锅炉内胆液位控制系统设计
- 格式:doc
- 大小:672.00 KB
- 文档页数:10
dcs锅炉液位控制系统课程设计一、引言DCS锅炉液位控制系统是一种自动化控制系统,用于监测和调节锅炉中的液位。
在现代工业生产中,锅炉是不可或缺的设备之一,因此对锅炉液位控制系统的设计和优化显得尤为重要。
本文将从以下几个方面对DCS锅炉液位控制系统进行课程设计。
二、系统概述1. 系统结构:DCS锅炉液位控制系统由传感器、执行器、控制器和监视器等组成。
2. 系统功能:该系统主要实现对锅炉中水位的监测和调节,确保锅炉在安全运行的同时提高工作效率。
三、传感器设计1. 传感器原理:利用压力传感器检测水面高度,并将检测结果转换成电信号输出。
2. 传感器选型:选择精度高、稳定性好、抗干扰能力强的压力传感器。
3. 传感器安装:将传感器安装在锅炉侧面,保证与水面垂直,并采用密封结构防止蒸汽泄漏。
四、执行器设计1. 执行器原理:利用电机驱动阀门,控制水的流动。
2. 执行器选型:选择响应速度快、精度高、耐腐蚀性好的电动阀门。
3. 执行器安装:将执行器安装在锅炉出水管道处,保证与水流方向一致,并采用密封结构防止漏水。
五、控制器设计1. 控制器原理:利用PID算法对传感器输出信号进行处理,并输出控制信号给执行器。
2. 控制器选型:选择具有高性能处理能力、可编程性强、稳定性好的PLC作为控制器。
3. 控制算法:采用PID算法对液位进行调节,根据实际情况调整Kp、Ki和Kd参数。
六、监视系统设计1. 监视系统原理:实时监测锅炉液位变化,并将监测结果显示在监视屏幕上。
2. 监视系统选型:选择具有高分辨率、反应速度快、稳定性好的液晶显示屏。
3. 监视界面设计:设计直观明了的监视界面,包括液位曲线图和实时数值显示等。
七、总结DCS锅炉液位控制系统是一种重要的自动化控制系统,其设计和优化对于锅炉运行的安全和效率具有重要意义。
本文从传感器、执行器、控制器和监视系统等方面进行课程设计,对该系统的实现和应用提供了一定的参考。
锅炉液位控制系统一.锅炉液位控制系统原理概述锅炉是电厂和化工厂里常见的生产蒸汽的设备。
为了保证锅炉的正常运行,需要维持锅炉液位为正常标准值。
锅炉液位过低,易烧干锅而发生严重事故;锅炉液位过高,则易使蒸汽带水并有溢出危险。
因此,必须通过调节器严格控制锅炉液位的高低,以保证锅炉正常安全的运行。
常见的锅炉液位控制系统示意图如图1-1所示。
图1-1锅炉液位控制系统示意图当蒸汽的耗气量与锅炉进水量相等时,液位保持为正常标准值。
当锅炉的给水量不变,而蒸汽负荷突然增加或减少时,引起锅炉液位发生变化。
不论出现哪种情况,只要实际液位高度与正常给定液位之间出现了偏差,调节器均应立即进行控制,去开打或关小给水阀门,使液位恢复到给定值。
二.一阶单回路控制系统分析单回路系统是由四个基本环节组成,即被控对象(或被控过程)、测量变送装置、调节器和执行机构(本系统为调节阀)。
有时为了分析方便起见,往往把执行机构、被控对象和测量变送装置合在一起,称之为广义对象。
这样系统就归结为调节器和广义对象两部分。
然而,一般来说,还是把系统看成上述四个基本环节所组成。
假定有如3-3图所示的水槽,流入量和流出量分别为q1和q2,我们的任务是维持水槽的液位不变。
为了控制液位,就要选择相应的变送器、控制器、和控制阀,并按图3-4所示的原理图构成单回路控制系统。
图3-3 水槽示意图图3-4水槽液位控制系统上图中表示变送器,LC表示液位控制器,sp代表控制器的给定值。
由图3-4我们可以得出单回路控制系统方块图(原理图)如图3-5所示:图3-5单回路控制系统方块图图3-5是锅炉液位控制系统的方框图。
图中,锅炉为被控对象,其输出为被控参数液位,作用于锅炉上的扰动是指给水压力变化的产生的内外扰动;测量变送器为差压变送器,用来测量锅炉液位,并转变为一定的信号输至调节器;调节器是锅炉液位控制系统中的调节器,有电动,气动等形式,在调节器内将测量液位与给定液位进行比较,得出偏差值,然后根据偏差情况按一定的控制律[如比例(P),比例-积分(PI),比例-积分-微分(PID)等]发出相应的输出信号去推动调节阀动作;调节阀在控制系统中执行元件作用,根据控制信号对锅炉的进水量进行调节,阀门的运动取决于阀门的特性,有的阀门与输入信号成正比关系,有的阀门与输入信号成某种曲线关系变化。
锅炉液位控制系统设计实验报告实验目的:1. 掌握锅炉液位控制系统的工作原理,了解常见的液位控制方案。
2. 学习液位传感器的基本原理,并设计并实现一个基于差压传感器的锅炉液位控制系统。
3. 通过实验验证液位控制系统的有效性和稳定性。
实验仪器和设备:1. 差压传感器2. 显示仪3. PLC 控制器4. 冷却塔5. 水泵6. 液压系统7. 电气保护仪实验原理:锅炉液位控制系统的工作原理基于液位的测量和比较,以及相应的控制电路。
常见的液位控制方案有多种,例如浮球传感器、差压传感器、超声波探测器等。
本实验设计并实现的液位控制系统基于差压传感器。
差压传感器是一种能测量液面压力差的传感器,其工作原理基于两个相隔一定距离的孔洞,分别在液位两侧,当液面高低不一时,两孔洞的压力就会不同,导致差压的产生。
根据流体力学原理,液位高度与产生的差压成线性关系,因此通过测量差压即可得知液位高度。
液位控制系统的核心控制器是 PLC 控制器。
PLC 控制器负责对液位信号进行采集和处理,并根据实际需求输出控制信号,控制阀门、水泵等设备的运行。
实验步骤:1. 搭建实验装置:将差压传感器安装在锅炉的水箱上,保证传感器的两个孔洞分别在水面上下两侧,连接传感器与示数仪。
将 PLC 控制器与传感器和执行器(水泵、阀门等)进行连线。
2. PLC 编程:编写 PLC 控制器的程序,实现对液位的控制和保护。
程序中应包含液位传感器的采集功能,液位数据的处理和比较功能,以及对执行器的控制指令。
另外,还需要设置自动保护功能,当液位过高或过低时及时切断加热器、泵等设备的供电,保证设备的安全运行。
3. 实验测试:在实验时,首先注入一定量的水,打开水泵进行循环水处理,同时启动加热器加热。
然后,由 PLC 控制器对液位信号进行采集和处理,控制水泵的开关以维持液位在一定范围内。
实验过程中,应注意观察液位变化和执行器运行状态,并及时调整控制参数。
实验结果与分析:本实验实现了基于差压传感器的锅炉液位控制系统,并通过PLC 控制器对液位信号进行采集和处理,控制水泵的开关以维持液位在一定范围内。
课前准备:多媒体课件制作、演示实验设备调试、以4人/小组进行分组。
一、课程导引——控制系统调试的意义过程控制系统在投运前的一项重要工作就是系统调试,经过调试使控制器的PID参数得到整定,从而使控制系统在稳、准、快的三方面综合指标得到优化。
系统调试方法有多种,并且因系统结构的不同、工艺条件不同而使调试方法也有较大差别,这就要求我们认真学会基本的调试原则,同时还需多实践,不断积累经验,达到熟能生巧。
二、调试知识——控制系统品质指标和调试方法(35分钟)(一)控制系统品质指标要对控制系统实施调试,首先得清楚控制系统的品质指标评价方法,而闭环控制系统的品质指标主要由过渡过程性能反映。
1、闭环控制系统的过渡过程一个处于平衡状态的自动控制系统在受到扰动作用后,被控变量发生变化;与此同时。
控制系统的控制作用将被控变量重新稳定下来,并力图使其回到设定值或设定值附近。
一个控制系统在外界干扰或给定干扰作用下,从原有稳定状态过渡到新的稳定状态的整个过程,称为控制系统的过渡过程。
控制系统的过渡过程是衡量控制系统品质优劣的重要依据。
在阶跃干扰作用下,控制系统的过渡过程有如图1所示的几种形式。
图1 (b)为发散振荡过程,它表明这个控制系统在受到阶跃干扰作用后,非但不能使被控变量回到设定值,反而使它越来越剧烈地振荡起来。
显然,这类过渡过程的控制系统是不能满足生产要求的。
图1 (c)为等幅振荡过程,它表示系统受到阶跃干扰后,被控变量将作振幅恒定的振荡而不能稳下来。
因此,除了简单的位式控制外,这类过渡过程一般也是不允许的。
图1 (d)所示为衰减振荡过程,它表明被控变量经过一段时间的衰减振荡后,最终能重新稳定下来。
图1 (e)所示为非周期衰减过程,它表明被控变量最终也能稳定下来,但由于被控变量达到新的稳定值的过程太缓慢,而且被控变量长期偏离设定值一边,一般情况下工艺上也是不允许的,而只有工艺允许被控变量不能振荡时才采用。
2、过渡过程的质量指标从以上几种过渡过程情况可知,一个合格的、稳定的控制系统,当受到外界干扰以后,被控变量的变化应是一条衰减的曲线。
摘要集散控制系统(Distributed control system)是以微处理器为基础的对生产过程进行集中监视、操作、管理和分散控制的集中分散控制系统,简称DCS系统。
该系统将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人-机联系差以及单台微型计算机控制系统危险性高度集中的缺点,既实现了在管理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散。
DCS系统在现代化生产过程控制中起着重要的作用。
关键字:集散控制系统;微处理器;最优化控制目录1. 概述 (1)2.通用版及嵌入版MCGS组态软件 (5)2.1锅炉液位控制工程文件建立 (5)2.2锅炉液位控制画面设计 (11)3.被控对象设计 (17)3.1实验装置简介 (17)3.2被控对象特性说明(过程工艺分析) (18)3.3被控对象的结构设计 (18)3.4被控对象工艺流程图 (19)4.控制系统设计 (19)4.1控制系统原理分析及控制方案设计 (19)4.2一次仪表选型设计 (21)4.3 DCS选型设计 (25)5.DCS组态设计 (26)5.1 DCS硬件组态设计 (26)5.2 DCS软件组态设计 (28)5.3 DCS系统闭环运行调试结果分析与说明 (32)5.设计总结与体会 (34)6.参考文献 (35)1. 概述集散控制系统(Distributed control system)是以微处理器为基础的对生产过程进行集中监视、操作、管理和分散控制的集中分散控制系统,简称DCS系统。
该系统将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人-机联系差以及单台微型计算机控制系统危险性高度集中的缺点,既实现了在管理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散。
锅炉液位控制系统一.锅炉液位控制系统原理概述锅炉是电厂和化工厂里常见的生产蒸汽的设备。
为了保证锅炉的正常运行,需要维持锅炉液位为正常标准值。
锅炉液位过低,易烧干锅而发生严重事故;锅炉液位过高,则易使蒸汽带水并有图1-1锅炉液位控制系统示意图当蒸汽的耗气量与锅炉进水量相等时,液位保持为正常标准值。
当锅炉的给水量不变,而蒸汽行机构(本系统为调节阀)。
有时为了分析方便起见,往往把执行机构、被控对象和测量变送装置合在一起,称之为广义对象。
这样系统就归结为调节器和广义对象两部分。
然而,一般来说,还是把系统看成上述四个基本环节所组成。
假定有如3-3图所示的水槽,流入量和流出量分别为q1和q2,我们的任务是维持水槽的液位不变。
为了控制液位,就要选择相应的变送器、控制器、和控制阀,并按图3-4所示的原理图构精心整理成单回路控制系统。
图3-3 水槽示意图图于锅炉上的扰动是指给水压力变化的产生的内外扰动;测量变送器为差压变送器,用来测量锅炉液位,并转变为一定的信号输至调节器;调节器是锅炉液位控制系统中的调节器,有电动,气动等形式,在调节器内将测量液位与给定液位进行比较,得出偏差值,然后根据偏差情况按一定的控制律[如比例(P),比例-积分(PI),比例-积分-微分(PID)等]发出相应的输出信号去推动调节阀动作;调节阀在控制系统中执行元件作用,根据控制信号对锅炉的进水量进行调节,阀门的运动取决于阀门的特性,有的阀门与输入信号成正比关系,有的阀门与输入信号成某种曲线关系精心整理变化。
大多数调节阀呈为气动薄膜调节阀,若采用电动调节器,则调节器与气动调节阀之间应有电-气转换器。
气动调节阀的气动阀门分为气开与气关两种。
气开阀指当调节器输出增加时,阀门开大;气关阀指当调节器输出增加时,阀门保持打开位置,以保证汽鼓不致烧干损坏。
一阶单回路控制系统的工艺流程图如图3-6图3-7一阶单回路控制系统接线图三.结论本系统采用水位调节控制。
第一节锅炉内胆水温位式控制系统一、实验目的1.了解温度位式控制系统的结构与组成。
2.掌握位式控制系统的工作原理及其调试方法。
3.了解位式控制系统的品质指标和参数整定方法。
4.分析锅炉内胆水温定值控制与位式控制的控制效果有何不同之处?二、实验设备(同前)三、实验原理图4-1 锅炉内胆温度位式控制系统(a)结构图 (b)方框图本实验系统的结构图和方框图如图4-1所示。
本实验的被控对象为锅炉内胆,系统的被控制量为内胆的水温。
由于实验中用到的调节器输出只有“开”或“关”两种极限的工作状态,故称这种控制器为二位式调节器。
温度变送器把铂电阻TT1检测到的锅炉内胆温度信号转变为反馈电压V i。
它与二位调节器设定的上限输入V max和下限输入V min比较,从而决定二位调节器输出继电器是闭合或断开,即控制位式接触器的接通与断开。
图4-2为位式控制器的工作原理图。
图4-2 位式控制器的输入-输出特性图中: V0------位式控制器的输出;V i------位式控制器的输入;V max-----位式控制器的上限输入;V min-----位式控制器的下限输入。
由图4-2可见,当被控制的锅炉水温T减小到小于设定下限值时,即V i≤V min时,位式调节器的继电器闭合,交流接触器接通,使电热管接通三相380V电源进行加热(如图4-1所示)。
随着水温T的升高,Vi也不断增大,当增大到大于设定上限值时,即V i≥V max时,则位式调节器的继电器断电,交流接触器随之断开,切断电热丝的供电。
由于这种控制方式是断续的二位式控制,故只适用于对控制质量要求不高的场合。
位式控制系统的输出是一个断续控整理用下的等幅振荡过程,因此不能用连续控整理用下的衰减振荡过程的温度品质指标来衡量,而用振幅和周期作为控制品质的指标。
一般要求振幅小,周期长。
然而对于同一个位式控制系统来说,若要振幅小,则周期必然短;若要周期长,则振幅必然大。
因此可通过合理选择中间区以使振幅保持在限定范围内,而又尽可能获得较长的周期。
基于MCGS锅炉液位和温度控制系统的设计锅炉液位和温度控制是锅炉系统中至关重要的一环,它直接影响到锅炉的运行安全和燃烧效率。
本文将基于MCGS系统设计锅炉液位和温度控制系统。
首先,我们需要了解MCGS系统的基本特点和功能。
MCGS系统是一种基于工控机和触摸屏的人机界面软件,具有友好的图形化界面和强大的数据处理能力。
它能够实时获取锅炉的液位和温度数据,并进行监测、分析和控制。
在设计锅炉液位控制系统时,我们需要考虑以下几个方面。
首先是液位传感器的选择和安装。
液位传感器可以采用浮球式或者超声波式传感器。
浮球式传感器适用于小容量的锅炉,而超声波式传感器则适用于大容量的锅炉。
传感器的安装位置需要考虑到液位的准确性和稳定性。
接下来是液位控制阀的选择和配置。
液位控制阀是控制锅炉液位的关键设备,它能够根据液位信号自动调控进水和排污。
根据实际需求和系统特点,我们可以选择常开式或常闭式的控制阀,设置合适的开启和关闭压力值,以实现锅炉液位的稳定控制。
设计锅炉温度控制系统时,我们需要考虑以下几个方面。
首先是温度传感器的选择和安装。
温度传感器可以采用热电阻或热电偶传感器。
传感器的安装位置需要考虑到锅炉的热交换区域和传感器的灵敏度。
接下来是温度调节器的选择和配置。
温度调节器是控制锅炉温度的核心设备,它能够根据温度信号自动调控燃烧器和循环水泵。
根据实际需求和系统特点,我们可以选择PID控制器或者模糊控制器,设置合适的调节参数,以实现锅炉温度的稳定控制。
除了液位和温度控制,MCGS系统还可以实现其他功能,如报警监测、数据记录和远程操作等。
通过设置合适的报警阈值,MCGS系统能够实时监测并提醒操作人员液位和温度异常。
同时,MCGS系统还可以记录和存储历史数据,方便后续的数据分析和故障排查。
此外,MCGS系统还可以通过远程访问和操作,实现对锅炉液位和温度的远程监控和控制。
总之,基于MCGS系统设计锅炉液位和温度控制系统可以实现对锅炉运行的实时监测和稳定控制,提高锅炉的运行安全性和燃烧效率。
一、设计内容锅炉内胆液位控制系统是以液位测量信号作为唯一的控制信号,即水位测量信号经变送器送到水位调节器,调节器根据测量值与设定值的偏差去控制给水调节阀,从而改变给水量以保持水位保持在允许的±5%误差范围之内。
锅炉内胆水位控制系统是由锅炉内胆、变送器、调节器(控制器)、给水调节阀及相关电路组成,其工作原理如图所示。
二、设计课题任务和要求1、课题任务(1)确定总体方案:总体方案是只针对所设计的任务、要求和条件,根据已经掌握的知识和资料从全局着眼,将总体功能要求合理地发、分配给若干单元电路,并画出一个能够表示各单元功能和总体工作原理的框图。
在分析比较各种资料的基础上,发挥自己的创造力,设想几种系统方案,从设计的合理性、技术的先进性、运行的可靠性和制作的经济性等方面,分别进行技术论证和经济效益的比较,最后确定总体方案。
(2)选择元器件:控制系统设计的关键之一是选择合适的元器件并组合成系统。
因此,在设计过程中,不但要考虑传感变送器的选择,也要考虑执行期的选择,以及他们在控制系统中的作用。
选择元器件,必须根据三个要素:①、根据设计要求和具体方案,选择满足技术性能指标的元器件。
②、根据市场货源情况的性能价格比,选择元器件。
③、在保证系统达到功能指标要求的前提下,应尽量减少元器件的品种、间隔、体积等。
(3)确定控制器的参数:在确定控制算法的基础上确定控制器相应的参数,包括比例系数、微分时间常数、积分时间常数等。
(4)对所设计的系统进行仿真,以验证设计的准确性:对所设计的系统进行matlb方针。
若相关参数的设置不理想,可根据所得结果进行相应的调整。
2、设计要求(1)工作稳定可靠,能达到课题要求的技术指标,并留有一定的余量;(2)电路简单、功耗小、成本低;(3)元器件品种少,货源充足;(4)易于生产、测试和维修;三、总体方案的选择论证1、被控参数的选择按照控制内容的要求,选择锅炉内胆的液位高度为被控参数。
2、被控变量的选择影响锅炉内胆液位的变量有进水流量和出水流量,可以通过控制进出水阀的开度进行控制液位。
此次控制过程采用保持出水量一定,把进水量作为控制对象进行控制。
3、 控制方案的选择图3 反馈控制原理图 方案一:反馈控制反馈系统是按偏差进行控制来消除偏差的。
没有偏差出现时,调节器输出信号不变。
无论出现什么扰动、在什么位置出现、什么时候出现,调节器总要等到扰动引起被控参数出现偏差以后才进行控制。
液位控制时,一旦液位发生变化即产生偏差量,反馈系统可以迅速作用。
同时,只要干扰位于反馈环之内,反馈控制系统总能消除其对被控参数的影响,即反馈控制系统可以消除反馈环之内各种扰动的影响。
因此反馈系统可以用于液位控制。
方案二:前馈控制前馈控制器是“按扰动来消除扰动对被控参数的影响”,又称为“扰动补偿”。
前馈控制器在扰动出现时立即进行控制,控制及时,对特定扰动引起的动、静态偏差控制比较有效。
前馈控制是开环控制,只要系统各个环节稳定,则控制系统必定稳定;另外,前馈控制对被控参数不作检验。
给定值图2 锅炉内胆液位过程控制示意图通过上面的分析可知,从控制品质的角度来看,方案一最优,方案二次之。
对于单容液位控制系统来说,采用PID反馈控制系统能满足所有的题目设计要求,而且抗扰性能强,而对于前馈系统来说,虽然控制效果明显,控制迅速,但是一个前馈控制通道只能抑制一个干扰对被控参数的影响,而对其他干扰对被控参数的影响没有抑制作用。
如果设置多个前馈通道既不经济又不现实,不能做到抑制所有的干扰作用。
四、设备元件选型整个过程控制系统由控制器,执行器,测量变送,被控对象组成,在本次控制系统中控制器为计算机,采用算法为PID控制规律,执行器为电磁阀,测量变送器为HB,FT两个组成,被控对象为流量PV。
1、液位传感器液位传感器用来对上水箱的压力进行检测,采用工业的DBYG 扩散硅压力变送器,本变送器按标准的二线制传输,喜爱用高品质低耗精密器件,稳定性,可靠性大大提高。
可方便的与其他DDZ-3X型仪表互换配置,并能直接替换进口同类仪表,校验的方式是通电预热15分钟后,分别在零压力和满程压力下检查输出电流值,在零压力下调整电位器,使输出电流为4mA,在满量程压力下调整两成电位器,使输出电流为20mA,本传感器精度为0.5级,因为为二线制,故工作时需要串24V直流电源。
压力传感器用来对上水位水箱中水位水箱的压力进行检测,采用工业用的DBYG扩散硅压力变送器,0.5级精度,二线制4~20mA标志信号输出。
2、电磁流量传送器(1)、流量传感器用来对电动调节阀的主流量和干扰回路的干扰流量进行检测。
根据本实验装置的特点,采用工业用的LDS-10s型电磁流量传感器,公称直径10mm,流量0~0.3m3/h,压力1.6Mpmax,4~20mA标准信号输出,可与显示,记录仪表,计算器或调节器配套,避免了涡轮流量计非线性与死区的致命缺点,确保试验效果能达到教学要求。
主要优点:①采用整体焊接结构,密封性好;②结构简单可靠,内部无法活动部件,几乎无压力损失;③采用低频矩形波励磁,抗干扰性能好,零点稳定;④仪表反映灵敏,输出信号与流量呈现象关系,量程比宽(2)、流量转换器采用LDZ-4型电磁流量传感器配套使用,输入信号:0~0.4mV 输出信号;4~20mA DC,许负载电阻为0~750Ω,基本误差:输出信号量程的0.5%。
3、电动调节阀电动调节阀对控制回路流量进行调节。
采用德国PSL202型智能电动调节阀,无需陪伺服放大器,驱动电机采用高性能稀土磁性材料制造的同步电机,运行平稳,体积小,力矩大,抗堵转,控制精度高,控制单元与电动执行机构一体化,可靠性高,操作方便,并可与计算机配套使用,组成最佳调节回路,有输入控制信号4-20mA及单项电源,即可控制与转时限对压力流量温度压力等参数的调节,具有体积小,重量轻,连线简单,泄漏量小的优点。
采用PS电子式执行机构,4-20mA阀位反馈信号输出双导向单座柱塞式阀芯,流量具有等百分比特性,直线特性和快开特性,阀门采用弹簧连接,可预置阀门关断力,保证阀门的可靠关断,防止泄露,性能稳定可靠,控制精度高,使用寿命长等优点。
4、PID模块选择当需要构成计算机控制系统时,过程控制装置的数据采集和控制采用目前最新的牛顿7000系列远程数据采集模块和组态软件组成,完全模拟工业现场环境,先进性与实用性并举,有效的拉近了实验室与工业现场的距离,他体积小,安装方便可靠性极高。
(1)D/A模块:采用牛顿7024模块,4路模拟输出,电流(4-20mA)电压(1-5V)信号均可。
(2)A/D模块:采用牛顿7017模块,8路模拟电压(1-5V)输入。
(3)DO模块:采用牛顿7043模块。
(4)通讯模块:采用牛顿7520转换模块,485/232转换模块,转换速度极高(300-115KHZ),232口可长距离。
五、MATLAB仿真及参数整定1、参数整定方法本次MATLAB仿真参数整定方法采用衰减曲线法,衰减曲线法属于闭环整定方法,但不需要寻找等幅振荡状态,只需寻找最佳衰减振荡状态即可。
具体方法如下:(1)把调节器设成比例作用(Ti=∞,Td=0),置于较大比例度,投入自动运行。
(2)在稳定状态下,阶跃改变给定值(通常以5%左右为宜),观察调节过程曲线。
(3)适当改变比例度,重复上述实验,到出现满意的衰减曲线为止。
图4 系统衰减震荡曲线记下此时的比例度Ps及周期Ts。
n=10:1时,记Ps及Ts(4)按下表(n=4:1)或(n=10:1)求得各种调节规律时的整定参数。
图5 衰减曲线法整定参数计算表2、MATLAB仿真整定过程已知被控对象锅炉内胆控制系统的传递函数为271s,在MATLAB下搭建的仿真系统模型如下:图6 系统的MATLAB仿真框图取Ti=1000,Td=0.001,比例度P置于较大位置,按衰减曲线法逐步整定P 值,当出现理想的衰减波形时,即衰减比n为4:1时,P=24,理想衰减波形如下所示,由波形求得P’s=1/24及Ts=0.355s。
图7 衰减比为4:1时的系统衰减曲线按衰减比4:1时由整定表格求得整定后P=30,I=10,D=0.0355。
当无干扰时,系统的阶跃响应如下图所示:比较单回路控制系统无干扰阶跃响应可知,串级控制降低了最大偏差,减小了振荡频率,大大缩短了调节时间。
现向系统中加入干扰,系统的MATLAB仿真图如下:图9 加入扰动后的MATLAB仿真系统框图由示波器观察所得的阶跃衰减曲线可知,在加入扰动后,系统相对稳定,系统没有较大波动,最终确定P,I,D的设定值分别为30,10, 0.0355。
图10 加入扰动后系统衰减曲线六、改进措施本次设计属于MATLAB仿真,与现实有所差别,仿真中没有添加变送系数,即变送系数为1。
因此此次的设计改进措施是进行实际试验,确定变送系数,这样仿真整定后的系数才最准确,系统最稳定。
七、总结通过此次设计,我掌握了液位单回路控制系统的构成,知道它最基本的部分有控制器、调节器、被控对象和测量变送组成。
并且学会了如何去设计一个过程控制系统,掌握了基本的设计步骤,认知被控对象、设计控制方案、选择控制规律、选择过程仪表、选择过程模块、设计系统流程图,掌握MATLAB仿真。
总体来说,这次设计收获很大。
八、参考文献[1]过程控制系统与仪表机械工业出版社王再英[2]自动控制原理科学出版社胡守松[3]过程控制工程机械工业出版社邵裕森。