丹阳市高中数学第三章空间向量与立体几何3.1.3空间向量基本定理学案苏教版选修
- 格式:docx
- 大小:70.53 KB
- 文档页数:4
第3章空间向量与立体几何3.1空间向量及其运算3.1.1 空间向量及其线性运算3.1.2 共面向量定理(教师用书独具)●三维目标1.知识与技能(1)了解空间向量与平面向量的联系与区别.(2)理解空间向量的线性运算及其性质.(3)理解共面向量定理.2.过程与方法(1)学生通过类比平面向量的学习过程了解空间向量的研究内容和方法,经历向量及其运算由平面向空间的推广,体验数学概念的形成过程.(2)通过类比平面向量基本定理,得出共面向量基本定理,并能利用共面向量基本定理证明向量共面,学会判定与证明向量共面及四点共面的方法.3.情感、态度与价值观逐步培养学生观察、分析、综合和类比能力,会准确地阐述自己的思路和观点,着重培养学生的认知能力.●重点难点重点:了解空间向量与平面向量的联系与区别,理解空间向量的线性运算及其性质.难点:共面向量定理的理解及应用.先回顾平面向量的定义及线性运算法则,类比得出空间向量的有关定义及运算法则,并通过空间图形进行严格的理论验证,从而突出教学重点.对于共面向量定理,完全可由平面向量基本定理类比得出,重在应用其证明共面问题,通过例题,体现向量法证明线线平行、线面平行的方法与步骤,从而突破教学难点.(教师用书独具)●教学建议本节内容是第三章《空间向量与立体几何》的第一节,由于是起始节,所以这节课中也包含了章引言的内容.章引言中提到了本章的主要内容和研究方法,即类比平面向量来研究空间向量的概念和运算.向量是既有大小又有方向的量,它能像数一样进行运算,本身又是一个“图形”,所以它可以作为沟通代数和几何的桥梁,在很多数学问题的解决中有着重要的应用.本章要学习的空间向量,将为解决三维空间中图形的位置关系与度量问题提供一个十分有效的工具.采用的教学方式是通过问题启发引导学生自主完成概念的探究过程,紧紧围绕教学重点展开教学,并从教学过程的每个环节入手,努力突破教学难点.●教学流程回顾平面向量的定义,类比得出空间向量的定义、几何表示、符号表示;找出空间向量与平面向量的区别与联系.⇒回顾平面向量的线性运算法则,得出空间向量的线性运算法则,并通过空间图形加以验证,得出空间向量线性运算满足的运算律.理解单位向量、共线向量、平行向量等概念,理解共线向量定理成立的条件及作用.⇒理解共面向量的定义,区分向量共面与直线共面的区别,理解共面向量定理的内涵,会用共面向量定理证明向量共面,从而证明立体几何问题如共面问题、线面平行问题等.⇒通过例1及变式训练,使学生掌握空间向量的线性运算法则,在常见的立体图形中,灵活的应用三角形和平行四边形法则进行空间向量的运算,实现利用给定向量表示某一向量的目的.⇒通过例2及变式训练,使学生体会共线向量定理的两个应用,正向可用来证明线线平行,逆用可用来求解字母参数,体会向量法解证立体几何问题的步骤与规律.⇒通过例3及变式训练,使学生体会共面向量定理的两个应用,正向可用来证明线面平行,四点共面,逆用可用来求解字母参数,体会向量法解证立体几何问题的步骤与规律.⇒通过易错易误辨析,体会零向量的特殊性,在分析向量间关系及向量运算时,应注意零向量的特殊性.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固基本知识,形成基本能力.在空间,把既有大小又有方向的量叫做空间向量.已知空间四边形ABCD ,则AB →+BC →+CD →+DA →=0还成立吗?【提示】 成立.根据向量的加法法则,表示相加向量的有向线段依次首尾相接,其和为从第一个向量的首指向最后一个向量的尾,故AB →+BC →+CD →+DA →=AA →=0.向量加法可以推广到有限个向量的和,并且可用口诀记忆:首尾首尾首指向尾.【问题导思】共线向量一定是同一直线上的向量吗?【提示】 共线向量不一定是同一直线上的向量,而是表示向量的有向线段只要可以平移到同一直线上即可,因此共线向量也叫平行向量.对空间任意两个向量a,b (a ≠0),b 与a 共线的充要条件是存在实数λ,使b =λa .如果两个向量a 、b ),使得p =x a +y b .图3-1-1如图3-1-1,在长方体ABCD -A ′B ′C ′D ′中,化简下列各式,并在图中标出化简得到的向量:【思路探究】 观察各式涉及的向量在图形中的位置特点,将减法运算转化为加法运算,利用向量加法的三角形法则即可化简.【自主解答】(3)设M 是线段AC ′的中点,则12AD →+12AB →-12=12AD →+12AB →+12=12(AD →+AB →+)=12=AM →.向量,AM →如图所示.1.进行向量的线性运算,实质是进行向量求和,解题时应抓住两条主线:一是基本“形”,通过作出向量,运用平行四边形法则或三角形法则求和;二是基于“数”,熟练掌握AB →+BC →=AC →及向量中点公式.2.用已知向量表示空间向量,实质是向量的线性运算的反复应用.图3-1-2如图3-1-2,在平行六面体ABCD -A 1B 1C 1D 1中,AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别为AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示:(1)AC 1→;(2)AP →; (3)A 1N →;(4)MP →+NC 1→.【解】 (1)AC 1→=AB →+BC →+CC 1→=b +c +a . (2)∵P 为D 1C 1→的中点, ∴D 1P →=12D 1C 1→=12AB →=12b ,∴AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12AB →=a +c +12b .(3)A 1N →=A 1A →+AB →+BN →=-AA 1→+b +12AD →=-a +b +12c .(4)∵MP →=MA 1→+A 1D 1→+D 1P → =12AA 1→+AD →+12AB → =12a +c +12b . NC 1→=NC →+CC 1→=12AD →+AA 1→=12c +a .∴MP →+NC 1→=(12a +c +12b )+(12c +a )=32a +12b +32c .图3-1-3如图3-1-3,已知点E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 上的点,其中E ,H 是中点,F ,G是三等分点,且CF =2FB ,CG =2GD .试判断四边形EFGH 的形状.【思路探究】 证明向量EH →∥FG →且模不相等. 【自主解答】 ∵E ,H 分别是AB ,AD 的中点, ∴EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →. 又∵CF →=2FB →,CG →=2GD →, ∴CF →=23CB →,CG →=23CD →,∴FG →=CG →-CF →=23CD →-23CB →=23(CD →-CB →)=23BD →, ∴BD →=32FG →,∴EH →=34FG →,∴EH →∥FG →,|EH →|=34|FG →|.又点F 不在直线EH 上,∴EH ∥FG ,且EH ≠FG , ∴四边形EFGH 是梯形.1.证明EFGH 为梯形,必须证明两点:①EH →∥FG →; ②|EH →|≠|FG →|.2.利用向量共线可证空间图形中的两直线平行,为向量法证明立体几何问题奠定了基础.设e 1,e 2是空间两个不共线的向量,已知AB →=e 1+k e 2,BC →=5e 1+4e 2,DC →=-e 1-2e 2,且A 、B 、D 三点共线,求实数k 的值. 【解】 ∵BC →=5e 1+4e 2,DC →=-e 1-2e 2. ∴BD →=BC →+CD →=(5e 1+4e 2)+(e 1+2e 2)=6e 1+6e 2. ∵A ,B ,D 三点共线, ∴AB →=λBD →.∴e 1+k e 2=λ(6e 1+6e 2).∵e 1,e 2是不共线向量,∴⎩⎪⎨⎪⎧1=6λ ,k =6λ ,∴k =1.(2012·辽宁高考)如图3-1-4,直三棱柱ABC -A ′B ′C ′,点M ,N 分别为A ′B 和B ′C ′的中点.证明:MN ∥平面A ′ACC ′.图3-1-4【思路探究】 利用向量的线性运算得到向量MN →可以由平面A ′ACC ′内两个不共线的向量表示即可.【自主解答】 因为MN →=MA ′→+A ′N →,且点M ,N 分别为A ′B 和B ′C ′的中点,所以MN →=12BA ′→+12(A ′B ′→+A ′C ′→)=12(B ′A ′→+AA ′→)+12(A ′B ′→+A ′C ′→)=12AA ′→+12A ′C ′→. 因为MN ⊄平面A ′ACC ′,所以MN ∥平面A ′ACC ′.1.判断三个向量共面,即利用向量的线性运算实现其中一个向量能用另外两个向量惟一表示.2.利用向量判断线面平行有两种方法:一是利用共线向量定理,找出平面内的一个向量与直线上的向量共线;二是利用共面向量定理,找出平面内不共线的两个向量能表示出直线上的向量.两种方法中注意说明直线不在平面内.已知非零向量e 1,e 2不共线,如果AB →=e 1+e 2,AC →=2e 1+8e 2,AD →=3e 1-3e 2,求证:A ,B ,C ,D 四点共面. 【证明】 令λ(e 1+e 2)+μ(2e 1+8e 2)+ν(3e 1-3e 2)=0, 则(λ+2μ+3ν)e 1+(λ+8μ-3ν)e 2=0.∵e 1,e 2不共线,则⎩⎪⎨⎪⎧λ+2μ+3ν=0,λ+8μ-3ν=0,解得λ=-5,μ=1,ν=1是其中一组解, 则AB →=15AC →+15AD →,∴A 、B 、C 、D 四点共面.忽略零向量导致错误下列命题:①空间任意两个向量a ,b 不一定是共面的; ②a ,b 为空间两个向量,则|a |=|b |⇔a =b ; ③若a ∥b ,则a 与b 所在直线一定平行; ④若a ∥b ,b ∥c ,则a ∥c . 其中错误命题的序号是________. 【错解】 ②【错因分析】 ①空间任意两个向量都是共面的.②向量的模相等时,两个向量不一定相等,还要看向量的方向.③当a ∥b 时,它们所在直线平行或重合.④当b =0时,a 与c 不一定平行.【防范措施】 向量的平行(共线)不具备传递性,即若a ∥b ,b ∥c ,不一定有a ∥c ,但当b 为非零向量时,向量平行(共线)具备传递性,即若b ≠0,则当a ∥b ,b ∥c 时,有a ∥c .【正解】 ①②③④1.空间向量是平面向量的拓广和延伸,空间向量的线性运算法则和运算律与平面向量具有可类比性,但空间向量比平面向量应用范围更广泛.2.共线向量定理是判定两向量共线的充要条件,利用共线向量定理可以解决两方面的问题:(1)判定两向量共线;(2)由两向量共线,求待定字母的值.3.共面向量定理是判断三向量共面的理论依据,依此可以证明三向量共面,从而证明四点共面与线面平行问题.1.在空间四边形ABCD 中,AB →+BC →+CD →+DA →=______. 【解析】 AB →+BC →+CD →+DA →=AC →+CD →+DA →=AD →+DA →=0. 【答案】 02.在长方体ABCD -A 1B 1C 1D 1中,化简式子:DA →-DB →+B 1C →-B 1B →+CB 1→-CB →=________. 【解析】 DA →-DB →+B 1C →-B 1B →+CB 1→-CB →=BA →+BC →+BB 1→=BD →+BB 1→=BD 1→. 【答案】 BD 1→3.有下列命题:①平行于同一直线的向量是共线向量;②平行于同一平面的向量是共面向量;③平行向量一定是共面向量;④共面向量一定是平行向量.其中正确的命题有________.【解析】 “共面向量一定是平行向量”不正确,即共面向量不一定共线.①②③均正确. 【答案】 ①②③图3-1-54.如图3-1-5,在空间四边形ABCD 中,E 、F 为AB 、CD 的中点,试证EF →,BC →,AD →共面. 【证明】 空间四边形ABCD 中,E 、F 分别是AB 、CD 上的点,利用多边形加法法则可得⎭⎬⎫EF →=EA →+AD →+DF →,EF →=EB →+BC →+CF →.①又E 、F 分别是AB 、CD 的中点,故有EA →=-EB →,DF →=-CF →.②将②代入①中,两式相加得2EF →=AD →+BC →. 所以EF →=12AD →+12BC →,即EF →与BC →、AD →共面.一、填空题1.下列命题中真命题的个数是________. ①空间中任两个单位向量必相等;②将空间中所有的单位向量移到同一起点,则它们的终点构成一个圆; ③若两个非零向量a ,b 满足a =k b ,则a ,b 同向; ④向量共面即它们所在的直线共面.【解析】 ①是假命题,单位向量模相等,但方向不一定相同,因此空间中任两个单位向量不一定相等; ②是假命题,将空间中所有的单位向量移到同一起点,则它们的终点构成一个球面; ③是假命题,当k >0时,a ,b 同向,当k <0时,a ,b 反向;④是假命题,表示共面向量的有向线段所在的直线可以“平移”(平行移动)到同一平面,但不一定共面. 【答案】 02.平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 和BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →=________. 【解析】 B 1M →=B 1B →+BM →=c +12BD →=c +12B 1D 1→=c +12b -12a =-12a +12b +c .【答案】 -12a +12b +c3.非零向量e 1、e 2不共线,若k e 1+e 2与e 1+k e 2共线,则k =________. 【解析】 若k e 1+e 2与e 1+k e 2共线,则k e 1+e 2=λ(e 1+k e 2),∴⎩⎪⎨⎪⎧k =λ,λk =1,∴k =±1.【答案】 ±14.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA →上,且OM →=2MA →,N 为BC 的中点,则MN →=________.(用a ,b ,c 表示)【解析】 如图, MN →=ON →-OM →=12(OB →+OC →)-23OA → =12(b +c )-23a =-23a +12b +12c .【答案】 -23a +12b +12c5.如图3-1-6,在正方体ABCD —A 1B 1C 1D 1中,下列各式中运算的结果为BD 1→的是________.图3-1-6①(A 1D 1→-A 1A →)-AB →;②(BC →+BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→-A 1A →)+DD 1→.【解析】 (A 1D 1→-A 1A →)-AB →=AD 1→-AB →=BD 1→,(BC →+BB 1→)-D 1C 1→=BC 1→+C 1D 1→=BD 1→. 【答案】 ①② 6.有四个命题:①若p =x a +y b ,则p 与a ,b 共面; ②若p 与a ,b 共面,则p =x a +y b ; ③若MP →=xMA →+yMB →,则P 、M 、A 、B 共面; ④若P 、M 、A 、B 共面,则MP →=xMA →+yMB →. 其中真命题是________(填序号).【解析】 由共面向量定理知,①真;若p 与a ,b 共面,当a 与b 共线且p 与a 和b 不共线时,就不存在实数组(x ,y )使p =x a +y b 成立,故②假.同理③真,④假.【答案】 ①③7.在下列各式中,使P ,A ,B ,C 四点共面的式子的序号为________. ①OP →=OA →-OB →-OC →; ②OP →=17OA →+14OB →+12OC →;③PA →+PB →+PC →=0; ④OP →+OA →+OB →+OC →=0; ⑤OP →=12OA →-OB →+32OC →.【解析】 根据四点共面的充要条件,易知①②④不适合,③⑤适合. 【答案】 ③⑤8.(2013·平遥高二检测)已知点G 是△ABC 的重心,O 是空间任一点,若OA →+OB →+OC →=λOG →,则λ=________.【解析】 如图,取AB 的中点D , OG →=OC →+CG → =OC →+23CD →=OC →+23·12(CA →+CB →)=OC →+13[(OA →-OC →)+(OB →-OC →)]=13OA →+13OB →+13OC →. ∴OA →+OB →+OC →=3OG →. 【答案】 3 二、解答题图3-1-79.如图3-1-7,已知平行六面体ABCD -A ′B ′C ′D ′,M 是线段CC ′的中点,G 是线段AC ′的三等分点,化简下列各式,并在图中标出化简得到的向量:(1)AB →+BC →; (2)AB →+AD →+AA ′→; (3)AB →+AD →+12CC ′→;(4)13(AB →+AD →+AA ′→).【解】 (1)AB →+BC →=AC →.(2)AB →+AD →+AA ′→=AC →+AA ′→=AC →+CC ′→=AC ′→. (3)AB →+AD →+12CC ′→=AB →+BC →+CM →=AC →+CM →=AM →.(4)13(AB →+AD →+AA ′→)=13AC ′→=AG →. 向量AC →,AC ′→,AM →,AG →如图所示.10.如图3-1-8所示,四边形ABCD 、ABEF 都是平行四边形且不共面,M 、N 分别是AC 、BF 的中点,判断CE →与MN →是否共线.图3-1-8【解】 ∵M 、N 分别是AC 、BF 的中点,四边形ABCD 、ABEF 都是平行四边形, ∴MN →=MA →+AF →+FN →=12CA →+AF →+12FB →,MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,∴12CA →+AF →+12FB →=-12CA →+CE →-AF →-12FB →, ∴CE →=CA →+2AF →+FB →=2(MA →+AF →+FN →)=2MN →, ∴CE →∥MN →,即CE →与MN →共线.图3-1-911.如图3-1-9,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,AB =2EF ,H 为BC 的中点.求证:FH ∥平面EDB . 【证明】 因为H 为BC 的中点,所以FH →=12(FB →+FC →)=12(FE →+EB →+FE →+ED →+DC →)=12(2FE →+EB →+ED →+DC →).因为EF ∥AB ,CD ∥AB ,且AB =2EF ,所以2FE →+DC →=0,所以FH →=12(EB →+ED →)=12EB →+12ED →.因为EB →与ED →不共线,由共面向量定理知,FH →,EB →,ED →共面. 因为FH ⊄平面EDB ,所以FH ∥平面EDB .(教师用书独具)已知A 、B 、M 三点不共线,对于平面ABM 外的任一点O ,确定下列各条件下,点P 是否与A 、B 、M 一定共面. (1)OB →+OM →=3OP →-OA →; (2)OP →=4OA →-OB →-OM →.【思路探究】 判断点P 是否在平面MAB 内,可先看MP →能否用向量MA →、MB →表示.当MP →能用MA →、MB →表示时,点P 位于平面MAB 内,否则点P 不在平面MAB 内.【自主解答】 (1)原式可变形为 OP →=OM →+(OA →-OP →)+(OB →-OP →) =OM →+PA →+PB →,∴OP →-OM →=PA →+PB →, ∴PM →=-PA →-PB →,∴P 与M 、A 、B 共面. (2)原式可变形为 OP →=2OA →+OA →-OB →+OA →-OM →=2OA →+BA →+MA →, ∴AP →=-AO →-AB →-AM →,表达式中还含有AO →, ∴P 与A 、B 、M 不共面.1.解答本题中注意构造以P 、A 、B 、M 中某一点为起点,另三点为终点的三个向量来判断此三向量是否共面,若共面又共起点,此四点必共面,否则不共面.2.要证四点共面,可先作从同一点出发的三个向量,由向量共面推知点共面,应注意待定系数法的应用.已知A 、B 、C 三点不共线,对平面ABC 外的任一点M 满足OM →=13OA →+13OB →+13OC →.(1)判断MA →、MB →、MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 【解】 (1)∵OM →=13OA →+13OB →+13OC →,∴13(OA →-OM →)+13(OB →-OM →)+13(OC →-OM →)=0, ∴MA →+MB →+MC →=0, ∴MA →=-MB →-MC →,∴MA →、MB →、MC →三个向量是共面向量. (2)由(1)知MA →、MB →、MC →三个向量共面, 又有共同起点M ,所以M 、A 、B 、C 四点共面, 即点M 在平面ABC 内.3.1.3 空间向量基本定理 3.1.4 空间向量的坐标表示(教师用书独具)●三维目标 1.知识与技能(1)掌握空间向量基本定理,能恰当地选择基底,用基向量表示空间任一向量. (2)理解空间向量的正交分解,理解向量坐标的意义.(3)掌握向量加法、减法、数乘的坐标运算法则,会应用向量坐标进行线性运算,能判断向量共线. 2.过程与方法(1)由平面向量基本定理,类比得出空间向量基本定理,体会定理的条件及内涵;会在具体空间图形中,选取基底表示空间向量. (2)类比平面向量坐标运算法则,得出空间向量坐标运算法则,并运用这些法则进行向量坐标线性运算. (3)运用向量坐标进行向量共线的判定与应用. 3.情感、态度与价值观能过教师的引导,学生探究,激发学生求知欲望和学习兴趣,使学生具备探究、归纳、应用的能力,形成严谨的思维习惯. ●重点难点重点:用基底表示空间向量,向量线性运算的坐标表示. 难点:用基底表示空间向量.教学时,应采用类比思维的方法,先回顾平面向量基本定理及坐标表示,得出空间向量基本定理及坐标表示,降低问题的难度,在具体的常见几何体(正方体、三棱锥、棱柱)中,展示用基底表示空间向量的方法与过程,突出本节的重点,化解教学的难点.(教师用书独具)●教学建议空间向量基本定理是向量法研究立体几何问题的基石,是本章的重中之重,空间向量的坐标表示及坐标运算,是坐标法研究立体几何的工具.因此本节课是全章内容的工具性内容,为学生学习立体几何提供新角度、新手段、新方法.由于学生已学习了平面向量基本定理及坐标运算,因而本节宜采用类比教学法,多发挥学生自主探究能力,通过回顾→类比→完善→应用的环节获取新知识,应用新知识.除使用常规的教学手段外,还将使用多媒体投影和计算机辅助教学,增加教学的直观性和趣味性.●教学流程回顾平面向量基本定理,类比得出空间向量基本定理,强调基向量的不共面性,线性表示的惟一性,常见几何体中基底的一般选法,定义单位正交基,推导空间向量基本定理的推论 .⇒回顾平面向量的坐标表示,得出空间向量的坐标表示,理清向量坐标的实际意义,向量坐标与点坐标的关系.⇒回顾平面向量线性运算的坐标表示,得出空间向量的线性运算的坐标表示,向量坐标与起始点坐标的关系,共线向量的坐标条件.⇒通过例1及变式训练,让学生掌握基底的选取条件,即不共面向量,加深对基底概念的理解.⇒通过例2及变式训练,让学生掌握如何选取基向量,如何用基底表示某一向量,在具体操作中运用向量的线性运算法则.⇒通过例3及变式训练,让学生掌握向量坐标运算法则,掌握如何运用起点、终点坐标表示向量坐标.⇒通过例4及变式训练,让学生掌握向量共线的坐标条件的应用,由此判定向量共线或求值.⇒通过易错易误辨析,让学生分清向量共线与向量同向的区别,以免概念混淆,解题出错.⇒归纳整理,进行课堂小结,整体认识本节所学知识.⇒完成当堂双基达标,巩固基本知识,形成基本能力.p=x e1+y e2+z e3.如果三个向量e1,e2,e3如果空间一个基底的三个基向量是两两互相垂直,那么这个基底叫做正交基底.特别地:当一个正交基底的三个基向量都是单位向量时,称这个基底为单位正交基底,通常用{i ,j ,k }表示.设O ,A ,B ,C 是不共面的四点,则对空间任意一点P ,都存在惟一的有序实数组(x ,y ,z ),使得OP =xOA →+yOB →+zOC →.【问题导思】空间直角坐标系中,点的坐标与向量坐标有何联系与区别?【提示】 在空间直角坐标系中,当起点为原点时,向量坐标就是其终点坐标;当起点不是原点时,向量坐标是终点坐标减去起点坐标.所以向量坐标不是点的坐标,而是终点坐标与起点坐标的差值.在空间直角坐标系中,设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则AB →=(a 2-a 1,b 2-b 1,c 2-c 1);当空间向量a 的起点移至坐标原点时,其终点坐标就是向量a 的坐标.【问题导思】空间向量的坐标运算与几何运算相比较,有哪些好处?【提示】 坐标运算实际上是实数间的运算,运算起来更为简捷方便. 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3)已知{e 1,e 2,e 3}是空间的一个基底,且OA →=e 1+2e 2-e 3,OB →=-3e 1+e 2+2e 3,OC →=e 1+e 2-e 3,试判断{OA →,OB →,OC →}能否作为空间的一个基底?若能,试以此基底表示向量OD →=2e 1-e 2+3e 3;若不能,请说明理由.【思路探究】 判断{OA →,OB →,OC →}能否作为基底,关键是判断它们是否共面,一般假设其共面,利用共面向量定理分析;求OD →的表示式,设OD →=pOA →+qOB →+zOC →,利用待定系数法求系数.【自主解答】 假设OA →、OB →、OC →共面,由向量共面的充要条件知存在实数x 、y 使OA →=xOB →+yOC →成立. ∴e 1+2e 2-e 3=x (-3e 1+e 2+2e 3)+y (e 1+e 2-e 3)=(-3x +y )e 1+(x +y )e 2+(2x -y )e 3,∵{e 1,e 2,e 3}是空间的一个基底, ∴e 1,e 2,e 3不共面, ∴⎩⎪⎨⎪⎧-3x +y =1,x +y =2,2x -y =-1,此方程组无解,即不存在实数x 、y 使OA →=xOB →+yOC →, ∴OA →,OB →,OC →不共面.故{OA →,OB →,OC →}能作为空间的一个基底. 设OD →=pOA →+qOB →+zOC →,则有2e 1-e 2+3e 3=p (e 1+2e 2-e 3)+q (-3e 1+e 2+2e 3)+z (e 1+e 2-e 3)=(p -3q +z )e 1+(2p +q +z )e 2+(-p +2q -z )e 3 ∵{e 1,e 2,e 3}为空间的一个基底,∴⎩⎪⎨⎪⎧p -3q +z =2,2p +q +z =-1,-p +2q -z =3,解之得⎩⎪⎨⎪⎧p =17,q =-5,z =-30,∴OD →=17OA →-5OB →-30OC →.1.判断三个向量能否作为基底,关键是判断它们是否共面,若从正面判断难以入手,可以用反证法结合共面向量定理或者利用常见的几何图形帮助,进行判断.2.求一向量在不同基底下的表示式(或坐标),一般采用待定系数法,即设出该向量在新基底下的表示式(或坐标),转化为在原基底下的表示式,对比系数.若{a ,b ,c }是空间的一个基底.试判断{a +b ,b +c ,c +a }能否作为空间的一个基底.【解】 假设a +b ,b +c ,c +a 共面,则存在实数λ,μ,使得a +b =λ(b +c )+μ(c +a )成立,即a +b =μa +λb +(λ+μ)c . ∵{a ,b ,c }是空间的一个基底, ∴a ,b ,c 不共面. ∴⎩⎪⎨⎪⎧μ=1λ=1λ+μ=0,此方程组无解.即不存在实数λ,μ,使得a +b =λ(b +c )+μ(c +a )成立,∴a +b ,b +c ,c +a 不共面. 故{a +b ,b +c ,c +a }能作为空间的一个基底.图3-1-10如图3-1-10,四棱锥P -OABC 的底面为矩形,PO ⊥平面OABC ,设OA →=a ,OC →=b ,OP →=c ,E ,F 分别是PC ,PB 的中点,试用a ,b ,c 表示:BF →,BE →,AE →,EF →.【思路探究】选取基向量→观察空间图形→利用线性运算→用基底表示向量【自主解答】 连结OB ,则BF →=12BP →=12(BO →+OP →)=12(-OA →-OC →+OP →)= -12a -12b +12c . BE →=BC →+CE →=-a +12CP →=-a +12(CO →+OP →)=-a +12(-b +c )=-a -12b +12c .AE →=AP →+PE →=AO →+OP →+12PC →=AO →+OP →+12(PO →+OC →)=-a +c +12(-c +b )=-a +12b +12c .EF →=12CB →=12OA →=-12a .1.空间中的任一向量均可用一组不共面的向量来表示,只要基底选定,这一向量用基底表达的形式是惟一的. 2.用基底来表示空间中的向量是用向量解决数学问题的关键,解题时注意三角形法则以及平行四边形法则的应用.图3-1-11如图3-1-11,在平行六面体ABCD -A ′B ′C ′D ′中,AB →=a ,AD →=b ,=c ,M 是CD ′的中点,N 是C ′D ′的中点,用基底{a ,b ,c }表示以下向量:(1)AM →;(2)AN →.【解】 (1)AM →=12(AC →+)=12(AB →+AD →+AD →+)=12(a +2b +c )=12a +b +12c . (2)AN →=12(+)=12[(AB →+AD →+)+(AD →+)]=12(AB →+2AD →+2)=12a +b +c .已知A ,B ,C 三点的坐标分别是(2,-1,2),(4,5,-1),(-2,2,3),求适合下列条件的点P 的坐标.(1)OP →=12(AB →-AC →);(2)AP →=12(AB →-AC →).【思路探究】 利用向量的坐标等于终点的坐标减去起点的坐标求出AB →,AC →,然后进行坐标运算得到OP →,AP →,从而可确定点P 的坐标. 【自主解答】 AB →=(2,6,-3),AC →=(-4,3,1).(1)OP →=12(AB →-AC →)=12(6,3,-4)=(3,32,-2),则点P 的坐标为(3,32,-2).(2)设点P 的坐标为(x ,y ,z ),则AP →=(x -2,y +1,z -2).由(1)知,AP →=12(AB →-AC →)=(3,32,-2),则⎩⎪⎨⎪⎧ x -2=3y +1=32z -2=-2,解得⎩⎪⎨⎪⎧x =5y=12z =0,则点P 的坐标为(5,12,0).1.牢记运算法则是正确进行向量线性运算的关键.2.涉及已知点的坐标进行向量运算时,注意利用终点的坐标减去起点的坐标得到向量的坐标,这是向量运算的前提.已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),求AB →,AC →及2AB →+3AC →. 【解】 AB →=(-1,1,2)-(-2,0,2)=(1,1,0), AC →=(-3,0,4)-(-2,0,2)=(-1,0,2),2AB →+3AC →=2(1,1,0)+3(-1,0,2)=(2,2,0)+(-3,0,6)=(-1,2,6).已知A (1,0,0),B (0,1,0),C (0,0,2),求满足DB ∥AC ,DC ∥AB 的点D 的坐标.【思路探究】 由已知条件DB ∥AC ,DC ∥AB ,转化为向量平行,用共线向量定理及空间向量平行的坐标表示,可求得D 点的坐标. 【自主解答】 设D (x ,y ,z ),则DB →=(-x,1-y ,-z ),AC →=(-1,0,2), 由DB ∥AC ,设DB →=λAC →,即(-x,1-y ,-z )=(-λ,0,2λ), 则⎩⎪⎨⎪⎧-x =-λ,1-y =0,-z =2λ,解得⎩⎪⎨⎪⎧x =λ,y =1,z =-2λ,得D (λ,1,-2λ).∴DC →=(-λ,-1,2+2λ),AB →=(-1,1,0). 又DC →∥AB →,设DC →=μAB →,即(-λ,-1,2+2λ)=(-μ,μ,0), 则⎩⎪⎨⎪⎧-λ=-μ,-1=μ,2+2λ=0.解得λ=μ=-1.∴点D 的坐标为(-1,1,2).1.本例中,求点D 的坐标,主要是利用两向量平行的坐标条件,列出关于点D 的坐标的方程组,通过解方程组求得.2.两向量平行的充要条件有两个:①a =λb ,②⎩⎪⎨⎪⎧x 1=λx 2y 1=λy 2z 1=λz 2,依此,既可以判定两向量共线,也可以通过两向量平行求待定字母的值.设a =(2,3,0),b =(-3,-2,1),计算2a +3b,5a -6b ,并确定λ,μ的值,使λa +μb 与向量b 平行. 【解】 ∵a =(2,3,0),b =(-3,-2,1),∴2a +3b =2(2,3,0)+3(-3,-2,1)=(4,6,0)+(-9,-6,3)=(-5,0,3), 5a -6b =5(2,3,0)-6(-3,-2,1)=(10,15,0)-(-18,-12,6)=(28,27,-6). ∵λa +μb =λ(2,3,0)+μ(-3,-2,1)=(2λ-3μ,3λ-2μ,μ),且(λa +μb )∥b , ∴2λ-3μ-3=3λ-2μ-2=μ1. ∴λ=0,μ∈R ,即λ=0,μ∈R 时,λa +μb 与b 平行.误解“两向量平行”和“两向量同向”已知向量a =(1,2,3),b =(x ,x 2+y -2,y ),并且a ,b 同向,求x ,y 的值.【错解】 由题意知a ∥b ,则x 1=x 2+y -22=y3,可得⎩⎪⎨⎪⎧y =3x ①x 2+y -2=2x ②,把①代入②得x 2+x -2=0,解得x =-2或x =1.当x =-2时,y =-6;当x =1时,y =3.【错因分析】 “两向量同向”是“两向量平行”的充分不必要条件.错解忽略了“同向”这一条件的限制,扩大了范围. 【防范措施】 由于向量具有平移不变性,因此有关向量的平行问题与直线的平行是有区别的,并且两向量同向与向量平行也是不等价的,向量平行则两向量可能同向也可能反向,因此,解决这类问题时要特别注意限制条件.【正解】 由题意知a ∥b ,则x 1=x 2+y -22=y3,可得⎩⎪⎨⎪⎧y =3x ①x 2+y -2=2x ②,把①代入②得x 2+x -2=0,解得x =-2或x =1.当x=-2时,y =-6;当x =1时,y =3.当⎩⎪⎨⎪⎧ x =-2y =-6时,b =(-2,-4,-6)=-2a ,向量a 与b 反向,不符合题意,故舍去.当⎩⎪⎨⎪⎧ x =1y =3时,b =(1,2,3)=a ,向量a 与b 同向,故⎩⎪⎨⎪⎧x =1y =3.1.用基底表示空间几何体中一向量时,应结合立体图形,根据空间向量线性运算法则,写出要求的向量表达式. 2.建立空间直角坐标系后,空间向量都有惟一的坐标(x ,y ,z ),两向量间的线性运算也有相应的坐标运算法则.3.对于两向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),a ∥b ⇔a =λb ⇔⎩⎪⎨⎪⎧x 1=λx 2y 1=λy 2z 1=λz 2(b ≠0),依此可以判定两向量平行或由两向量平行求待定字母的值.1.下列说法正确的是________.①任何三个不共线的向量都可构成空间的一个基底; ②不共面的三个向量就可构成空间的单位正交基底; ③单位正交基底中的基向量模为1,且互相垂直;④不共面且模为1的三个向量可构成空间的单位正交基底.【解析】 根据基底的有关概念可知:任何三个不共面的向量都可以构成一个基底,当这三个基向量是模为1且两两垂直的向量时,称此基底为单位正交基底,故有③正确,①②④错误.【答案】 ③图3-1-122.如图3-1-12,已知平行六面体OABC -O ′A ′B ′C ′中,OA →=a ,OC →=c ,=b ,D 是四边形OABC 的中心,则OD →=________.【解析】 结合图形,充分利用向量加、减的三角形法则和平行四边形法则,利用基向量a 、b 、c 表示OD →.仔细观察会发现OD →与OA →、OC →是共面向量,故它们三者之间具有线性关系,即可得到答案.【答案】 12a +12c3.已知a =(1,-2,1),a +b =(-1,2,-1),则b =______. 【解析】 设b =(x ,y ,z ),则a +b =(x +1,y -2,z +1).∴⎩⎪⎨⎪⎧x +1=-1,y -2=2,z +1=-1.∴⎩⎪⎨⎪⎧x =-2,y =4,z =-2.∴b =(-2,4,-2). 【答案】 (-2,4,-2)4.设a =(1,5,-1),b =(-2,3,5).若(k a +b )∥(a -3b ),求k . 【解】 法一 ∵a =(1,5,-1),b =(-2,3,5).∴k a +b =k (1,5,-1)+(-2,3,5)=(k -2,5k +3,-k +5).a -3b =(1,5,-1)-3(-2,3,5)=(7,-4,-16).∵(k a +b )∥(a -3b ). ∴k -27=5k +3-4=-k +5-16.∴k =-13.法二 ∵(k a +b )∥(a -3b ). ∴k a +b =λ(a -3b ).∴⎩⎪⎨⎪⎧k =λ,1=-3λ,∴k =-13.一、填空题1.设命题p :a ,b ,c 是三个非零向量,命题q :{a ,b ,c }为空间的一个基底,则命题p 是命题q 的______条件(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”).【解析】 命题q 中,{a ,b ,c }为空间的一个基底,则根据基底的定义,可知a ,b ,c 为非零向量,且为不共面向量.故q ⇒p ,pD⇒/q ,所以命题p 是命题q 的必要不充分条件.【答案】 必要不充分2.设向量a ,b ,c 不共面,则下列可作为空间的一个基底的是________.①{a +b ,b -a ,a }; ②{a +b ,b -a ,b }; ③{a +b ,b -a ,c }; ④{a +b +c ,a +b ,c }.【解析】 因为只有③中三个向量不共面,所以可以作为一个基底. 【答案】 ③3.已知{i ,j ,k }为空间的一个基底,若a =i -j +k ,b =i +j +k ,c =i +j -k ,d =3i +2j -4k ,又d =α a +β b +γc ,则α=________,β=________,γ=________.【解析】 由题意知:⎩⎪⎨⎪⎧α+β+γ=3-α+β+γ=2α+β-γ=-4,解之得:⎩⎪⎨⎪⎧α=12β=-1γ=72.【答案】 12 -1 72图3-1-134.如图3-1-13,已知正方体ABCD —A ′B ′C ′D ′中,E 是底面A ′B ′C ′D ′的中心,a =12AA ′→,b =12AB →,c =13AD →,AE →=x a +y b +z c ,则x ,y ,z 的值分别为x =________,y =________,z =________.【解析】 由题意知AA ′→,AB →,AD →为不共面向量,而AE →=AA ′→+A ′E →=AA ′→+12(A ′B ′→+A ′D ′→)=AA ′→+12AB →+12AD →=2a +b +32c ,∴x =2,y =1,z =32.【答案】 2 1 325.已知A (3,2,1),B (-4,5,3),C (-1,2,1),则2AB →+5AC →的坐标为________. 【解析】 2AB →+5AC →=2(-7,3,2)+5(-4,0,0) =(-14-20,6+0,4+0)=(-34,6,4). 【答案】 (-34,6,4)6.(2013·平遥高二检测)已知a =(λ+1,0,2λ),b = (6,2μ-1,2),a ∥b ,则λ与μ的值分别为________.。
空间向量的数量积(1)学习目的:⒈掌握空间向量夹角和模的概念及表示方法;⒉掌握两个向量数量积的概念、性质和计算方法及运算律;⒊掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题. 学习重点:两个向量的数量积的计算方法及其应用. 学习难点:两个向量数量积的几何意义. 学习过程: 一、复习引入 二、讲解新课1.空间向量的夹角及其表示已知两非零向量,a b , 则AOB ∠叫做向量a 与b 的夹角,记作,a b <>;规定0,a b π≤<>≤,显然有,,a b b a <>=<>; 若,2a b π<>=,则称a 与b 互相垂直,记作:a b ⊥.2.向量的模设OA a =,则 叫做向量a 的长度或模,记作:||a . 3.向量的数量积已知向量,a b ,则||||cos ,a b a b ⋅⋅<>叫做,a b 的数量积,记作a b ⋅, 即a b ⋅= .已知向量AB a =和轴l ,e 是l 上与l 同方向的单位向量,作点A 在l 上的射影A ',作点B 在l 上的射影B ',则A B ''叫做向量AB 在轴l 上或在e 上的正射影.可以证明A B ''的长度||||cos ,||A B AB a e a e ''=<>=⋅.4.数量积的坐标表示若),,(),,,(222111z y x b z y x a ==,有332211y x y x y x b a ++=⋅, 5.空间向量数量积的性质 (1)||cos ,a e a a e ⋅=<>(2)0a b a b ⊥⇔⋅= (3)2||a a a =⋅.(4)212121||z y x a ++=6.空间向量数量积运算律(1)()()()a b a b a b λλλ⋅=⋅=⋅. (2) (交换律).(3) (分配律). 三、讲解范例:例 1.(1)已知23||,4||==b a ,.12=⋅b a 求b a ,的夹角<b a ,>.例2.如图,已知四棱柱1111D C B A ABCD -底面ABCD 是矩形5,3,41===AA AD AB∠=1BAA ∠0160=DAA ,求1AC 的长.例3如图,在空间四边形OABC 中,8OA =,6AB =,4AC =,5BC =,45OAC ∠=,60OAB ∠=,求OA 与BC 的夹角的余弦值.说明:由图形知向量的夹角时易出错,如,135OA AC <>=易错写成,45OA AC <>=ABCD A 1B 1C 1D1例4.已知空间四边形ABCD 中,AB CD ⊥,AC BD ⊥,求证:AD BC ⊥.说明:用向量解几何题的一般方法:把线段或角度转化为向量表示,并用已知向量表示未知向量,然后通过向量运算去计算或证明四、课堂练习:教材94页练习1-3五、小结 :由于空间任意两个向量都可以转化为共面向量,所以空间两个向量的夹角的定义、取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号,两个向量的数量积的意义等,都与平面向量是相同的. 六、作业:1.已知空间四边形ABCD ,则AB →·CD →+BC →·AD →+CA →·BD →= 。
第3课时空间向量基本定理教学过程一、问题情境1.在教材第83页例2中,若F是D'B'的三等分点或四等分点,则能否用i,j,k表示?若F 是D'B'上的任意一点,则能否用i,j,k表示?2.空间任一向量能用三个不共面的向量来线性表示吗?如何表示?二、数学建构由上例归纳,可得到一般性结论:1.空间向量基本定理如果三个向量e1,e2,e3不共面,那么对空间任一向量p,存在唯一的有序实数组(x,y,z),使p=x e1+y e2+z e3.证明(存在性)如图,设e1,e2,e3不共面,过点O作=e1,=e2,=e3,=p.(图1)过点P作直线PP'∥OC,交平面OAB于点P';在平面OAB内,过点P'作直线P'A'∥OB,P'B'∥OA,分别与直线OA,OB相交于点A',B'.于是,存在三个实数x,y,z,使=x=x e1,=y=y e2,=z=z e3,所以=++=x+y+z,所以p=x e1+y e2+z e3.(唯一性)假设还存在x',y',z'且x'≠x,使p=x'e1+y'e2+z'e3,即x e1+y e2+z e3=x'e1+y'e2+z'e3,所以(x-x')e1+(y-y')e2+(z-z')e3=0.因为x≠x',所以e1=·e2+·e3,所以e1,e2,e3共面,此与已知矛盾.所以有序实数组(x,y,z)是唯一的.推论设O,A,B,C是不共面的四点,则对空间任意一点P,都存在唯一的有序实数组(x,y,z),使得=x+y+z.2.基底如果三个向量e1,e2,e3不共面,那么空间的每一个向量都可由e1,e2,e3线性表示,我们把{e1,e2,e3}称为空间的一个基底,向量e1,e2,e3叫做基向量.如果空间一个基底的三个基向量两两互相垂直,那么这个基底叫做正交基底.特别地,当一个正交基底的三个基向都是单位向量时,称这个基底为单位正交基底,通常用{i,j,k}表示.三、数学运用【例1】(教材第88页例1)如图,在正方体OADB-CA'D'B'中,E是AB与OD的交点,M是OD'与CE的交点,试分别用向量,,表示向量和.(见学生用书P53)(例1)[规范板书]解因为=+,所以=+=++.由△OME∽△D'MC,可得OM=MD'=OD',所以==++.[题后反思]重视平面几何知识在解题过程中的灵活应用.【例2】如图,已知空间四边形OABC,M,N分别是对边OA,BC的中点,点G在线段MN 上,且MG=2GN,用基底向量,,表示向量.(见学生用书P54)(例2)[规范板书]解因为M,N分别是对边OA,BC的中点,所以=,=+,则=+=+=+(-)=+=++.[题后反思]运用空间向量的线性运算,将空间向量转化为平面向量.【例3】已知向量{e1,e2,e3}为空间的一个基底,试问:向量a=3e1+2e2+e3,b=-e1+e2+3e3,c=2e1-e2-4e3是否共面?并说明理由.(见学生用书P54) [处理建议]用反证法,先假设a,b,c共面,再根据共面向量定理看是否满足共面的条件.[规范板书]解假设a,b,c共面.由共面向量定理可知,存在三个不全为零的实数x,y,z,使得x a+y b+z c=0,即x(3e1+2e2+e3)+y(-e1+e2+3e3)+z(2e1-e2-4e3)=0,亦即(3x-y+2z)e1+(2x+y-z)e2+(x+3y-4z)e3=0.由e1,e2,e3不共面,得解得不妨令x=-1,则y=7,z=5.于是a=7b+5c,所以a,b,c三向量共面.[题后反思]以向量{e1,e2,e3}为空间的一个基底表示向量a,b,c,重点考查共面向量定理和线性运算.运用了方程的思想.四、课堂练习1.在正方体ABCD-A1B1C1D1中,点F是侧面CDD1C1的中心.若=+x+y,则x-y=0.提示因为=+=+=+(+),所以x=y=,则x-y=0.2.“向量a,b,c不共面”是“{a,b,c}为基底”的充要条件.3.已知是空间的一个基底,给出下列四组向量:①;②;③{a+2b,2b+3c,3a-9c};④.其中能构成空间的一个基底的有①②④.提示③不能构成空间的一个基底,因为-3(a+2b)+3(2b+3c)+(3a-9c)=0.4.已知{a,b,c}是空间的一个基底,若p a+q b+c与a+p b+q c共线,则实数p=1,q=1.五、课堂小结1.本节课主要学习了空间向量的基本定理及其推论、基底的概念.2.运用代数的方法判断向量是否共面.。
3.1.3 空间向量基本定理3.1.4 空间向量的坐标表示[学习目标] 1.了解空间向量基本定理及其意义.2.掌握空间向量的正交分解及其坐标表示.3.掌握空间向量线性运算的坐标运算.知识点一 空间向量基本定理(1)定理如果三个向量e 1,e 2,e 3不共面,那么对空间任一向量p ,存在惟一的有序实数组(x ,y ,z ),使p =x e 1+y e 2+z e 3.(2)基底与基向量如果三个向量e 1,e 2,e 3不共面,那么空间的每一个向量都可由向量e 1,e 2,e 3线性表示.我们把{e 1,e 2,e 3}称为空间的一个基底,e 1,e 2,e 3叫做基向量.空间任何三个不共面的向量都可构成空间的一个基底.(3)正交基底与单位正交基底 如果空间一个基底的三个基向量是两两互相垂直,那么这个基底叫做正交基底,当一个正交基底的三个基向量都是单位向量时,称这个基底为单位正交基底,通常用{i ,j ,k }表示.(4)推论设O ,A ,B ,C 是不共面的四点,则对空间任意一点P ,都存在惟一的有序实数组(x ,y ,z ),使得OP →=xOA →+yOB →+zOC →.知识点二 空间向量的坐标表示空间直角坐标系Oxyz 中,i ,j ,k 分别为x ,y ,z 轴方向上的单位向量,对于空间任意一个向量a ,若有a =x i +y j +z k ,则有序实数组(x ,y ,z )叫向量a 在空间直角坐标系中的坐标.特别地,若A (x ,y ,z ),则向量OA →的坐标为(x ,y ,z ).知识点三 坐标运算设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);λa =(λa 1,λa 2,λa 3) (λ∈R ).a∥b (a ≠0)⇔b 1=λa 1,b 2=λa 2,b 3=λa 3 (λ∈R ).思考 (1)空间向量的坐标运算与平面向量的坐标运算表达形式上有什么不同?(2)已知a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),a ∥b ,且b 1b 2b 3≠0,类比平面向量平行的坐标表示,可得到什么结论?答案 (1)空间向量的坐标运算多3个竖坐标.(2)a ∥b ⇔a 1b 1=a 2b 2=a 3b 3.题型一 空间向量的基底例1 已知{e 1,e 2,e 3}是空间的一个基底,且OA →=e 1+2e 2-e 3,OB →=-3e 1+e 2+2e 3,OC →=e 1+e 2-e 3,试判断{OA →,OB →,OC →}能否作为空间的一个基底.解 假设OA →,OB →,OC →共面.则存在实λ,μ使得OA →=λOB →+μOC →,∴e 1+2e 2-e 3=λ(-3e 1+e 2+2e 3)+μ(e 1+e 2-e 3)=(-3λ+μ)e 1+(λ+μ)e 2+(2λ-μ)e 3,∵e 1,e 2,e 3不共面,∴⎩⎪⎨⎪⎧ -3λ+μ=1,λ+μ=2,2λ-μ=-1此方程组无解,∴OA →,OB →,OC →不共面,∴{OA →,OB →,OC →}可以作为空间的一个基底.反思与感悟 空间向量有无数个基底.判断给出的某一向量组中的三个向量能否作为基底,关键是要判断它们是否共面,如果从正面难以入手,常用反证法或是一些常见的几何图形帮助我们进行判断.跟踪训练1 已知点O ,A ,B ,C 为空间不共面的四点,且向量a =OA →+OB →+OC →,向量b =OA →+OB →-OC →,则与a ,b 不能构成空间基底的向量是________.(填序号)①OA →②OB → ③OC → ④OA →或OB →答案 ③解析 ∵OC →=12a -12b 且a ,b 不共线, ∴a ,b ,OC →共面,∴OC →与a ,b 不能构成一组空间基底.题型二 用基底表示向量例2 如图,四棱锥POABC 的底面为一矩形,PO ⊥平面OABC ,设OA →=a ,OC →=b ,OP →=c ,E ,F 分别是PC 和PB 的中点,试用a ,b ,c 表示BF →,BE →,AE →,EF →.解 连结BO ,则BF →=12BP → =12(BO →+OP →)=12(c -b -a ) =-12a -12b +12c . BE →=BC →+CE →=-a +12CP →=-a +12(CO →+OP →) =-a -12b +12c . AE →=AP →+PE →=AO →+OP →+12(PO →+OC →) =-a +c +12(-c +b )=-a +12b +12c . EF →=12CB →=12OA →=12a .反思与感悟 (1)空间中的任一向量均可用一组不共面的向量来表示,只要基底选定,这一向量用基底表达的形式是惟一的;(2)用基底来表示空间中的向量是向量解决数学问题的关键,解题时注意三角形法则或平行四边形法则的应用.跟踪训练2 如图所示,已知平行六面体ABCD -A 1B 1C 1D 1,设AB →=a ,AD →=b ,AA 1→=c ,P 是CA 1的中点,M 是CD 1的中点.用基底{a ,b ,c }表示以下向量:(1)AP →;(2)AM →.解 如图,在平行六面体ABCD -A 1B 1C 1D 1中连结AC ,AD 1,(1)AP →=12(AC →+AA 1→) =12(AB →+AD →+AA 1→)=12(a +b +c ).(2)AM →=12(AC →+AD 1→) =12(AB →+2AD →+AA 1→) =12a +b +12c . 题型三 空间向量的坐标表示例3 已知PA 垂直于正方形ABCD 所在的平面,M 、N 分别是AB 、PC 的中点,并且PA =AD =1,建立适当坐标系,求向量MN →的坐标.解 以AD ,AB ,AP 所在直线为坐标轴建立空间直角坐标系如图所示,则M (0,12,0),N (12,12,12).∴MN →=(12,0,12). 反思与感悟 建系时要充分利用图形的线面垂直关系,选择合适的基底,在写向量的坐标时,考虑图形的性质,充分利用向量的线性运算,将向量用基底表示.跟踪训练3 已知PA 垂直于正方形ABCD 所在的平面,M 、N 分别是AB 、PC 的中点,并且PA=AD =1,建立适当坐标系,求向量MN →、DC →的坐标.解 如图所示,因为PA =AD =AB =1,且PA ⊥平面ABCD ,AD ⊥AB ,所以可设DA →=e 1,AB →=e 2,AP →=e 3.以{e 1,e 2,e 3}为基底建立空间直角坐标系A -xyz .因为MN →=MA →+AP →+PN →=MA →+AP →+12PC → =MA →+AP →+12(PA →+AD →+DC →) =-12e 2+e 3+12(-e 3-e 1+e 2) =-12e 1+12e 3, 所以MN →=⎝ ⎛⎭⎪⎫-12,0,12,DC →=(0,1,0).1.已知A (2,3-μ,-1+v )关于x 轴的对称点是A ′(λ,7,-6),则λ,μ,v 的值分别为________.答案 2,10,7解析 ∵A 与A ′关于x 轴对称,∴⎩⎪⎨⎪⎧ λ=2,3-μ=-7,-1+v =6,⇒⎩⎪⎨⎪⎧ λ=2,μ=10,v =7.2.与向量m =(0,1,-2)共线的向量是________.(填序号)①(2,0,-4)②(3,6,-12) ③(1,1,-2)④(0,12,-1) 答案 ④解析 ∵(0,12,-1)=12m , ∴与m 共线的向量是(0,12,-1). 3.已知向量a ,b ,c 是空间的一个基底,下列向量中可以与p =2a -b ,q =a +b 构成空间的另一个基底的是________.(填序号)①2a ;②-b ; ③c ; ④a +c . 答案 ③④解析 ∵p =2a -b ,q =a +b ,∴p 与q 共面,a 、b 共面.而c 与a 、b 不共面,∴c 与p 、q 可以构成另一个基底,同理a +c 与p 、q 也可构成一组基底.4.如图在边长为2的正方体ABCD -A 1B 1C 1D 1中,取D 点为原点建立空间直角坐标系,O ,M 分别是AC ,DD 1的中点,写出下列向量的坐标.AM →=________,OB 1→=________.答案 (-2,0,1) (1,1,2)解析 ∵A (2,0,0),M (0,0,1),O (1,1,0),B 1(2,2,2),∴AM →=(0,0,1)-(2,0,0)=(-2,0,1),OB 1→=(1,1,2).5.如图,在梯形ABCD 中,AB ∥CD ,AB =2CD ,点O 为空间任一点,设OA →=a ,OB →=b ,OC →=c ,则向量OD →用a ,b ,c 表示为________.答案 12a -12b +c解析 ∵AB →=-2CD →,∴OB →-OA →=-2(OD →-OC →),∴b -a =-2(OD →-c ),∴OD →=12a -12b +c .1.空间任意三个不共面的向量都可以作为空间向量的一个基底;基底选定后,任一向量可由基底惟一表示.2.向量的坐标是在单位正交基底下向量的表示.在表示向量时,要结合图形的几何性质,充分利用向量的线性运算.。
§3.1. 3 空间向量基本定理 编写:陶美霞 审核:赵太田一、知识要点1.空间向量基本定理:如果三个向量123,,e e e 不共面,那么对空间任一向量p ,存在惟一的有序实数组(,,)x y z ,使123p xe ye ze =++其中{}123,,e e e 称为空间的一个基底,123,,e e e 叫做基向量。
2.正交基底:上面的123,,e e e 两两互相垂直时,{}123,,e e e 这个基底就叫正交基底。
3.单位正交基底:若正交基底{}123,,e e e 的三个基向量都是单位向量时,{}123,,e e e 这个正交基底就叫单位正交基底。
4.通常用{},,i j k 表示单位正交基底5.空间向量基本定理的推论:设O A B C 、、、是不共面的四点,则对空间任意一点P ,都存在惟一的有序实数组(,,)x y z ,使OP xOA yOB zOC =++。
二、典型例题例1.如图:在正方体__OADB CA D B '''中,点E 是AB 与OD 的交点,M 是OD '与CE 的交点,试分别用向量,,OA OB OC 表示向量OD '和OM 。
例2.在空间四边形OABC 中,已知E 是线段BC 的中点,G 在AE 上,且2AG GE =,试用向量,,OA OB OC 表示向量OG 。
三、巩固练习1.已知空间四边形OABC 中,点,M N 分别是,OA BC 的中点,且,,OA OB OC ===a b c ,试用向量,,a b c 表示向量MN 。
2.如图,在平行六面体__ABCD A B C D ''''中,已知,,DA DC DD '===a b c ,点G 是侧面B BCC ''的中心,试用向量,,a b c 表示下列向量:,,,DB BA CA DG '''。
3.1.3 空间向量基本定理3.1.4 空间向量的坐标表示双基达标 (限时20分钟)1.有以下命题:①如果向量a ,b 与任何向量不能构成空间向量的一组基底,那么a ,b 的关系是不共线;②O ,A ,B ,C 为空间四点,且向量OA →,OB →,OC →不构成空间的一个基底,那么点O ,A ,B ,C 一定共面;③已知向量a ,b ,c 是空间的一个基底,则向量a +b ,a -b ,c ,也是空间的一个基底.其中正确的命题序号是________.解析 对于①“如果向量a ,b 与任何向量不能构成空间向量的一组基底,那么a ,b 的 关系一定共线”所以①错误;②③正确.答案 ②③2.如图所示,在空间四边形ABCD 中,AC 和BD 为对角线,G 为△ABC 的重心,E 是BD 上一点,BE =3ED ,以{AB →,AC →,AD →}为基底,则CE →=________.解析 ∵G 为△ABC 的重心,∴AG →=23AM →=23×12(AB →+AC →) =13(AB →+AC →), ∵BE →=3ED →∴BE →=34BD →=34(AD →-AB →) AE →=AB →+BE →=AB →+34(AD →-AB →)=14AB →+34AD →, 故GE →=AE →-AG →=14AB →+34AD →-13(AB →+AC →) =-112AB →-13AC →+34AD → 答案 -112AB →-13AC →+34AD →3.已知空间四边形OABC ,其对角线OB ,AC ,点M ,N 分别是对边OA ,BC 的中点,点G 在线段MN 上,且MG =2GN ,用基底向量OA →,OB →,OC →表示向量OG →为________.解析 OG →=OM →+MG →=OM →+23MN → =12OA →+23(ON →-OM →)=12OA →+23[12(OB →+OC →)-12OA →] =12OA →+13(OB →+OC →)-13OA → =16OA →+13OB →+13OC →. 答案 16OA →+13OB →+13OC → 4.已知a ={3λ,6,λ+6},b ={λ+1,3,2λ},若a ∥b ,则λ=________.解析 由a ∥b ,得3λλ+1=63=λ+62λ,解得λ=2. 答案 25.已知向量a =(1,1,0),b =(-1,0,2),若k a +b 与2a -b 平行,则实数k =________.解析 计算得k a +b =(k -1,k ,2),2a -b =(3,2,-2),由k a +b 与2a -b 平行得k -13=k 2=2-2,解得k =-2. 答案 -26.已知P A 垂直于正方形ABCD 所在的平面,M ,N 分别是AB ,PC 的中点,且P A =AD .建立适当坐标系求MN →的坐标.解 设AD →=i ,AB →=j ,AP →=k ,以i ,j ,k 为坐标向量建立如图所示的空间直角坐标系.∵MN →=MA →+AP →+PN →①MN →=MB →+BC →+CN →②又∵M 、N 分别为AB 、PC 的中点由①+②得2MN →=AP →+BC →=k +i ,∴MN →=12(k +i )=12i +12k ,∴MN →=⎝⎛⎭⎫12,0,12. 综合提高(限时25分钟)7.在△ABC 中,A (2,-5,3),AB →=(4,1,2),BC →=(3,-2,5),则顶点B 、C 的坐标分别为________.解析 由A (2,-5,3),AB →=(4,1,2),解得B (6,-4,5),再由BC →=(3,-2,5),解得C (9,-6,10).答案 B (6,-4,5),C (9,-6,10)8.如图,点M 为OA 的中点,以{OA →,OC →,OD →}为基底,DM →=xOA→+yOC →+zOD →,则实数对(x ,y ,z )=________.解析 DM →=OM →-OD →=12OA →+0OC →-OD →,所以实数对(x ,y , z )=(12,0,-1). 答案 (12,0,-1) 9.已知a =2(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则λ的值为________.解析 有共面向量定理知存在实数x ,y 使得a =x b +y c ,即(4,-2,6)=(-x ,4x ,- 2x )+(7y ,5y ,λy ),即⎩⎪⎨⎪⎧4=-x +7y -2=4x +5y ,6=-2x +λy ,解得⎩⎪⎨⎪⎧x =-3433y =1433λ=657答案657 10.设点C (2a +1,a +1,3)在点P (2,0,0),A (1,-3,2),B (8,-1,4)确定的平面上,则实数a 的值为________.解析 P A →=(-1,-3,2),PB →=(6,-1,4),根据共面向量定理,可设PC →=xP A →+yPB →(x ,y ∈R ),则(2a -1,a +1,3)=x (-1,-3,2)+y (6,-1,4),即⎩⎪⎨⎪⎧2a -1=-x +6y ,a +1=-3x -y .3=2x +4y ,解得⎩⎪⎨⎪⎧x =-9,y =214,a =834,即实数a 的值是834. 答案 834 11.已知O ,A ,B ,C 四点的坐标分别是(0,0,0),(2,-1,2),(4,5,-1),(-2,2,3),求P 点坐标,分别满足:(1)OP →=12(AB →-AC →);(2)AP →=12(AB →-AC →). 解 AB →=OB →-OA →=(2,6,-3),AC →=OC →-OA →=(-4,3,1).(1)设P 点坐标为(x ,y ,z ),则OP →=(x ,y ,z ),12(AB →-AC )=(3,32,-2), 所以OP →=(3,32,-2),即P 点坐标为(3,32,-2); (2)设P 点坐标为(x ,y ,z ),则AP →=OP →-OA →=(x -2,y +1,z -2),12(AB →-AC →)=(3,32,-2),所以⎩⎪⎨⎪⎧x -2=3,y +1=32,z -2=-2,解得⎩⎪⎨⎪⎧x =5,y =12,z =0,所以P 点坐标为(5,12,0). 12.如图所示,空间四边形OABC 中,G 、H 分别是△ABC 、△OBC 的重心,设OA →=a ,OB→=b ,OC →=c ,试用向量a 、b 、c 表示向量GH →.解 GH →=OH →-OG →,∵OH →=23OD →,∴OH →=23×12(OB →+OC →)=13(b +c ),OG →=OA →+AG →=OA →+23AD →=OA →+23(OD →-OA →)=13OA →+23×12(OB →+OC →)=13a +13(b +c ),∴GH →=13(b +c )-13a -13(b +c )=-13a ,即GH →=-13a .13.(创新拓展)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC的中点.(1)化简:A 1O →-12AB →-12AD →;(2)设E 是棱DD 1上的点且DE →=23DD 1→,若EO →=xAB →+yAD →+zAA 1→,试求x 、y 、z 的值.解 (1)∵AB →+AD →=AC →,∴A 1O →-12AB →-12AD →=A 1O →-12(AB →+AD →)=A 1O →-12AC →=A 1O →-AO →=A 1A →.(2)∵EO →=ED →+DO →=23D 1D →+12DB →=23D 1D →+12(DA →+AB →)=23A 1A →+12DA →+12AB →=12AB →-12AD →-23AA 1→.即:x =12,y =-12,z =-23.。
空间向量的坐标表示学习目的:1.掌握空间右手直角坐标系的概念,会确定一些简单几何体(正方体、长方体)的顶点坐标;2.掌握空间向量坐标运算的规律;3.会根据向量的坐标,判断两个向量共线或垂直;4.会用中点坐标公式解决有关问题学习重点:空间右手直角坐标系,向量的坐标运算 学习难点:空间向量的坐标的确定及运算 学习过程:一、复习引入:1.平面向量的坐标表示 2.平面向量的坐标运算3.a ∥b (b≠0)的充要条件是____________.4平面两向量数量积的坐标表示已知两个非零向量11(,)a x y =,22(,)b x y =, b a⋅=_______________. 5.平面内两点间的距离公式(1)设(,)a x y =,则222||a x y =+或2||a x =+(2)如果表示向量a的有向线段的起点和终点的坐标分别为11(,)x y 、22(,)x y ,那么||(a x =-平面内两点间的距离公式)6.向量垂直的判定设11(,)a x y =,22(,)b x y =,则a b ⊥⇔_____________ 7.两向量夹角的余弦(0θπ≤≤)cos <a ,b >= co s θ=||||a b a b⋅⋅=8.空间向量的基本定理:.二、讲解新课: 1.空间直角坐标系(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k 表示;(2)在空间选定一点O 和一个单位正交基底{,,}i j k ,以点O 为原点,分别以,,i j k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -,点O 叫原点,向量,,i j k 都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,zOx 平面;(3)作空间直角坐标系O xyz -时,一般使135xOy ∠=(或45),90yOz ∠=; (4)在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,称这个坐标系为右手直角坐标系规定立几中建立的坐标系为右手直角坐标系2.空间直角坐标系中的坐标如图给定空间直角坐标系和向量a ,设,,i j k 为坐标向量,则存在唯一的有序实数组123(,,)a a a ,使123a a i a j a k =++,有序实数组123(,,)a a a 叫作向量a 在空间直角坐标系O xyz -中的坐标,记作123(,,)a a a a =. 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使k z j y i x OA ++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标. 3.空间向量的直角坐标运算律(1)若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233//,,()a b a b a b a b R λλλλ⇔===∈(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标.三、讲解范例:例1已知(2,3,5)a =-,(3,1,4)b =--,求a b +,a b -,8a ,a b ⋅.例2求点(2,3,1)A --关于xOy 平面,zOx 平面及原点O 的对称点例3求证空间三点),1,2,1(),2,3,3(),4,1,1(C B A --共线。
空间向量及其运算【知识要点扫描】 1.有关概念2.共线向量定理、共面向量定理、空间向量基本定理共线向量定理: 。
共面向量定理: 。
空间向量基本定理: z y x ++=,其中},,{称为基底,c b a ,,称为基向量。
3.两个向量的数量积(1)定义: ;(2)在方向上的射影的数量积=,cos ||>=<;(3)模长公式:a a a a =⋅=||;||2; (4)夹角公式:)0|||,cos ≠⋅>=<;(5)垂直的充要条件: ; (6)数量积模的不等式:|,|||||⋅≤⋅≤⋅(2,π>≤<b a 时,左边取等号;a ∥b 时,即π或0,>=<b a 时,右边取等号;0,>=<b a 时,即a 与b 同向时,同取两个等号)(7)运算定律:⋅+⋅=+⋅⋅=⋅⋅=⋅)();()(;λλ(向量数量积一般不满足结合律) 4.空间几何关系和向量的转化选取三个不共面的向量为基向量,常选3个共起点而不共面的向量或3个顺序相接的向量为基向量。
常用关系有:(1)C B A ,,三点共线⇔∥AC ⇔存在实数t ,使AB t AC =⇔存在实数t ,使=OC t t +-)1(。
(2)AB ∥CD ⇔,共线且CD AB ,不共线⇔存在实数t ,使t =,且CD AB ,不共线。
(3)D C B A ,,,共面⇔AD 与,共面⇔存在实数对),(y x ,使AC y AB x AD +=⇔ 存在实数y x ,,使y x y x ++--=)1(;(4)AB ∥α⇔α∉B A ,,存在a ,使α⊆a ,且∥α⇔α∉B A ,,且存在实数t ,使α⊆=a a t AB ,⇔α∉B A ,,且存在实数y x ,,使α∈+=F E D C EF y CD x AB ,,,,;(5)0=⋅⇔⊥CD AB CD AB ;5.空间几何关系与向量坐标关系的转化 记),,(),,,(321321b b b b a a a a ==①a ∥⇔b 存在实数λ,使)3,2,1(==i b a i i λ ②0332211=++⇔⊥b a b a b a b a 6.空间直角坐标系中的公式(1)距离公式:233222211321321)()()(||),,,(),,,(b a b a b a AB b b b B a a a A -+-+-= (2)夹角公式:记),,(),,,(321321b b b b a a a a ==,则=>=<,cos)0|||(|232221232221332211≠⋅++⨯++++b b b a a a b a b a b a1、已知平行六面体,''''D C B A ABCD -化简下列表达式(1)_;__________''''=-+-+BC D D A D BB AB (2).__________''=-+-AA AD AC AC 2、已知点M 在平面ABC 内,并且对空间任一点,O ,3131x ++=则._____=x 3、已知,,是不共面的三个向量,则下列能构成空间一个基底的一组向量是__________.①2,,2+- ②2,,2+- ③-,2, ④-+,, 4、已知点P 的竖坐标为0,则动点P 的轨迹是_______________. 5、若空间三点)2,3,(),1,4,2(),2,5,1(+-q p C B A 共线,则._____________,==q p6、已知C B A ,,三点的坐标分别为),3,2,2(),1,5,4(),2,1,2(---若),(21-= 则P 点坐标为_______,若),(21AC AB AP -=则P 点坐标为_______. 7、已知向量,0,29||),0,1,4(),1,1,0(>=+=-=λλ且则.________=λ 8、已知向量)2,0,1(),0,1,1(-==且b a b a k -+2与垂直,则k 的值是__________. 9、已知点),4,1,6(),3,2,4(),11,2,1(--C B A 则ABC ∆的形状是___________. 10、若向量,满足与,1||||==的夹角为,120ο则._______=⋅+⋅11、若e e e e e e e e e e e e γβα++=++=+-=-+=++=,32,,,321321321321, 则._________________,______,===γβα12、在四面体ABC S -中,各棱长均为F E a ,,分别是AB SC ,的中点,则异面直线SA EF 与所成的角为__________.13、已知,60,,3||,2||ο>=<==则.________|32|=-14、在空间四边形ABCD 中,连结BCD BD AC ∆,,的重心为,G 化简.2321--+15、已知三个非零向量,,,133221e r e q e p e r e q e p -=-=-=且r q p ,,不全为零, 求证:c b a ,,共面.16、已知),2,0,0(),0,1,0(),0,0,1(C B A 求满足条件:AB DC AC DB //,//的点D 的坐标。
空间向量基本定理
学习目的:
⒈了解空间向量基本定理及其推论;
⒉理解空间向量的基底、基向量的概念.理解空间任一向量可用空间不共面的三个已知向量唯一线性表出
⒊学会用发展的眼光看问题,认识到事物都是在不断的发展、变化的,会用联系的观点看待事物. 学习重点:向量的分解(空间向量基本定理及其推论) 学习难点:空间作图. 学习过程:
一、复习引入: 1.空间向量的概念: 2.空间向量的运算 3.平面向量共线定理 4.共线向量
如果,则这些向量叫做共线向量或平行向量.a 平行于b 记作b a
//.
当我们说向量a 、b 共线(或a //b )时,表示a 、b
的有向线段所在的直线可能是同一直
线,也可能是平行直线. 5.共线向量定理:.
6.向量与平面平行:.
7.共面向量定理: .
二、讲解新课:
1.空间向量基本定理:
证明:(存在性)
(唯一性)
说明:
(1)若三向量123,,e e e
不共面,则所有空间向量组成的集合是123,,}{|,e e e x y z R p p x y z ∈=++
,这个集合可以
看作由向量123,,e e e 生成的,所以我们把123,,{}e e e 叫做空间的一个基底,123,,e e e
叫做基向量; (2)空间任意三个不共面的向量都可以构成空间的一个基底;
(3)若空间一个基底的三个基向量是两两互相垂直,那么这个基底叫做正交基底.特别地,当一个正交基底的三个基向量都是单位向量时,称这个基底为单位正交基底,通常用,,{}i j k
表示. 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使
OP xOA yOB zOC =++
三、讲解范例:
例1、在正方体'''B D CA OADB -中,点E 是AB 与OD 的交点,M 是'OD 与CE 的交点,试 分别用向量OC OB OA ,,表示向量.,'OM OD
例2、已知空间四边形OABC ,其对角线,OB AC ,,M N 分别是对边,OA BC 的中点,点G 在线段MN 上,且2MG GN =,用基底向量,,OA OB OC 表示向量OG
,
例3、如图,在平行六面体ABCD A B C D ''''-中,,,E F G 分别是,,A D D D D C '''''的中点,请选择
恰当的基底向量证明: (1)//EG AC (2)平面//EFG AB C '平面
四、课堂练习:课本88页练习
五、课堂小结 :空间向量基本定理也成为空间向量分解定理,它与平面向量基本定理类似,区别仅在于基底中多了一个向量,从而分解结果中多了一“项”.证明的思路、步骤也基本相同.空间向量基本定理的推论意在用分解定理确定点的位置,它对于今后用向量方法解几何问题很有用,也为今后学习空间向量的直角坐标运算作准备. 六、作业 1:
1.点O ,A ,B ,C 为空间不共面的四点,又OA →,OB →,OC →
为空间的一个基底,则下列命题中,正确的是
(1)O ,A ,B ,C 四点不共线 (2)O ,A ,B ,C 四点共面,但不共线 (3)O ,A ,B ,C 中任意三点不共线(4) O ,A ,B ,C 四点不共线。
2.向量组{a →,b →,c →}为空间的一个基底,若存在实数x ,y ,z ,使得 x a → +y b → +z c → =0→
,则必有
x +y +z =。
3.已知向量组{a →,b →,c →}为空间的一个基底,若向量x a → +y b → +c →与a → +x b → +y c →
共线, 则x=,y=。
4.在空间平移△ABC 到△A'B'C',连接对应顶点,设AA'→=a →,AB →=b →,AC →=c →
,M 是BC'的中点,N 是B'C'的中点,用基底{a →,b →,c →}表示向量MN →
等于
5.已知O ,A ,B ,C 为空间不共面的四点,且向量a →=OA →+OB →+OC →,向量b →=OA →+OB →−OC →,则与a →
,b →能构成空间基底的向量(1)OA →(2)OB →(3)OC →(4)OA →或OB →
6.设向量{a →,b →,c →
}是空间的一个基底,设c a z c b y b a x +=+=+=,,,给出下列向量组:
},,){4(},,,){3(},,,){2(},,,){1(++,可以构成空间的基底的向量有个。
7.已知{e 1→,e 2→,e 3→}为空间的一个基底,且OP →= 2e 1→−e 2→+3e 3→,OA →=e 1→+2e 2→−e 3→,OB →= −3e 1→+e 2→+2e 3→,OC →
=e 1→+e 2→−e 3→。
(1)判断P ,A ,B ,C 四点是否共面;
(2)能否以{OA →,OB →,OC →
}作为空间的一个基底?若不能,说明理由; 若能,试用这一基底表示向量OP →。