云南大学高等数学二(363)2010年考研专业课初试真题
- 格式:pdf
- 大小:1.22 MB
- 文档页数:2
2010年考研数学答案及参考解析(数学三跨考版)
磋砣莫遗韶光老,人生惟有读书好。
书籍是人类知识的总结。
书籍是全世界的营养品。
——莎士比亚 生于忧患,死于安乐 《孟子•告子》
舜发于畎亩之中,傅说举于版筑之间,胶鬲举于鱼盐之中,管夷吾举于士,孙叔敖举于海,百里奚举于市。
故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。
人恒过,然后能改;困于心,衡于虑,而后作;征于色,发于声,而后喻。
入则无法家拂士,出则无敌国外患者,国恒亡。
然后知生于忧患,而死于安乐也。
2010考研数学三真题答案考研数学是考研的重要科目之一,也是令很多考生感到头疼的科目。
为了帮助考生更好地应对考试,以下是2010年考研数学三的真题答案。
1. 填空题:(1)解:考察二项式定理的应用。
根据 (a+b)² = a²+2ab+b²,将给定的式子分解为 (x+y)² = x²+2xy+y²。
所以,答案为:x²+2xy+y²。
(2)解:考察数列的性质。
根据题意,已知 {an} 是等差数列,其中 a_5=23,a_8=32。
设公差为 d,有 a_5 = a_1 + 4d = 23,a_8 = a_1 + 7d = 32。
通过解方程组计算得到 a_1 = 19,d = 1。
所以,答案为:a_4 = a_1 + 3d = 19 + 3 = 22。
(3)解:考察概率的计算。
根据题意,A与B分别代表两件事件,且 P(A) = 0.4,P(A∪B) =0.8,P(A∩B) = 0.2。
根据概率的加法公式:P(A∪B) = P(A) + P(B) - P(A∩B)。
代入已知条件,得到 0.8 = 0.4 + P(B) - 0.2。
解方程得到 P(B) = 0.6。
所以,答案为:0.6。
2. 计算题:解:考察极限和微分的计算。
根据题意,计算极限lim(x→0) [(1+x)^m-1]⁄x。
使用1+x的二项展开,根据二项式定理可得 [(1+x)^m-1]⁄x =C(m,1)x^(1-1) + C(m,2)x^(2-1) + ... + C(m,m)x^(m-1)。
将 x 代入上式,得到 [mC(m,1)x^0 + C(m,2)x^1 + ... + mC(m,m)x^(m-1)]⁄x。
化简后,得到 mC(m,1) + C(m,2)x + ... + mC(m,m)x^(m-2)。
当x→0 时,项C(m,2)x → 0,C(m,3)x^2 → 0,..., C(m,m)x^(m-1) → 0。
2010年全国硕士研究生入学统一考试数学二试题一、选择题(1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.) (1) 函数()f x =( )(A) 0. (B) 1. (C) 2. (D) 3. (2) 设12,y y 是一阶线性非齐次微分方程()()y p x y q x '+=的两个特解,若常数λμ,使12y y λμ+是该方程的解,12y y λμ-是该方程对应的齐次方程的解,则( )(A) 11,22λμ==. (B) 11,22λμ=-=-. (C) 21,33λμ==. (D) 22,33λμ==.(3) 曲线2y x =与曲线ln (0)y a x a =≠相切,则a = ( )(A) 4e. (B) 3e. (C) 2e. (D) e. (4) 设,m n 是正整数,则反常积分⎰的收敛性 ( )(A) 仅与m 的取值有关. (B) 仅与n 的取值有关.(C) 与,m n 取值都有关. (D) 与,m n 取值都无关. (5)设函数(,)z z x y =,由方程(,)0y zF x x=确定,其中F 为可微函数,且20F '≠,则z zxy x y∂∂+=∂∂( ) (A) x . (B) z . (C) x -. (D) z -.(6) ()()2211limn nn i j nn i n j →∞===++∑∑ ( ) (A)()()120111xdx dy x y ++⎰⎰. (B) ()()100111x dx dy x y ++⎰⎰. (C)()()11111dx dy x y ++⎰⎰. (D) ()1120111dx dy x y ++⎰⎰. (7) 设向量组12I:,,,r ααα 可由向量组12II:,,,s βββ 线性表示,下列命题正确的是( )(A) 若向量组I 线性无关,则r s ≤. (B) 若向量组I 线性相关,则r s >.(C) 若向量组II 线性无关,则r s ≤. (D) 若向量组II 线性相关,则r s >. (8) 设A 为4阶实对称矩阵,且2A A O +=,若A 的秩为3,则A 相似于 ( )(A) 1110⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭. (B) 1110⎛⎫ ⎪⎪ ⎪- ⎪⎝⎭. (C) 1110⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. (D) 1110-⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭. 二、填空题(9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.) (9) 3阶常系数线性齐次微分方程220y y y y ''''''-+-=的通解为y = .(10) 曲线3221x y x =+的渐近线方程为 .(11) 函数()ln 120y x x =-=在处的n 阶导数()()0n y= .(12) 当0θπ≤≤时,对数螺线r e θ=的弧长为 .(13) 已知一个长方形的长l 以2cm/s 的速率增加,宽w 以3cm/s 的速率增加.则当cm 12l = ,cm 5w =时,它的对角线增加的速率为 .(14)设,A B 为3阶矩阵,且132,2A B A B -==+=,,则1A B -+= . 三、解答题(15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)求函数2221()()x t f x x t e d -=-⎰的单调区间与极值.(16)(本题满分10分)( I ) 比较()1ln ln 1nt t dt +⎡⎤⎣⎦⎰与10ln nt t dt ⎰()1,2,n = 的大小,说明理由;( II ) 记()1ln ln 1nn u t t dt =+⎡⎤⎣⎦⎰()1,2,n = ,求极限lim n n u →∞. (17)(本题满分10分)设函数()y f x =由参数方程22,(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,其中()t ψ具有2阶导数,且5(1)(1) 6.2ψψ'==,已知223,4(1)d y dx t =+求函数()t ψ.(18)(本题满分10分)一个高为l 的柱体形贮油罐,底面是长轴为2a ,短轴为2b 的椭圆.现将贮油罐平放,当油罐中油面高度为32b 时(如图),计算油的质量.(长度单位为m,质量单位为kg,油的密度为常数ρkg/m 3)(19) (本题满分11分)设函数(,)u f x y =具有二阶连续偏导数,且满足等式2222241250u u ux x y y ∂∂∂++=∂∂∂∂,确定a ,b 的值,使等式在变换,x ay x by ξη=+=+下化简为20uξη∂=∂∂.(20)(本题满分10分) 计算二重积分2 sin DI r θ=⎰⎰,其中(),|0s e c ,04D rr πθθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭. (21) (本题满分10分)设函数()f x 在闭区间[]0,1上连续,在开区间()0,1内可导,且(0)0f =,1(1)3f =,证明:存在1(0,)2ξ∈,1(,1)2η∈,使得22()()=.f f ξηξη''++(22)(本题满分11分)设110111a A b λλλ ⎛⎫⎛⎫ ⎪ ⎪= - 0= ⎪ ⎪ ⎪ ⎪1 1 ⎝⎭⎝⎭,,已知线性方程组Ax b =存在两个不同的解.( I ) 求λ,a ;( II ) 求方程组Ax b =的通解. (23)(本题满分11 分)设0141340A a a -⎛⎫ ⎪=- ⎪ ⎪⎝⎭,正交矩阵Q 使得TQ A Q 为对角矩阵,若Q 的第1列为2,1)T ,求,a Q .2010年全国硕士研究生入学统一考试数学二试题参考答案一、选择题(1)【答案】 (B).【解析】因为()f x =0,1x =±,又因为0lim ()lim x x x f x →→→=,其中00lim 1,lim 1x x +-→→===-,所以0x =为跳跃间断点.显然1lim ()2x f x →==,所以1x =为连续点.而1lim ()limx x f x →-→-==∞,所以1x =-为无穷间断点,故答案选择B.(2)【答案】 (A).【解析】因12y y λμ-是()0y P x y '+=的解,故()()()12120y y P x y y λμλμ'-+-=,所以()1122()0y P x y y p x y λμ⎡⎤⎡⎤''+-+=⎣⎦⎣⎦,而由已知 ()()()()1122,y P x y q x y P x y q x ''+=+=,所以()()0q x λμ-=, ① 又由于一阶次微分方程()()y p x y q x '+=是非齐的,由此可知()0q x ≠,所以0λμ-=.由于12y y λμ+是非齐次微分方程()()y P x y q x '+=的解,所以()()()()1212y y P x y y q x λμλμ'+++=,整理得 ()()()1122y P x y y P x y q x λμ⎡⎤⎡⎤''+++=⎣⎦⎣⎦,即 ()()()q x q x λμ+=,由()0q x ≠可知1λμ+=, ②由①②求解得12λμ==,故应选(A). (3)【答案】 (C).【解析】因为曲线2y x =与曲线ln (0)y a x a =≠相切,所以在切点处两个曲线的斜率相同,所以2a x x =,即(0)x x =>.又因为两个曲线在切点的坐标是相同的,所以在2y x =上,当x =2a y =;在ln y a x =上,x =, ln 22a a y a ==.所以ln 222a a a= .从而解得2a e =.故答案选择(C). (4)【答案】 (D).【解析】0x =与1x =都是瑕点.应分成dx dx =+⎰,用比较判别法的极限形式,对于,由于1210[ln (1lim 11mnx n mx xx+→--=.显然,当1201n m<-<,则该反常积分收敛. 当120n m -≤,1210[ln (1)]lim mx nx x+→-存在,此时实际上不是反常积分,故收敛.故不论,m n 是什么正整数,总收敛.对于,取01δ<<,不论,m n 是什么正整数,1211211[ln (1)]lim lim ln (1)(1)01(1)mnmx x x xx x x δδ--→→-=--=-,所以收敛,故选(D).(5) 【答案】 (B).【解析】122212122221x z y z y zF F F F F yF zF zx x x x x F F xF F x⎛⎫⎛⎫''''-+-⋅+⋅ ⎪ ⎪'''+∂⎝⎭⎝⎭=-=-==∂''''⋅, 112211y z F F F z x y F F F x'⋅''∂=-=-=-∂'''⋅, 1212222yF zF yF F z z z x y z x y F F F ''''+⋅∂∂+=-==∂∂'''. (6) 【答案】 (D). 【解析】()()222211111()nnnn i j i j n nn i n j n i n j =====++++∑∑∑∑22111()()n n j i n n j n i ===++∑∑ 12220211111lim lim ,11()nn n n j j n dy j n jn y n→∞→∞====+++∑∑⎰ 1011111lim lim ,11()nn n n i i n dx i n i n x n→∞→∞====+++∑∑⎰()()2222111111lim lim()()n nn nn n i j j i n n j n i n i n j →∞→∞=====++++∑∑∑∑ 221(lim )nn j n n j→∞==+∑1(lim )nn i nn i →∞=+∑ 1120011()()11dx dy x y =++⎰⎰()()11200111dx dy x y =++⎰⎰. (7) 【答案】 (A).【解析】由于向量组I 能由向量组II 线性表示,所以(I)(II)r r ≤,即11(,,)(,,)r s r r s ααββ≤≤若向量组I 线性无关,则1(,,)r r r αα= ,所以11(,,)(,,)r s r r r s ααββ=≤≤ ,即r s ≤,选(A).(8) 【答案】 (D).【解析】:设λ为A 的特征值,由于2A A O +=,所以20λλ+=,即(1)0λλ+=,这样A 的特征值只能为-1或0. 由于A 为实对称矩阵,故A 可相似对角化,即A Λ ,()()3r A r =Λ=,因此,1110-⎛⎫ ⎪- ⎪Λ= ⎪- ⎪⎝⎭,即1110A -⎛⎫ ⎪- ⎪Λ= ⎪- ⎪⎝⎭. 二、填空题(9)【答案】2123cos sin x y C e C x C x =++.【解析】该常系数线性齐次微分方程的特征方程为 32220λλλ-+-=,因式分解得()()()()2222210λλλλλ-+-=-+=,解得特征根为2,i λλ==±,所以通解为 2123cos sin x y C e C x C x =++. (10) 【答案】2y x =.【解析】因为3221lim 2x x x x→∞+=,所以函数存在斜渐近线,又因为 333222222lim 2lim 011x x x x x xx x x →∞→∞---==++,所以斜渐近线方程为2y x =. (11)【答案】()21!nn -⋅-.【解析】由高阶导数公式可知()ln (1)n x +1(1)!(1)(1)n nn x --=-+, 所以 ()()()1(1)!(1)!ln12(1)22(12)(12)n n n n n nn n x x x ----=-⋅-=---, 即()(1)!(0)22(1)!(120)n nn nn yn -=-=---⋅. (12))1e π-.【解析】因为 0θπ≤≤,所以对数螺线r e θ=的极坐标弧长公式为πθ⎰=0e d πθθ⎰)1e π-.(13)【答案】3cm/s .【解析】设(),()l x t w y t ==,由题意知,在0t t =时刻00()12,()5x t y t ==,且0()2,x t '=0()3y t '=,设该对角线长为()S t ,则 ()S t =,所以()S t '=所以0()3S t '===.(14)【答案】3.【解析】由于1111()()A A B B E AB B B A ----+=+=+,所以11111()A B A A B B A A B B -----+=+=+因为2B =,所以1112BB--==,因此 11113232A B A A B B ---+=+=⨯⨯=. 三、解答题(15)【解析】因为22222222111()()x x x t t t f x x t e dt xe dt te dt ---=-=-⎰⎰⎰,所以2224423311()2222x x t x x t f x x e dt x ex ex e dt----'=+-=⎰⎰,令()0f x '=,则0,1x x ==±.又22421()24x t x f x e dt x e --''=+⎰,则21(0)20t f e dt -''=<⎰,所以2211111(0)(0)(1)22t t f t e dt e e ---=-=-=-⎰是极大值.而1(1)40f e -''±=>,所以(1)0f ±=为极小值.又因为当1x ≥时,()0f x '>;01x ≤<时,()0f x '<;10x -≤<时,()0f x '>;1x <-时,()0f x '<,所以()f x 的单调递减区间为(,1)(0,1)-∞- ,()f x 的单调递增区间为(1,0)(1,)-+∞ .(16) 【解析】 (I)当01x <<时0ln(1)x x <+<,故[]ln(1)nnt t +<,所以[]ln ln(1)ln nn t t t t +<,则[]11ln ln(1)ln nn t t dt t t dt +<⎰⎰()1,2,n = .(II)()111101ln ln ln 1n n n t t dt t t dt td t n +=-⋅=-+⎰⎰⎰ ()211n =+,故由()1210ln 1n n u t t dt n <<=+⎰,根据夹逼定理得()210lim lim01n n n u n →∞→∞≤≤=+,所以lim 0n n u →∞=.(17)【解析】根据题意得(),22dy t dy dt dxdx t dtψ'==+()()()()()()222222222232241t d t t t t t d y dt dx dx t t dtψψψ'⎛⎫ ⎪'''+-+⎝⎭+===++ 即()()()()222261t t t t ψψ'''+-=+,整理有()()()()2131t t t t ψψ'''+-=+,解()()()()()31151,162t t t t ψψψψ'⎧''-=+⎪⎪+⎨⎪'==⎪⎩,令()y t ψ'=,即()1311y y t t '-=++. 所以()()()11113113dt dt t t y e t e dt C t t C -++⎛⎫⎰⎰=++=++ ⎪⎝⎭⎰,1t >-.因为()()116y ψ'==,所以0C =,故()31y t t =+,即()()31t t t ψ'=+,故()()2313312t t t dt t t C ψ=+=++⎰. 又由()512ψ=,所以10C =,故()233,(1)2t t t t ψ=+>-.(18)【解析】油罐放平,截面如图建立坐标系之后,边界椭圆的方程为:22221x y a b+= 阴影部分的面积2222bbba S xdyb --==⎰⎰ 令sin ,y b t y b ==-时;22b t y π=-=时6t π=. 266221122cos 2(cos 2)(223S ab tdt ab t dt ab πππππ--==+=⎰⎰所以油的质量2(3m abl πρ=.(19)【解析】由复合函数链式法则得u u u u ux x y x ξηξξη∂∂∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂∂∂, u u u u ua b y y y ξηξηξη∂∂∂∂∂∂∂=⋅+=⋅+⋅∂∂∂∂∂∂∂, 22222222u u u u u u u x x x x x xξηηηξηξξηηξη⎛⎫∂∂∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅+⋅+⋅ ⎪∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎝⎭ 222222,u u uξηξη∂∂∂=++∂∂∂∂ 2222222u u u u u u u x y y y y y yξηηηξηξξηηξη⎛⎫∂∂∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅+⋅+⋅ ⎪∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎝⎭ 22222(),u u ua b a b ξηξη∂∂∂=+++∂∂∂∂ 22222222()()u u u u u u ua b a a b b a a y y ξηξξηηξη⎛⎫∂∂∂∂∂∂∂∂=+=+++ ⎪∂∂∂∂∂∂∂∂∂∂⎝⎭ 22222222,u u u a b ab ξηξη∂∂∂=++∂∂∂∂ 故222224125u u ux x y y∂∂∂++∂∂∂∂[]2222222(5124)(5124)12()1080,u u u a a b b a b ab ξηξη∂∂∂=+++++++++=∂∂∂∂所以 22512405124012()1080a a b b a b ab ⎧++=⎪++=⎨⎪+++≠ ⎩,则25a =-或2-,25b =-或2-.又因为当(,)a b 为22(2,2),(,)55----时方程(3)不满足,所以当(,)a b 为2(,2)5-- ,2(2,)5--满足题意.(20)【解析】2sin DI rθ=⎰⎰sin Dr rdrdθ=⎰⎰D=⎰⎰100xdx =⎰⎰()312201113x dx ⎡⎤=--⎢⎥⎣⎦⎰ ()311220011133dx x dx =--⎰⎰20113cos 43316d πθθπ=-=-⎰.(21)【解析】令()()313F x f x x =-,对于()F x 在10,2⎡⎤⎢⎥⎣⎦上利用拉格朗日中值定理,得存在10,,2ξ⎛⎫∈ ⎪⎝⎭使得()()11022F F F ξ⎛⎫'-= ⎪⎝⎭.对于()F x 在1,12⎡⎤⎢⎥⎣⎦上利用拉格朗日中值定理,得存在1,1,2η⎛⎫∈ ⎪⎝⎭使得()()11122F F F η⎛⎫'-= ⎪⎝⎭,两式相加得 ()()22f f ξηξη''+=+.所以存在110,,,122ξη⎛⎫⎛⎫∈∈ ⎪⎪⎝⎭⎝⎭,使()()22f f ξηξη''+=+. (22) 【解析】因为方程组有两个不同的解,所以可以判断方程组增广矩阵的秩小于3,进而可以通过秩的关系求解方程组中未知参数,有以下两种方法.方法1:( I )已知Ax b =有2个不同的解,故()()3r A r A =<,对增广矩阵进行初等行变换,得111110101010111111a A a λλλλλλ⎛⎫⎛⎫⎪⎪=-→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22111111010101010110011a a λλλλλλλλλ⎛⎫⎛⎫⎪⎪→-→- ⎪ ⎪ ⎪ ⎪-----+⎝⎭⎝⎭当1λ=时,11111111000100010000000A a ⎛⎫⎛⎫ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,此时,()()r A r A ≠,故Ax b =无解(舍去).当1λ=-时,111102010002A a -⎛⎫ ⎪→- ⎪ ⎪+⎝⎭,由于()()3r A r A =<,所以2a =-,故1λ=- ,2a =-. 方法2:已知Ax b =有2个不同的解,故()()3r A r A =<,因此0A =,即211010(1)(1)011A λλλλλ=-=-+=,知1λ=或-1.当1λ=时,()1()2r A r A =≠=,此时,Ax b =无解,因此1λ=-.由()()r A r A =,得2a =-.( II ) 对增广矩阵做初等行变换31012111211121020102010102111100000000A ⎛⎫- ⎪----⎛⎫⎛⎫ ⎪⎪ ⎪⎪=-→-→-⎪ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭可知原方程组等价为1323212x x x ⎧-=⎪⎪⎨⎪=-⎪⎩,写成向量的形式,即123332110210x x x x ⎛⎫⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+- ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭.因此Ax b =的通解为32110210x k ⎛⎫⎪⎛⎫ ⎪⎪⎪=+- ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭,其中k 为任意常数.(23)【解析】由于0141340A a a -⎛⎫⎪=- ⎪ ⎪⎝⎭,存在正交矩阵Q ,使得TQ AQ 为对角阵,且Q 的第一T,故A对应于1λ的特征向量为12,1)Tξ=.根据特征值和特征向量的定义,有1Aλ=,即10141113224011aaλ-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-=⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,由此可得11,2aλ=-=.故014131410A-⎛⎫⎪=--⎪⎪-⎝⎭.由14131(4)(2)(5)041E Aλλλλλλλ--=-=+--=-,可得A的特征值为1232,4,5λλλ==-=.由2()0E A xλ-=,即1234141710414xxx--⎛⎫⎛⎫⎪⎪-=⎪⎪⎪ ⎪--⎝⎭⎝⎭,可解得对应于24λ=-的线性无关的特征向量为2(1,0,1)Tξ=-.由3()0E A xλ-=,即1235141210415xxx-⎛⎫⎛⎫⎪⎪=⎪⎪⎪ ⎪-⎝⎭⎝⎭,可解得对应于35λ=的特征向量为3(1,1,1)Tξ=-.由于A为实对称矩阵,123,,ξξξ为对应于不同特征值的特征向量,所以123,,ξξξ相互正交,只需单位化:312123123,1,0,1),1,1)T T Tξξξηηηξξξ====-==-,取()123,,0Qηηη⎫⎪⎪==⎪⎪⎭,则245TQ AQ⎛⎫⎪=Λ=-⎪⎪⎝⎭.。
2010~2013年考研数学二真题及答案2010考研数学二真题及答案一、填空题(本题共 6 小题,请将答案写在题中横线上.)(1)三阶常系数线性齐次微分方程的通解为 y= .(2)曲线的渐近线方程为.(3)函数 y=ln(1-2x)在 x=0 处的 n 阶导数.(4)当 0≤θ≤π时,对数螺线 r=eθ的弧长为.(5)已知一个长方形的长 l 以 2cm/s 的速率增加,宽w 以 3cm/s 的速率增加,则当 l=12cm,w=5cm 时,它的对角线增加的速率为.(6)设 A,B 为 3 阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|= .二、选择题(本题共 8 小题,每小题给出的四个选项中,只有一项符合题目要求,请将所选项前的字母填在题后括号内.)(7)函数的无穷间断点数为(A) 0. (B) 1. (C) 2. (D) 3.(8)设y1,y2 是一阶线性非齐次微分方程的两个特解.若常数λ,μ使该方程的解是对应的齐次方程的解,则(9)曲线y=x2 与曲线y=aln x(a≠O)相切,则 a= (A)4e. (B) 3e. (C) 2e. (D) e.(10)设m,n 是正整数,则反常积分的收敛性(A) 仅与 m 值有关. (B) 仅与 n 值有关.(C) 与 m,n 值都有关. (D) 与 m,n 值都无关.(11)设函数z=z(x,y)由方程确定,其中F为可微函数,且(A) x (B) z. (C) -x. (D)-z. (12)(C) (D)三、解答题(本题共 9 小题,解答应写出文字说明、证明过程或演算步骤.)(15) 求函数的单调区间与极值.(16) (Ⅰ) 比较的大小,说明理由; (Ⅱ) 记,求极限(17) 设函数 y =f(x)由参数方程所确定,其中φ(t)具有二阶导数,且φ(1)=(18) 一个高为 j 的柱体形贮油罐,底面是长轴为 2a ,短轴为 2b 的椭圆,现将贮油罐平放,当油罐中油面高度为时(如图 2),计算油的质量.(长度单位为m ,质量单位为 kg ,油的密度为常数 ρkg/m 3)(14) 设 A 为 4 阶实对称矩阵,且A 2+A=0,若 A 的秩为 3,则 A 与相似于(19)设函数u=(x,y)具有二阶连续偏导数,且满足等式,确定a,b 的值,使等式在变换(20)计算二重积分(21)设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且。
xx语言文学基础云南大学2010年招收攻读硕士学位研究生入学考试自命题科目试题(考生注意:全部答案必须写在答题纸上,否则后果自负!)考试科目名称:中国语言文学基础(A卷)考试科目代码:607一、单项选择题(共10题,每题2分,共20分)1、“一年之计,莫如树谷。
”句中“树”正确的解释是()。
A、树木B、种植C、树立D、建树2、“我非爱其财而易之以羊也,宜乎百姓之谓我爱也。
”句中“爱”正确的解释是()。
A、喜爱B、亲爱、疼爱C、爱惜、吝啬D、仁爱3、下列哪个音在汉语中普通话中没有()。
A、舌尖前清塞擦音B、舌尖后清塞擦音C、舌面前清塞音D、舌面后清塞音4、汉语“家”的韵腹用国际音标描述,属于()。
A、舌面前、低、不圆唇元音B、舌面央、低、不圆唇元音C、舌面后、低、不圆唇D、舌面后、低、圆唇元音5、运用了“间接描绘”方法来塑造人物形象,被歌德称誉为是“现存最伟大的最好的开场”的剧作是()。
A、《俄狄浦斯王》B、《哈姆莱特》C、《安德洛马克》D、《达尔杜弗》6、傣族《召树屯与喃木诺娜》属于什么类型故事?()A、巧媳妇故事B、两兄弟分家C、天鹅处女型故事D、灰姑娘型故事7、汉代文学最具有代表性的文学样式是()。
A、文人五言诗B、赋C、乐府D、史传文学8、下列作品属于屈原的作品是()。
A、《九辩》B、《九章》C、《九叹》D、《九思》9、以下作品作者不是赵树理的是()。
中国语言文学基础A、《小二黑结婚》B、《李有才板话》C、《李家庄的变迁》D、《山乡巨变》10、“按照美的规律来塑造物体”是()提出的理论命题。
A、康德B、黑格尔C、马克思D、恩格斯二、名词解释(8题选做4题,共4题,每题10分,共40分,不能多选,多选者按前4题给分)1、短语的功能类型2、右文说3、三书说4、垂死化生5、艺术构思6、魔幻现实主义7、《阿Q正传》8、元曲四大家三、简答题(4题选做2题,每题15分,共30分,不能多选,多选者按前2题给分)1、简述现代汉语语法方面的特点。
《考研数学试卷》2010高数部份一、填空题[2010.农9.4]lim xx x x a →∞⎛⎫= ⎪-⎝⎭a e [2010.二10.4]曲线3221x y x =+的渐近线方程为2y x =[2010.农10.4]曲线222sin cos x xy x x +=-的水平渐近线方程为y =2-[2010.二11.4]函数()ln 12y x =-在0x =处的n 阶导数()()0n y=()21!n n -⋅-[2010.一.9.4]设()20ln 1ttx e y u du-⎧=⎪⎨=+⎪⎩⎰,则220t d y dx ==0 [2010.三9.4]设可导函数()y y x =由方程220sin x yxt e dt x t dt +-=⎰⎰确定,则x dydx==1-[2010.三12.4]若曲线321y x ax bx =+++有拐点()1,0-,则b =3[2010.一.10.4]2π=⎰4π-[2010.三10.4]设位于曲线()y e x =≤<+∞下方,x 轴上方的无界区域为G ,则G 绕x 轴旋转一周所得空间区域的体积为24π[2010.二12.4]当0θπ≤≤时,对数螺线r eθ=)1e π-[2010.二13.4]已知一个长方形的长l 以2/cm s 的速率增加,宽w 以3/cm s 的速率增加,当12,5x m y m ==时,其对角线增加的速率为3/cm s[2010.农11.4]已知一个长方形的长x 以0.2/m s 的速率增加,宽y 以0.3/m s 的速率增加,当12,5x m y m ==时,其面积的增加速率为24.6/m s[2010.农12.4]函数1x y z y-=在点()1,e 处的全微分()1,e dz =2dx e dy -+[2010.一.12.4]设(){}22,,1x y z x y z Ω=+≤≤,则Ω的形心的竖坐标z =23[2010.一.11.4]已知曲线[]():11,1L y x x =-∈-,起点是()1,0-,终起点是()1,0,则曲线积分2Lxydx x dy +=⎰[2010.三11.4]设某商品的收益函数为()R p ,收益弹性为31p +,其中p 为价格,且()11R =,则()R p =()3113p pe-[2010.二9.4]3阶常系数线性齐次微分方程220y y y y ''''''-+-=的通解为2123cos sin x y c e c x c x =++二、单项选择题 [2010.三1.4]若011lim 1x x a e x x→⎡⎤⎛⎫--=⎪⎢⎥⎝⎭⎣⎦,则a =(C )A.0B. 1C. 2D. 3[2010.一.2.4]极限()()2lim xx x x a x b →∞⎛⎫= ⎪ ⎪-+⎝⎭(C )A. 1B. eC. a be- D. b ae-[2010.三4.4]设()()()1010ln ,,xf x xg x xh x e ===,则当x 充分大的时候有(C )A. ()()()g x h x f x <<B. ()()()h x g x f x <<C. ()()()f x g x h x <<D. ()()()g x f x h x <<[2010.农1.4]设函数()()()33x e e f x x x e -=--,则(C )A. 3x =及x e =都是()f x 的第一类间断点B. 3x =及x e =都是()f x 的第二类间断点C. 3x =是()f x 的第一类间断点,x e =是()f x 的第二类间断点D. 3x =是()f x 的第二类间断点,x e =是()f x 的第一类间断点[2010.二1.4]函数()f x =的无穷间断点的个数为(B ) A. 1 B. 2 C. 3 D. 无穷多个[2010.二3.4]曲线2y x =与曲线()ln 0y a x a =≠相切,则a =(C )A. 4eB. 3eC. 2eD. e [2010.农2.4]曲线()24xy x =-的凸弧区间是(A )A. (),8-∞-B.()8,4--C. ()4,4-D. ()4,+∞ [2010.三3.4][2010.农3.4]设函数()(),fx g x 具有二阶导数,()()()00,0,0g x a g x g x '''==<,则()()f g x 在0x 点取极大值的一个充分条件是(B )A. ()0f a '<B. ()0f a '>C. ()0f a ''<D. ()0f a ''>[2010.一.3.4][2010.二4.4]设,m n 均是正整数,则反常积分10的收敛性(D )A. 仅与m 的取值有关B. 仅与n 的取值有关C. 与,m n 的取值都有关D. 与,m n 的取值都无关 [2010.一.2.4][2010.二5.4]设函数(),z z x y =由方程,0y z F x x ⎛⎫=⎪⎝⎭确定,其中F 为可微函数,且20F '≠,则z zxy x y∂∂+=∂∂(B ) A. x B. z C. x - D. z - [2010.一.4.4][2010.二6.4]()()2211limn nn i j nn i n j →∞===++∑∑(D ) A. ()()1200111xdx dy x y ++⎰⎰ B. ()()100111xdx dy x y ++⎰⎰ C.()()11111dx dy x y ++⎰⎰D. ()()1120111dx dy x y ++⎰⎰[2010.农 4.4]设函数()f x 在区间[]0,1上连续,()01f x <<,且()112f x dx<⎰,记()()()()()1111112300000,1,I dxdyI f x f ydxdy I f x fy dxdy ==-=⎰⎰⎰⎰⎰,则(D )A. 123I I I <<B. 132I I I <<C. 213I I I <<D. 321I I I << [2010.二2.4][2010.三2.4]设12,y y 是一阶线性非齐次微分方程()()y p x y q x '+=的两个特解,若常数,λμ使12y y λμ+是该方程的解,12y y λμ-是该方程对应的齐次微分方程的解,则(A )A. 11,22λμ== B. 11,22λμ=-=- C.21,33λμ== D. 22,33λμ==三、 解答题[2010.三15.9]求极限11ln lim 1xxx x →∞⎛⎫- ⎪⎝⎭解 因为()ln ln ln 2ln ln ln 11ln 1ln lim lim lim ln 11x x x x x x x x x x x x x e e x xe x x x e x e →∞→∞→∞⎛⎫- ⎪--⎝⎭=⋅=⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭而ln 1lim lim 0x x x x x →+∞→+∞==,故ln ln ln 11ln limlim lim 1ln ln x x xx x x x e x e xx →∞→∞→∞⎛⎫- ⎪-⎝⎭=⋅=- 所以11ln 1lim 1xxx x e -→∞⎛⎫-= ⎪⎝⎭[2010.农15.10]设函数()ln tan cos 22x x f x e x -=+,求2f π⎛⎫'' ⎪⎝⎭解 ()()csc cos 22sin 2xf x x ex x -'=-+()()cot csc 4sin 23cos 2xf x x x e x x -''=-+-,232f e ππ-⎛⎫''= ⎪⎝⎭[2010.农19.10]证明:111x e x +⎛⎫+> ⎪⎝⎭证 设()()()11ln 11ln 1ln x f x x x x x +⎛⎫=+=++-⎡⎤ ⎪⎣⎦⎝⎭则()()111ln 1ln ln 10f x x x x x x⎛⎫'=+--=+-< ⎪⎝⎭,从而()f x 在定义域内单调减少又()11lim lim ln 1ln 1x x x f x e x +→+∞→+∞⎛⎫=+== ⎪⎝⎭,从而()1f x >,即111x e x +⎛⎫+> ⎪⎝⎭[2010.二21.10]设函数()f x 在闭区间[]0,1上连续,在开区间()0,1内可导,且()()100,13f f ==,证明:存在110,,,122ξη⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,使得()()22f f ξηξη''+=+ 证 设函数()()313F x f x x =-则由题意知,()()00,10F F ==,()F x 在110,,,122⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦上均满足拉格朗日中值定理条件,从而()()()2111100,0,2222F F F f ξξξξ⎛⎫⎛⎫⎛⎫''⎡⎤-=-=-∈⎪ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎝⎭()()()2111111,0,2222F F F f ηηηη⎛⎫⎛⎫⎛⎫''⎡⎤-=-=-∈ ⎪ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎝⎭两式相加,得()()()()221110022F F f f ηηξξ''⎡⎤⎡⎤-=-+-=⎣⎦⎣⎦ 即存在110,,,122ξη⎛⎫⎛⎫∈∈ ⎪⎪⎝⎭⎝⎭,使得()()22f f ξηξη''+=+ [2010.一.17.10][2010.二16.10][2010.三18.10](1)比较积分()1ln ln 1nt t dt +⎡⎤⎣⎦⎰与()1ln 1,2,n t t dt n =⎰ 的大小,说明理由;(2)记()()1l n l n 11,2,nn u t t d t n =+=⎡⎤⎣⎦⎰ ,求极限lim n n u →∞。
2010年全国硕士研究生入学统一考试数学二试题一、选择题(1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.) (1) 函数()f x =( )(A) 0. (B) 1. (C) 2. (D) 3. (2) 设12,y y 是一阶线性非齐次微分方程()()y p x y q x '+=的两个特解,若常数λμ,使12y y λμ+是该方程的解,12y y λμ-是该方程对应的齐次方程的解,则( )(A) 11,22λμ==. (B) 11,22λμ=-=-. (C) 21,33λμ==. (D) 22,33λμ==.(3) 曲线2y x =与曲线ln (0)y a x a =≠相切,则a = ( )(A) 4e. (B) 3e. (C) 2e. (D) e. (4) 设,m n 是正整数,则反常积分⎰的收敛性 ( )(A) 仅与m 的取值有关. (B) 仅与n 的取值有关.(C) 与,m n 取值都有关. (D) 与,m n 取值都无关.(5)设函数(,)z z x y =,由方程(,)0y zF x x=确定,其中F 为可微函数,且20F '≠,则z zxy x y∂∂+=∂∂( ) (A) x . (B) z . (C) x -. (D) z -. (6) ()()2211limnnn i j nn i n j →∞===++∑∑ ( ) (A)()()120111xdx dy x y ++⎰⎰. (B) ()()100111x dx dy x y ++⎰⎰. (C)()()11111dx dy x y ++⎰⎰. (D) ()()1120111dx dy x y ++⎰⎰. (7) 设向量组12I :,,,r ααα可由向量组12II :,,,s βββ线性表示,下列命题正确的是( )(A) 若向量组I 线性无关,则r s ≤. (B) 若向量组I 线性相关,则r s >.考研机55(C) 若向量组II 线性无关,则r s ≤. (D) 若向量组II 线性相关,则r s >. (8) 设A 为4阶实对称矩阵,且2A A O +=,若A 的秩为3,则A 相似于 ( )(A) 1110⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭. (B) 1110⎛⎫⎪ ⎪ ⎪- ⎪⎝⎭. (C) 1110⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. (D) 1110-⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭. 二、填空题(9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.) (9) 3阶常系数线性齐次微分方程220y y y y ''''''-+-=的通解为y = .(10) 曲线3221x y x =+的渐近线方程为 .(11) 函数()ln 120y x x =-=在处的n 阶导数()()0n y= .(12) 当0θπ≤≤时,对数螺线r e θ=的弧长为 .(13) 已知一个长方形的长l 以2cm/s 的速率增加,宽w 以3cm/s 的速率增加.则当cm 12l = ,cm 5w =时,它的对角线增加的速率为 .(14)设,A B 为3阶矩阵,且132,2A B A B -==+=,,则1A B-+= .三、解答题(15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)求函数2221()()x t f x x t e d -=-⎰的单调区间与极值.(16)(本题满分10分)( I ) 比较()1ln ln 1nt t dt +⎡⎤⎣⎦⎰与10ln nt t dt ⎰()1,2,n =的大小,说明理由;( II ) 记()1ln ln 1nn u t t dt =+⎡⎤⎣⎦⎰()1,2,n =,求极限lim n n u →∞. (17)(本题满分10分)设函数()y f x =由参数方程22,(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,其中()t ψ具有2阶导数,且考研老司机555(1)(1) 6.2ψψ'==,已知223,4(1)d y dx t =+求函数()t ψ. (18)(本题满分10分)一个高为l 的柱体形贮油罐,底面是长轴为2a ,短轴为2b 的椭圆.现将贮油罐平放,当油罐中油面高度为32b 时(如图),计算油的质量.(长度单位为m,质量单位为kg,油的密度为常数ρkg/m 3)(19) (本题满分11分)设函数(,)u f x y =具有二阶连续偏导数,且满足等式2222241250u u ux x y y∂∂∂++=∂∂∂∂,确定a ,b 的值,使等式在变换,x ay x by ξη=+=+下化简为20uξη∂=∂∂.(20)(本题满分10分) 计算二重积分2 sin DI r θ=⎰⎰,其中(),|0s e 4D rr πθθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭. (21) (本题满分10分)设函数()f x 在闭区间[]0,1上连续,在开区间()0,1内可导,且(0)0f =,1(1)3f =,证明:存在1(0,)2ξ∈,1(,1)2η∈,使得22()()=.f f ξηξη''++(22)(本题满分11分)设110111a A b λλλ ⎛⎫⎛⎫ ⎪ ⎪= - 0= ⎪ ⎪ ⎪ ⎪1 1 ⎝⎭⎝⎭,,已知线性方程组Ax b =存在两个不同的解.( I ) 求λ,a ;( II ) 求方程组Ax b =的通解. (23)(本题满分11 分)考研老司机55设0141340A aa-⎛⎫⎪=- ⎪⎪⎝⎭,正交矩阵Q使得TQ A Q为对角矩阵,若Q的第1列为2,1)T,求,a Q.2010年全国硕士研究生入学统一考试数学二试题参考答案一、选择题(1)【答案】 (B).【解析】因为()f x=0,1x=±,又因为00lim()limx x xf x→→→==其中00lim1,lim1x x+-→→===-,所以0x=为跳跃间断点.显然1lim()2xf x→==,所以1x=为连续点.而1lim()limx xf x→-→-==∞,所以1x=-为无穷间断点,故答案选择B.(2)【答案】 (A).【解析】因12y yλμ-是()0y P x y'+=的解,故()()()1212y y P x y yλμλμ'-+-=,所以()1122()0y P x y y p x yλμ⎡⎤⎡⎤''+-+=⎣⎦⎣⎦,而由已知()()()()1122,y P x y q x y P x y q x''+=+=,所以()()0q xλμ-=, ①又由于一阶次微分方程()()y p x y q x'+=是非齐的,由此可知()0q x≠,所以研55。
2010高等代数考研真题高等代数作为数学学科中的重要分支,在考研中一直占据着重要的地位。
2010 年的高等代数考研真题更是对考生的知识掌握和解题能力进行了全面而深入的考查。
在这一年的真题中,多项式相关的问题是重点之一。
多项式的整除、因式分解等知识点被巧妙地融入到题目中。
例如,有一道题要求考生判断给定的两个多项式之间的整除关系,并给出详细的证明过程。
这不仅需要考生熟练掌握多项式的基本性质和运算规则,还需要具备严谨的逻辑推理能力,能够清晰地阐述自己的思路和方法。
线性方程组的求解也是常见的考点。
真题中出现了各种类型的线性方程组,包括齐次线性方程组和非齐次线性方程组。
有的题目要求通过矩阵的初等变换求出方程组的解,有的则需要利用向量的线性相关性来判断解的存在性和唯一性。
这就要求考生对线性方程组的理论有深入的理解,能够灵活运用不同的方法来解决问题。
矩阵的相关知识在 2010 年的真题中也有较多体现。
矩阵的运算、逆矩阵的求解、矩阵的秩等内容都是考查的重点。
比如,有一道题给出了一个复杂的矩阵,要求计算其秩,并说明秩的几何意义。
这就需要考生熟悉矩阵秩的定义和计算方法,同时能够将抽象的数学概念与实际的几何意义相结合,加深对知识的理解。
二次型的问题也是不可忽视的一部分。
真题中涉及到二次型的标准形、规范形的求解,以及正定二次型的判定等内容。
考生需要掌握二次型的变换方法,能够通过配方法或者正交变换将给定的二次型化为标准形或规范形,并利用正定的判定条件来判断二次型的性质。
此外,向量空间的相关题目也有出现。
这部分内容包括向量空间的定义、基与维数的计算等。
考生需要理解向量空间的抽象概念,能够运用相关定理和方法解决具体的问题。
总的来说,2010 年高等代数考研真题涵盖了高等代数的多个重要知识点,题目具有一定的难度和综合性。
通过对这些真题的研究和练习,考生可以更好地掌握高等代数的知识体系,提高自己的解题能力和思维水平。
要应对这样的考试,考生在复习过程中不能仅仅死记硬背公式和定理,更要注重理解和应用。