的电子传递体完成电子传递的总轨道;光合磷酸化photophosphorylation:叶绿体利用光能驱动电子传递建立跨类囊体膜的质子动力势PMF,质子动力势就把ADP和无机磷酸合成ATP;光合速率photosynthetic rate:单位时间、单位叶面积吸收CO2的物质的量或放出O2,或积累干物质的质量;同化力assimilatory power:用于同化碳反应中的CO2的ATP和NADPH;卡尔文循环Calvin cycle:所有植物光合作用碳同化的基本途径,包括羧化阶段、还原阶段和更新阶段;C4途径C4-dicarboxylic acid pathway:C4植物的CO2同化的途径四碳二羧酸途径;光抑制photoinhibition:当光能超过光合系统所能利用的数量时,光合功能下降的现象;景天酸代谢途径crassulaceae acid metabolism pathway:有机酸合成日变化的代谢类型;光呼吸photorespiration:植物的绿色细胞依赖光照,吸收O2和放出CO2的过程;表观光合作用apparent photosynthesis:测定光合速率时,没有把叶子的线粒体呼吸和光呼吸考虑在内;真正光合作用real photosynthesis:表观光合作用+呼吸作用+光呼吸光饱和light saturation:当达到某一光强度时,光合速率不再增加;温室效应greenhouse effect:大气中的CO2能强烈吸收红外线,太阳辐射的能量在大气层中就“易入难出”,温度上升,像温室一样;CO2补偿点CO2 compensation point:当光合吸收的CO2量等于呼吸放出的CO2量,这个时候外界的CO2含量就叫做CO2补偿点;光补偿点light compensation point:同一片叶子在同一时间内,光合过程中吸收的CO2与光呼吸和呼吸作用过程中放出的CO2等量时的光照强度;光能利用率efficiency for solar energy utilization:植物光合作用所累积的有机物所含的能量,占照射在单位地面上的日光能量的比率;简答题1.2.一般来说,C4植物比C3植物的光合产量要高,试从它们各自的光合特征及生理特征比较分析;①②生理上,C4植物比C3植物的光合作用强,C4植物光合速率比C3植物快③④C4植物的CO2补偿点比C3植物低,C4植物耐旱性比C3植物强⑤⑥C4植物的光呼吸比C3植物低⑦⑧C4植物淀粉积累在维管束鞘薄壁细胞,叶肉细胞没有;C3植物淀粉积累在叶肉细胞,维管束鞘薄壁细胞没有;⑨⑩C4植物有花环型结构,C3没有第四章第五章植物的呼吸作用名词解释呼吸作用respiration:将植物体内的物质不断分解同时释放能量;有氧呼吸aerobic respiration:生活细胞在氧气的参与下,把某些有机物质彻底氧化分解,放出二氧化碳和水,同时释放能量的过程;无氧呼吸anaerobic respiration:在无氧条件下,细胞把某些有机物分解成为不彻底的氧化产物,同时释放能量的过程;糖酵解glycolysis:细胞质基质中的己糖经过一系列酶促反应步骤分解成丙酮酸;三羧酸循环tricarboxylic acid cycle:糖酵解进行到丙酮酸后,在有氧的条件下,用过一个包括三羧酸和二羧酸的循环而逐步氧化分解,直到形成二氧化碳和水为止;磷酸戊糖途径pentose phosphate pathway:葡萄糖在细胞质基质和质体中可溶性酶直接氧化,产生NADPH和一些磷酸糖的酶促过程;生物氧化biological oxidation:有机物质在生物体细胞内进行氧化分解,生成二氧化碳、水和释放能量的过程;呼吸链respiratory chain:呼吸代谢中间产物的电子和质子,沿着一系列有顺序的电子传递体组成的电子传递体途径,传递到分子氧的总过程;解偶联uncoupling:呼吸链与氧化磷酸化的偶联遭到破坏的现象;氧化磷酸化oxidative phosphorylation:在生物氧化中,电子经过线粒体电子传递链传递到氧,伴随着ATP合酶催化,使ADP和磷酸合成ATP的过程;呼吸速率respiratory rate:在一定时间内所放出的二氧化碳的体积或所吸收的氧气的体积;呼吸商respiratory quotient:植物组织在一定时间内,放出二氧化碳的物质的量与吸收氧气的物质的量的比率;表示呼吸底物的性质和氧气供应状态的一种指标;抗氰呼吸cyanide-resistant respiration:在氰化物存在下,某些植物呼吸不受抑制;ADP/O比:每传递两个电子到氧合成ATP的数量;交替氧化酶alternative oxidase:抗氰呼吸的末端氧化酶,可把电子传递给氧;底物水平磷酸化作用substrate level phosphorylation:由于底物的分子磷酸直接转到ADP而形成ATP;巴斯德效应Pasteur effect:氧有抑制酒精发酵的现象,即氧可以降低糖类的分解代谢和减少糖酵解产物的积累;末端氧化酶terminal oxidase:把底物的电子传递到电子系统的最后一步,将电子传递给分子氧并形成水或过氧化氢的酶;能荷energy charge:ATP-ADP-AMP系统中可利用的高能磷酸键的度量;温度系数temperature coefficient:由于温度升高10℃而引起的反应速率的增加; 第六章第七章植物同化物的运输胞间连丝plasmodesmate:连接两个相邻植物细胞的胞质通道,行使水分、营养物质、小的信号分子,以及大分子的胞质运输功能;压力流学说pressure-flow theory:筛管中溶液流运输是由源端和库端之间渗透产生的压力梯度推动的;韧皮部装载phloem loading:光合产物从韧皮部周围的叶肉细胞装到筛分子-伴胞复合体的整个过程;多聚体-陷阱模型polymer-trapping model:叶肉细胞合成的蔗糖运到维管束鞘细胞,经过众多的胞间连丝,进入居间细胞,居间细胞内的运输蔗糖分别与1或2个半乳糖分子合成棉子糖或水苏糖;韧皮部卸出phloem unloading:装载在韧皮部的同化物输出到库的接受细胞的过程;库强度sink strength:库容量×库活力配置allocation:源叶中新形成同化物转化为贮藏利用和运输用;分配partitioning:新形成同化物在各种库之间的分布;第八章第九章植物的次级代谢产物初级代谢产物primary metabolite:糖类、脂肪、核酸和蛋白质等光合作用的直接产物;次级代谢产物secondary metabolite:由糖类等有机物次级代谢衍生出来的物质;萜类terpene:存在自然界中、分子式为异戊二烯单位的倍数的烃类及其含氧衍生物;酚类phenol:芳香族环上的氢原子被羟基或功能衍生物取代后生成的化合物;生物碱alkaloid:通常含有一个含氮杂环,其碱性即来自含氮杂环;第十章第十一章细胞信号传导跨膜信号转换transmembrane transduction:信号与细胞表面的受体结合之后,通过受体将信号传递进入细胞内;信号signal:对植物来说,环境变化就是信号;受体receptor:能够特异的识别并结合信号、在细胞内放大和传递信号的物质;CaM钙调蛋白calmodulin:真核生物细胞中的胞质溶胶蛋白;细胞内受体intracellular receptor:位于亚细胞组分如细胞核;内质网以及液泡膜上的受体;细胞表面受体cell surface receptor:位于细胞表面的受体;蛋白激酶protein kinases:位于细胞表面的另一受体具有激酶的性质;第二信使secondary messenger:能将细胞表面受体接受的细胞外信号转换为细胞内信号的物质;级联反应cascades:通过多次的逐级放大使较弱的输入信号转变为极强的输出信号,导致各种生理响应的过程;双元系统two-component system:受体有两个基本部分,一是作为感应蛋白的组氨酸激酶HK,另一个是应答调控蛋白RR;泛素-蛋白酶体途径ubiquitin-proteasome pathway:泛素激活酶E1、泛素结合酶E2和泛素连接酶E3在泛素和靶蛋白结合中其重要作用,而26S蛋白酶体识别泛素化标记的蛋白质后,将其降解成为小片段多肽;第十二章第十三章植物生长物质名词解释植物生长物质plant growth substance:调节植物生长发育的物质;植物激素plant hormone:一些在植物体内合成,并从产生之处运送到别处,对生长发育产生显着作用的微量有机物;植物激素突变体phytohormone mutant:由于基因突变而引起植物激素缺陷的突变体;植物多肽激素plant polypeptide hormone:具有调节生理过程和传递细胞信号功能的活性多肽;生长素极性运输polar transport:生长素只能从植物学的形态学上端向下端运输;三重反应triple response:黄花豌豆幼苗对乙烯的生长反应,即抑制伸长生长矮化、促进横向生长加粗、地上部分失去负向重力性生长偏上生长;植物生长调节剂plant growth regulator:一些具有植物激素活性的人工合成的物质;植物生长促进剂plant growth promotor:促进分生组织细胞分裂和伸长,促进营养器官的生长和生殖器官的发育,外施生长抑制剂可抑制其促进效能;植物生长抑制剂plant growth inhibitor:抑制顶端分生组织生长,使植物丧失顶端优势,侧枝多,叶小,生殖器官也受影响;植物生长延缓剂plant growth retardator:一大类能够抑制植物茎部近顶端分生组织生长的化合物;简答题1、要使水稻矮壮分蘖多,在水肥管理或植物生长调节剂应用方面有何建议在水肥管理中,在氮、磷、硫、锌的肥料的使用中,要适量不能使用太多,使用太多利于伸长生长;在植物生长调节剂方面,使用三碘苯甲酸TIBA、氯化氯代胆碱CCC;第十四章第十五章植物的生长生理细胞周期cell cycle:细胞分裂成两个新细胞所需的时间;分化differentiation:分生组织的幼嫩细胞发育成为具有各种形态结构和生理代谢功能的成形细胞的过程;脱分化dedifferentiation:已有高度分化能力的细胞和组织,在培养条件下逐渐丧失其特有的分化能力的过程;酸生长假说acid-growth hypothesis:把生长素诱导细胞壁酸化并使其可塑性增大而导致细胞伸长的理论;细胞全能性totipotency:植物体的每个细胞都携带一套完整的基因组,并具有发育成完整植株的潜在能力;组织培养tissue culture:在控制环境条件下,在人工培植的培养基中,将离体的植物细胞、组织和器官进行培养的技术;极性polarity:在器官、组织甚至细胞中不同的轴向上存在某种形态结构和生理生化上的梯度差异;生长大周期grand period of growth:在茎的整个生长过程中,生长速率都表现出“慢-快-慢”的基本规律,即开始时生长缓慢,以后逐渐加快,达到最高点然后生长速率又减慢以至停止;顶端优势apical dominance:顶芽优先生长,而侧芽生长受抑制的现象;相关性correlation:植物各部分之间的相互制约与协调的现象;光形态建成photomorphogenesis:依赖光控制细胞的分化、结构和功能的改变,最终汇集成组织和器官的建成;暗形态建成skotomorphogenesis:暗中生长的植物幼苗表现出各种黄化特征;光敏色素phytochrome:吸收红光-远红光可逆转换的光受体;向光素phototropin:主要介导蓝光调节的器官与细胞器的运动反应;隐花色素cryptochrome:调节蓝光诱导的茎伸长抑制,还参与其他的幼苗去黄化反应、开花的光周期调节、生理钟以及花色素苷合成酶等基因表达调节;向性运动tropic movement:由光、重力等外界刺激而产生的,运动方向取决于外界的刺激方向;向光性phototropism:植物随光照入射的方向而弯曲的反应;向重力性gravitropism:植物在重力影响下,保持一定方向生长的特性;感性运动nastic movement:由外界刺激或内部时间机制而引起的,外界刺激方向不能决定运动方向;生理钟physiological clock:生物因对昼夜的适应而产生生理上有周期性波动的内在节奏;1.2.全面考虑,光对植物生长发育有什么影响光对植物生长的影响是多方面的,主要有下列几方面:①②光是光合作用的能源和启动者,为植物的生长提供有机营养和能源③④光控制植物的形态建成,即叶的伸展扩大,茎的高矮,分枝的多少、长度;根冠比等都与光照强弱和光质有关⑤⑥日照时数影响植物生长与休眠;绝大多数多年生植物都是长日照条件促进生长、短日照条件诱导休眠⑦⑧④光影响种子萌发,需光种子的萌发受光照的促进,而需暗种子的萌发则受光抑制,此外,一些豆科植物叶片的昼开夜合,气孔运动等都受光的调节; 第十章第十一章植物的生殖生理春化作用vernalization:低温诱导植物开花的过程;脱春化作用devernalization:在春化过程结束之前,如遇高温,低温效果会削弱甚至消除的现象;光周期photoperiodism:植物对白天和黑夜的相对长度的反应;光周期诱导photoperiodic induction:植物只需要在一定时间适宜的光周期处理,以后即使处于不适宜的光周期下,仍然可以长期保持刺激的效果;长日植物long-day plant:必须长于其临界日照长度的日照才能开花的植物;短日植物short-day plant:必须短于其临界日照长度的日照才能开花的植物;日中性植物day-neutral plant:在任何日照条件下都能开花的植物;临界日长critical day length:昼夜周期中诱导短日照植物开花所必需的最长日照或者诱导长日照植物开花所必需的最短日照;临界暗期critical dark period:在昼夜周期中,短日植物能开花所需的最短暗期长度,或长日照植物能够开花所必需的最长暗期长度;开花素成花素florigen:可以从一株植物传递到另一株植物的物质;自交不亲和性self-incompatibility:植物花粉落在同花雌蕊的柱头上不能受精的现象;第十二章第十三章植物的成熟和衰老生理呼吸跃变respiratory climacteric:当果实成熟到一定程度时,呼吸速率首先是降低,然后突然升高,之后又下降的现象;单性结实parthenocarpy:不经受精而雌蕊的子房形成无籽果实的现象;休眠dormancy:成熟种子;鳞茎和芽在合适的萌发条件下仍不萌发的现象;衰老senescence:细胞、器官或整个植株生理功能衰退,趋向自然死亡的时相;程序性细胞死亡programmed cell death:主动地、生理性的细胞死亡,死亡过程由细胞内业已存在的、由基因编码的程序控制;脱落abscission:植物细胞组织或器官与植物体分离的过程;生长素梯度学说auxin gradient theory:决定脱落的不是生长素绝对浓度,而是相对浓度,即离层两侧生长素浓度梯度起着调节脱落的作用;第十四章第十五章植物的抗性生理生物胁迫biotic stress:病害、虫害和杂草;非生物胁迫abiotic stress:寒冷、高温、干旱、盐渍、水等;植物抗性生理hardiness physiology:逆境对植物生命活动的影响,以及植物对逆境的抵御抗性能力;逆境stress:对植物产生伤害的环境;热激蛋白heat-shock protein:生物受到高温刺激后大量表达的一种蛋白;冷害chilling injury:在零上低温时,虽无结冰现象,但能引起喜温植物的生理障碍,是植物受伤甚至死亡的现象;冻害freezing injury:当温度降到零以下,植物体内发生冰冻,因而受伤甚至死亡的现象;盐害salt injury:土壤盐分过多对植物造成的危害;渗透调节osmoregulation:通过加入或去除细胞内的溶质,从而使细胞内外的水分相互平衡的现象;交叉适应cross adaptation:植物处于零上低温、高温、干旱或盐渍条件下,能提高植株对另外一些逆境的抵抗能力的与不良反应之间的相互适应作用;低温胁迫low-temperature stress:低于植物最适生长温度下限的温度环境胁迫蛋白stress protein:在逆境条件下,植物关闭一些正常表达的基因,启动一些与逆境相适应的基因,形成的新的蛋白;温度补偿点temperature compensation point:当呼吸速率与光合速率相等时的温度;暂时萎蔫temporary wilting:靠降低蒸腾即能消除水分亏缺以恢复原状的萎蔫;永久萎蔫permanent wilting:如果由于土壤已无可资植物利用的水,虽然降低蒸腾仍不能消除水分亏缺以恢复原状的萎蔫;抗蒸腾剂antitranspirant:一些能降低蒸腾作用的化学药剂;植物防御素植保素phytoalexin:植物受侵染后才产生的一类低相对分子质量的抗病源微生物的化合物;。
第一章植物细胞的亚显微结构和功能一、名词解释流动镶嵌模型与单位膜模型一样,膜脂也呈双分子排列,疏水性尾部向内,亲水性头部朝外;但是,膜蛋白并非均匀地排列在膜脂两侧,而是有的在外边与膜脂外表面相连,称为外在蛋白,有的嵌入膜脂之间甚至穿过膜的内外表面,称为内在蛋白;由于膜脂和膜蛋白分布的不对称,致使膜的结构不对称;膜具有流动性,故称之为流动镶嵌模型;共质体也叫内部空间,是指相邻活细胞的细胞质借助胞间连丝联成的整体;质外体又叫外部空间或自由空间,是指由原生质体以外的非生命部分组成的体系,主要包括胞间层、细胞壁、细胞间隙和导管等部分;二简答题1.原核细胞和真核细胞的主要区别是什么原核细胞低等生物细菌、蓝藻所特有的,无明显的细胞核,无核膜,由几条 DNA 构成拟核体,缺少细胞器,只有核糖体,细胞进行二分体分裂,细胞体积小,直径为1~10μm ;真核细胞具有明显的细胞核,有两层核膜,有各种细胞器,细胞进行有丝分裂,细胞体积较大,直径 10 ~100μm ;高等动、植物细胞属真核细胞;2、流动镶嵌模型的基本要点,如何评价;膜的流动镶嵌模型有两个基本特征:1膜的不对称性;这主要表现在膜脂和膜蛋白分布的不对称性;①膜脂在膜脂的双分子层中外半层以磷脂酰胆碱为主,而内半层则以磷脂酰丝氨酸和磷脂酰乙醇胺为主;同时不饱和脂肪酸主要存在于外半层;②膜蛋白膜脂内外两半层所含的内在蛋白与膜两侧的外在蛋白其种类及数量不同,膜蛋白分布不对称性是膜功能具有方向性的物质基础;③膜糖糖蛋白与糖脂只存在于膜的外半层,而且糖基暴露于膜外,呈现出分布上的绝对不对称性;2膜的流动性①膜蛋白可以在膜脂中自由侧向移动;②膜脂膜内磷脂的凝固点较低,通常呈液态,因此具有流动性,且比蛋白质移动速度大得多;膜脂流动性大小决定于脂肪酸不饱和程度,不饱和程度愈高,流动性愈强;3、细胞壁的主要生理功能1稳定细胞形态和保护作用2控制细胞生长扩大3参与胞内外信息的传递4防御功能5识别功能6参与物质运输4、“细胞壁是细胞中非生命组成部分”是否正确为什么不是;除了含有大量的多糖之外,也含有多种具有生理活动的蛋白质,参与多种生命活动过程,对植物生存有重要意义;第二章植物的水分生理一、名词解释自由水指未与细胞组分相结合能自由活动的水;束缚水亦称结合水,指与细胞组分紧密结合而不能自由活动的水;渗透作用水分通过半透膜从水势高的区域向水势低的区域运转的作用;吸胀作用细胞质及细胞壁组成成分中亲水性物质吸水膨胀的作用;水势每偏摩尔体积水的化学势差;用Ψ w 表示,单位MPa ;Ψ w =μ w -μ w o /V w , m ,即水势为体系中水的化学势与处于等温、等压条件下纯水的化学势之差,再除以水的偏摩尔体积的商;用两地间的水势差可判别它们间水流的方向和限度,即水分总是从水势高处流向水势低处,直到两处水势差为 O 为止;渗透势亦称溶质势,是由于溶液中溶质颗粒的存在而引起的水势降低值; 用Ψ s 表示 , 一般为负值;蒸腾作用水分从植物地上部分表面以水蒸汽的形式向外界散失的过程;根压由于根系的生理活动而使液流从根部上升的压力;水分临界期植物对水分不足特别敏感的时期;如花粉母细胞四分体形成期;水孔蛋白一类具有专一选择性、高效运转水分的跨膜内在蛋白或通道蛋白的总称,又称水通道蛋白;小孔律气体通过多孔表面的扩散速率不与小孔面积成正比,而与小孔周长成正比的规律; 二、简答题1、一个细胞放在纯水中其水势及体积如何变化水势变大,体积变大;纯水的水势高于细胞,水从高水势向低水势渗透;细胞体积吸水体积变大,水势变大;2、植物体内水分存在的形式与植物代谢强弱、抗逆性有何关系植物体内水分的存在状态与代谢关系极为密切,并且与抗性有关;一般说来,束缚水不参与植物的代谢反应,若植物某些组织和器官主要含束缚水时,则其代谢活动非常微弱,如越冬植物的休眠芽和干燥种子,仅以极低微的代谢强度维持生命活动,但其抗性却明显增强,能渡过不良的环境条件;而自由水直接参与植物体内的各种代谢反应,含量多少还影响着代谢强度,含量越高,代谢越旺盛;因此,常以自由水 / 束缚水的比率作为衡量植物代谢强弱的指标之一;3、试述气孔运动的机制及其影响因素机制假说(1)淀粉与糖转化学说在光下,光合作用消耗了二氧化碳,于是保卫细胞细胞质的pH增高到7以上,淀粉磷酸化酶催化淀粉水解为糖,引起保卫细胞渗透势下降,水势降低,从周围细胞吸取水分,保卫细胞膨大,因而气孔张开;在黑暗中,保卫细胞光合作用停止,而呼吸作用扔进行,二氧化碳积累,pH下降到5左右,淀粉磷酸化酶催化G-1-P转化成淀粉,溶质颗粒数目减少,细胞溶质势升高,水势亦增大,细胞失水,膨压丧失,气孔关闭;2无机离子泵学说又称 K + 泵假说;在光下, K + 由表皮细胞和副卫细胞进入保卫细胞,保卫细胞中 K + 浓度显著增加,溶质势降低,引起水分进入保卫细胞,气孔就张开;暗中, K + 由保卫细胞进入副卫细胞和表皮细胞,使保卫细胞水势升高而失水,造成气孔关闭;这是因为保卫细胞质膜上存在着 H + -ATP 酶,它被光激活后能水解保卫细胞中由氧化磷酸化或光合磷酸化生成的 ATP ,并将 H + 从保卫细胞分泌到周围细胞中,使得保卫细胞的 pH 升高,质膜内侧的电势变低,周围细胞的 pH 降低,质膜外侧电势升高,膜内外的质子动力势驱动 K + 从周围细胞经过位于保卫细胞质膜上的内向 K + 通道进入保卫细胞,引发气孔开张;3苹果酸代谢学说在光下,保卫细胞内的部分 CO 2 被利用时, pH 上升至 8.0 ~ 8.5 ,从而活化了 PEP 羧化酶, PEP 羧化酶可催化由淀粉降解产生的 PEP 与 HCO 3 - 结合,形成草酰乙酸,并进一步被 NADPH 还原为苹果酸;苹果酸解离为 2H + 和苹果酸根,在 H + /K + 泵的驱使下, H + 与 K + 交换,保卫细胞内 K + 浓度增加,水势降低;苹果酸根进入液泡和 Cl ﹣共同与 K + 在电学上保持平衡;同时,苹果酸的存在还可降低水势,促使保卫细胞吸水,气孔张开;当叶片由光下转入暗处时,该过程逆转;4玉米黄素假说玉米黄素是叶绿体中叶黄素循环的三大组分之一,叶黄素循环在保卫细胞中起着信号转导的作用;气孔对蓝光反应的强度取决于保卫细胞中玉米黄素的含量和照射蓝光的总量,而玉米黄素的含量则取决于类胡萝卜素库的大小和叶黄素循环的调节;气孔对蓝光反应的信号转导是从玉米黄素被蓝光激发开始的,蓝光激发的最可能的光化学反应是玉米黄素的异构化,引起其脱辅基蛋白发生构象改变,以后可能是通过活化叶绿体膜上的Ca2+ - ATPase,将胞基质中的钙泵进叶绿体,胞基质中钙浓度降低,又激活质膜上的H+ - ATPase,不断泵出质子,形成跨膜电化学势梯度,推动钾离子的吸收,同时刺激淀粉的水解和苹果酸的合成,是保卫细胞的水势降低,气孔张开;影响因素:气孔蒸腾显著受光、温度和 CO 2 等因素的调节;1光光是气孔运动的主要调节因素;光促进气孔开启的效应有两种,一种是通过光合作用发生的间接效应;另一种是通过光受体感受光信号而发生的直接效应;光对蒸腾作用的影响首先是引起气孔的开放,减少内部阻力,从而增强蒸腾作用;其次,光可以提高大气与叶片温度,增加叶内外蒸气压差,加快蒸腾速率;2温度气孔运动是与酶促反应有关的生理过程,因而温度对蒸腾速率影响很大;当大气温度升高时,叶温比气温高出 2 ~10 ℃,因而,气孔下腔蒸气压的增加大于空气蒸气压的增加,这样叶内外蒸气压差加大,蒸腾加强;当气温过高时,叶片过度失水,气孔就会关闭,从而使蒸腾减弱;3 CO 2 对气孔运动影响很大,低浓度 CO 2 促进气孔张开,高浓度 CO 2 能使气孔迅速关闭无论光下或暗中都是如此;在高浓度 CO 2 下,气孔关闭可能的原因是:① 高浓度 CO 2 会使质膜透性增加,导致 K + 泄漏,消除质膜内外的溶质势梯度;② CO 2 使细胞内酸化,影响跨膜质子浓度差的建立;因此, CO 2 浓度高时,会抑制气孔蒸腾;(4)水分当叶水势下降时,气孔开度减小或关闭;缺水对气孔开度的影响尤为显著,它的效应是直接的,即由于保卫细胞失水所致;(5)风高速风流可使气孔关闭;这是因为高速气流下蒸腾加快,保卫细胞失水过多所致,微风促进蒸腾作用;4、试述水分进出植物体的途径及动力;植物细胞吸水主要有两种类型:一是渗透性吸水,指具中心液泡的成熟细胞,依靠渗透作用,沿着水势梯度进行的吸水过程;渗透吸水又分为主动吸水和被动吸水;主动吸水被动吸水的动力是蒸腾拉力,主动吸水的动力是根压;二是吸胀吸水,指未成形液泡的细胞,依靠吸胀作用,沿着水势梯度进行的吸水过程;吸胀吸水的动力是吸胀力;植物体散失水分主要是蒸腾作用;蒸腾作用分为一整体蒸腾,幼小植物体表面都能蒸腾;二是皮孔蒸腾,长大的植物茎枝上皮孔的蒸腾;三是叶片蒸腾,蒸腾作用的主要部位;叶片蒸腾又分为通过角质膜的蒸腾成为角质膜蒸腾;通过气孔的蒸腾成为气孔蒸腾;5、质壁分离及复原在植物生理学上有何意义质壁分离及质壁分离复原现象解释或判断如下几个问题:1判断细胞是否存活;2测定细胞的渗透势发生初始质壁分离时测定;3观察物质透过原生质层的难易度质壁分离现象.第三章植物的矿质营养一、名词解释矿质营养是指植物对矿质元素的吸收、运转与同化的过程;必需元素是指在植物生活中作为必需成分或必需的调节物质而不可缺少的元素;电化学势梯度不带电荷的溶质的转移取决于溶质在细胞膜两侧的浓度梯度,而浓度梯度决定着溶质的化学势;带电荷的溶质跨膜转移则是由膜两侧的电势梯度和化学势梯度共同决定;电势梯度与化学势梯度合称为电化学势梯度;促进扩散又称易化扩散、协助扩散,或帮助扩散;是指非脂溶性物质或亲水性物质, 如氨基酸、糖和金属离子等借助细胞膜上的膜蛋白的帮助顺浓度梯度或顺电化学浓度梯度, 不消耗ATP 进入膜内的一种运输方式;矿质元素的被动吸收亦称非代谢吸收;是指通过不需要代谢能量的扩散作用或其它物理过程而吸收矿质元素的方式;矿质元素的主动吸收亦称代谢性吸收;是指细胞利用呼吸释放的能量作功而逆着电化学势梯度吸收矿质元素的方式;离子通道是指由贯穿质膜的由多亚基组成的蛋白质,通过构象变化而形成的调控离子跨膜运转的门系统,通过门的开闭控制离子运转的种类和速度;质子泵能逆浓度梯度转运氢离子通过膜的膜整合糖蛋白;质子泵的驱动依赖于ATP水解释放的能量,质子泵在泵出氢离子时造成膜两侧的pH梯度和电位梯度;单盐毒害植物被培养在某种单一的盐溶液中,即使是植物必需的营养元素,不久即呈现不正常状态,最后死亡,这种现象称单盐毒害;离子对抗在单盐溶液中加入少量其它盐类,再用其培养植物时,就可以消除单盐毒害现象,离子间这种相互消除毒害的现象称为离子拮抗;平衡溶液在含有适当比例的多种盐溶液中,各种离子的毒害作用被消除,用以培养植物可以正常生长发育,这种溶液称为平衡溶液 ;诱导酶亦称适应酶,是指植物体内本来不含有,但在特定外来物质的诱导下可以生成的酶;如水稻幼苗本来无硝酸还原酶,如果将其培养在硝酸盐溶液中,体内即可生成此酶;共向转运载体与质膜外侧的H+结合的同时,又与另一分子或离子结合,同一方向运输;二、简答题1、如何确定植物必须的矿质元素植物必须的矿质元素有哪些作用可根据以下三条标准来判断:第一如无该元素,则植物生长发育不正常,不能完成生活史;第二植物缺少该元素时,呈现出特有的病症,只有加入该元素后才能逐渐转向正常;第三该元素对植物的营养功能是直接的,绝对不是由于改善土壤或培养基的物理、化学和微生物条件所产生的间接效应;作用:1作为细胞结构物质的组分;如碳、氢、氧、氮、磷、硫等组成糖类、脂类、蛋白质和核酸等有机物的组分,参与细胞壁、膜系统,细胞质等结构组成;2作为植物生命活动的调节者;可作为酶组分或酶的激活剂参与酶的活动,还可作为内源生理活性物质如激素类生长调节物质的组分,调控植物的发育过程;3参与植物体内的醇基酯化;例如磷与硼分别形成磷酸酯与硼酸酯,磷酸酯对代谢物质的活化及能量的转换起着重要作用;而硼酸酯有利于物质运输;4起电化学作用;如钾、镁、钙等元素能维持离子浓度的平衡,原生质胶体的稳定及电荷中和等;2、试述矿质元素在光合作用中的生理作用;N :叶绿素、细胞色素、酶类和膜结构等组成成分;P : NADP 为含磷的辅酶, ATP 的高能磷酸键为光合作用所必需;光合碳循环的中间产物都是含磷基团的糖类,淀粉合成主要通过含磷的 ADPG 进行;磷促进三碳糖外运到细胞质,合成蔗糖;K :调节气孔的开闭;也是多种酶的激活剂;Mg :叶绿素的组成成分;是一些催化光合碳循环酶类的激活剂;Fe :是细胞色素、铁硫蛋白、铁氧还蛋白的组成成分,还能促进叶绿素合成;Cu :质兰素 PC 的组成成分;Mn :参与水的光解放氧;B :促进光合产物的运输;S : Fe-S 蛋白的成分;膜结构的组成成分;Cl :光合放氧所必需;3、试比较被动吸收、简单扩散和协助扩散有何异同相同:被动吸收是指细胞对矿质元素的吸收不需要代谢能量直接参与,离子顺着电化学式梯度转移的过程,即物质从电化学势较高的区域向其较低的区域扩散;被动吸收包括简单扩散和协助扩散;不同:简单扩散分为单纯扩散和通道运输;协助扩散主要通过载体运输;4、H+ - ATP酶是如何与主动转运相关的 H+ - ATP酶还有哪些生理作用用来转运H+的ATP酶称为H+ - ATP酶或H+泵、质子泵;H+ - ATP酶的主要功能是催化水解ATP,同时将细胞质中的H+泵至细胞外,使细胞外侧的H+浓度增加,形成跨膜H+电化学势梯度,即pH 梯度和电位差,两者合称质子电化学势梯度,也称质子动力;从而参与主动运输;书上77页、、姐姐尽力了;;5、为什么植物缺钙、铁等元素,缺素症最先表现在幼叶上钙和铁进入植物体后形成稳定的化合物,几乎不能被重复利用,不参加循环;所以缺素症先表现在幼叶上;6、植物的氮素同化包括哪几个方面氮素同化是指植物吸收环境中的NO3-或NH4+合成氨基酸和蛋白质等含氮有机化合物的过程,包括硝酸盐的代谢还原、氨的同化、生物固氮;第四章光合作用一、名词解释光合作用绿色植物利用太阳光能,将二氧化碳和水合成有机物质,并释放氧气的过程;原初反应指的是光能的吸收、传递与转换过程,完成了光能向电能的转变,实质是由光所引起的氧化还原过程;天线色素又称聚光色素,没有光化学活性,将所吸收的光有效地集中到作用中心色素分子,包括 99% 的叶绿素 a ,全部叶绿素 b ,全部胡萝卜素和叶黄素;反应中心色素既能吸收光能又具有化学活性,能引起光化学反应的特殊状态的叶绿素 a 分子,包括 P 700 和 P 680 ;光合磷酸化叶绿体在光下把无机磷与ADP合成ATP的过程;光合单位是指完成 1 分子 CO 2 的同化或 1 分子 O 2 的释放,所需的光合色素分子的数目,大约是 2400 个光合色素分子;但就传递 1 个电子而言,光合作用单位是 600 ,就吸收 1 个光量子而言,光合作用单位是 300 ;红降现象当光波大于 680 nm ,虽然仍被叶绿素大量吸收,但光合效率急剧下降,这种在长波红光下光合效率下降的现象,称为红降现象;双光增益效应如果在长波红光照射时,再加上波长较短的红光 650~670nm 照射,光合效率增高,比分别单独用两种波长的光照射时的总和还要高,这种现象称为双光增益效应或爱默生效应;希尔反应在有适当的电子受体存在的条件下,离体的叶绿体在光下使水分解,有氧的释放和电子受体的还原,这一过程是 Hill 在 1937 年发现的,故称 Hill 反应;光呼吸绿色细胞只有在光下才能发生的吸收氧气释放二氧化碳的过程;与光合作用有密切的关系,光呼吸的底物是乙醇酸,由于这种呼吸只有在光下才能进行,故称为光呼吸;光饱和点开始达到光饱和现象时的光照强度称光饱和点;光和色素在光合作用过程中吸收光能的色素统称为光和色素,主要有叶绿素、细菌叶绿素、类胡萝卜素和藻胆素几个大类;光反应通过叶绿素等光合色素分子吸收、传递光能,并将光能转化为化学能,形成ATP和NADPH 的过程;包括光能的吸收、传递和光合磷酸化等过程;同化力 ATP和NADPH是光合作用过程中的重要中间产物,一方面这两者都能暂时将能量贮藏,将来向下传递;另一方面,NADPH的H+又能进一步还原CO2并形成中间产物;这样就把光反应和碳反应联系起来了;由于ATP和NADPH用于碳反应中的CO2同化,所以把这两种物质合成为同化力量子效率亦称量子产额;在光合作用中每吸收一个光量子,所固定的二氧化碳分子数或释放氧气的分子数反应中心进行原初反应的最基本的功能单位,它至少包括一个反应中心色素分子,即原初电子供体,一个原初电子受体和一个次级电子供体等电子传递体,以及维持这些电子传递体的微环境所必需的色素蛋白复合体;光系统光合生物中,能够吸收光能,并将其转变为化学能的多蛋白质复合物;分为光系统Ⅰ和光系统Ⅱ,每一系统均由含叶绿素的捕光复合物和含叶绿素的反应中心所组成;原初电子供体原初电子供体是指直接供给反应中心色素分子电子的物体;非环式电子传递水光解放出的电子经PS11和PS1两个光系统,最终传给NADP+的电子传递;环式电子传递 PS1产生的电子传给Fd,再到Cyt b6f复合体,然后经PC返回PS1的电子传递;假环式电子传递水光解放出的电子经PS11和PS1两个光系统,最终传给氧气的电子传递;二、简答题1、如何证明光合电子传递有两个光系统参与,并接力进行以下几方面的事例可证明光合电子传递由两个光系统参与;1红降现象和双光增益效应红降现象是指用大于 680 nm 的远红光照射时,光合作用量子效率急剧下降的现象;而双光增益效应是指在用远红光照射时补加一点稍短波长的光例如 650 nm 的光,量子效率大增的现象,这两种现象暗示着光合机构中存在着两个光系统,一个能吸收长波长的远红光,而另一个只能吸收稍短波长的光;2光合放 O 2 的量子需要量大于 8 从理论上讲一个量子引起一个分子激发,放出一个电子,那么释放一个 O 2 ,传递 4 个电子只需吸收 4 个量子2H 2 O → 4H + + 4e +O 2 ;而实际测得光合放氧的最低量子需要量为 8 ~ 12 ;这也证实了光合作用中电子传递要经过两个光系统,有两次光化学反应;3类囊体膜上存在 PSI 和PS Ⅱ色素蛋白复合体现在已经用电镜观察到类囊体膜上存在 PSI 和PS Ⅱ颗粒,能从叶绿体中分离出 PSI 和PS Ⅱ色素蛋白复合体,在体外进行光化学反应与电子传递,并证实 PSI 与 NADP + 的还原有关,而PS Ⅱ与水的光解放氧有关;2、碳三植物分为哪3个阶段各阶段的作用是什么C 3 途径是卡尔文 Calvin 等人发现的;1羧化阶段完成了 CO 2 的固定,生成的 3- 磷酸甘油酸,是光合作用第一个稳定产物;2还原阶段将 3- 磷酸甘油酸还原成 3- 磷酸甘油醛,在此过程中消耗了 ATP 和 NADPH+H + , 3- 磷酸甘油醛是光合作用中形成的第一个三碳糖;3更新阶段光合循环中生成的三碳糖和六碳糖,其中的一部分经过丙、丁、戊、巳、庚糖的转变,重新生成 RuBP ;3、光呼吸是如何发生的有何生理意义绿色植物在光下吸收氧气,放出二氧化碳的过程,人们称为光呼吸;光呼吸始于Rubisco;Rubisco是一种双功能酶;具有催化RuBP羧化反应和加氧反应两种功能;其催化方向取决于环境中二氧化碳和氧气的分压;当二氧化碳分压高而氧气分压低时,RuBP与二氧化碳经此酶催化生成2分子的PGA;反之,则生成1分子PGA和1分子C2化合物,后者在磷酸乙醇酸磷酸酶的作用下变成乙醇酸;乙醇酸则进入C2氧化光合碳循环;1有害方面:①从碳素同化角度看,光呼吸将光合作用已固定的碳素的 30% 左右,再释放出去,减少了光合产物的形成;②从能量利用上看,光呼吸过程中许多反应都消耗能量;2光呼吸对植物也具有积极的生理作用:①消耗光合作用中产生的副产品乙醇酸,通过乙醇酸途径将它转变成碳水化合物,另外,光呼吸也是合成磷酸丙糖和氨基酸的补充途径;②防止高光强对光合作用的破坏,在高光强和二氧化碳不足的条件下,过剩的同化力将损伤光合组织;通过光呼吸对能量的消耗,保护了光合作用的正常进行;③防止 O 2 对碳素同化的抑制作用,光呼吸消耗了 O 2 ,提高了 RuBP 羧化酶的活性,有利于碳素同化作用的进行;4、C3和C4植物和CAM植物在碳代谢上各有何异同点CAM植物与C4植物固定与还原CO2的途径基本相同;二者都是由C4途径固定CO2,C3途径还原CO2,都由PEP羧化酶固定空气中的CO2,由Rubisco羧化C4二羧酸脱羧释放的CO2;二者的差别在于,C4植物是在同一时间白天和不同的空间叶肉细胞和维管束鞘细胞完成CO2固定C4途径和还原C3途径两个过程;而CAM植物则是在不同时间白天和黑夜和同一空间叶肉细胞完成上述两个过程;C3植物和C4植物的差异特征 C3植物 C4植物叶结构维管束鞘不发达,其周围叶肉细胞排列疏松维管束鞘发达,其周围叶肉细排列紧密叶绿体只有叶间细胞有正常叶绿体叶肉细胞有正常叶绿体,维管束鞘细胞有叶绿体,但基粒无或不发达叶绿素a/b 约3:1 约4:1CO2补偿点 30—70 <10光饱和点低3—5万烛光高碳同化途径只有光合碳循环C3途径 C4途径和C3途径。
植物生理学第二章1 渗透作用:水分从水势高的系统通过半透膜向水势低的地方移动的现象。
2 蒸腾作用:水分以气体状态通过植物体表面从体内散失到体外的现象.2 小孔扩散律:蒸腾作用相当于水分通过一个多孔表面的蒸发过程。
而气体通过多个小孔表面的扩散速度不是与小孔的面积成正比,而是与小孔的周长成正比。
这就是小孔扩散律。
小孔扩散又称周长扩散(perimeter iffusion )。
蒸发速度之所以与小孔周长成正比,是因为气体分子向外扩散时,处在气孔中央的气体分子彼此碰撞,故扩散速度较慢,而处在气孔边缘的分子向外扩散时,彼此碰撞的机会少,扩散速率就较快。
当扩散表面的面积较大时,其边缘所占的比值较少,扩散的速度与其面积成正比。
当扩散通过小孔进行时,小孔的边缘所占的比值加大,孔越小,边缘所占的比值越大,气体扩散时受到的阻力越小。
所以通过小孔的扩散并不与孔的面积成正比,而与孔的边缘(周长)成正比。
如果把一个大孔分散成许多小孔,且小孔之间相隔一定距离,其总面积虽然一样,但小孔的总边缘却增加了许多,扩散的速度也随之而增加。
4 水分临界期:植物在生命周期中对水分缺乏最敏感、最易受害的时期。
简答:植物体内水分存在状态与植物代谢强弱•抗逆性关系答:以束缚水与自由水状态存在。
束缚水:靠近胶粒并被紧密吸附而不易流动的水分,叫做束缚水;自由水:距胶粒较远,能自由移动的水分叫自由水。
2. 自由水、束缚水与代谢的关系:自由水参与各种代谢活动,其数量的多少直接影响植物代谢强度,自由水含量越高,植物的代谢越旺盛。
束缚水不参与代谢活动,束缚水含量越高,植物代谢活动越弱,越冬植物的休眠芽和干燥种子里所含的水基本上是束缚水,这时植物以微弱的代谢活动渡过不良的环境条件。
因此束缚水的含量与植物的抗逆性大小密切相关。
通常以自由水/束缚水的比值作为为衡量植物代谢强弱和植物抗逆性大小的指标之一。
自由水/束缚水比值高, 植物代谢强度大; 自由水/束缚水比值低, 植物抗逆性第三章1 矿质营养:植物对矿质盐的吸收、运转和同化(以及矿质元素在生命活动中的作用)。