渗透汽化与蒸汽渗透讲稿
- 格式:pptx
- 大小:5.92 MB
- 文档页数:140
渗透汽化概述渗透汽化是一种将液体转化为气体的过程。
在物理学中,渗透汽化是液体通过半透膜向气相传导的现象。
在化学工程中,渗透汽化是一项用于分离混合物成分的操作。
本文将介绍渗透汽化的原理、应用领域和常见工艺。
原理渗透汽化的原理基于膜的渗透性能。
膜通常由聚合物或陶瓷材料制成,具有特定的孔隙结构和选择性。
当液体通过膜时,分子会依靠其大小和亲疏水性被膜孔隙所选择性地渗透。
相对较小的分子能够通过膜孔隙,而较大的分子则被阻拦。
渗透汽化的过程可以分为两个阶段:吸附和解吸。
首先,液体通过膜孔隙吸附到膜表面上。
然后,在施加适当的温度和压力条件下,液体分子会解吸并转化为气体。
应用领域渗透汽化已在许多领域得到广泛应用。
脱盐脱盐是渗透汽化的一个主要应用领域。
海水淡化是解决淡水短缺问题的关键技术之一。
通过将海水通过渗透汽化膜进行处理,可以去除其中的盐分和杂质,得到可用于农业灌溉、工业生产和居民生活的淡水。
废水处理渗透汽化也可以用于废水处理。
通过将废水通过渗透汽化膜进行处理,可以分离出其中的有机物、溶解性固体和重金属离子等污染物。
这种方法不仅能够减少水污染物的排放,还能够回收其中的可再利用资源,如有机物和水。
药物和酒精浓缩渗透汽化还可以用于药物和酒精的浓缩。
通过选择性渗透汽化,可以将溶液中的溶剂分离出来,使药物或酒精的浓度升高。
这种方法比传统的浓缩方法更加节能、环保。
气体分离除了液体分离外,渗透汽化还可以应用于气体的分离。
通过选择性渗透汽化膜,可以将混合气体中的特定成分分离出来。
这种方法在石油化工、天然气处理和空气分离等领域具有广泛的应用。
常见工艺渗透汽化的工艺通常包括以下几个步骤:1.前处理:液体进料通常需要经过预处理,去除其中的杂质和固体颗粒,以防堵塞膜的孔隙结构。
2.进料供应:液体需要以适当的速度和压力供应到渗透汽化设备中。
3.温度和压力控制:通过控制进料液体的温度和压力,使液体分子能够在膜孔隙中吸附和解吸。
4.液体和气体分离:通过将液体和气体分离,可以得到纯净的气体产品。
第十章渗透汽化第一节概述一、渗透汽化的发展概况早在1917年Kober在他发表的一篇论文中第一个使用了渗透汽化(Pervaporation)这个词。
该文介绍了水从蛋白质-甲苯溶液通过火棉胶器壁的选择渗透作用。
但长期以来,由于未找到渗透通量高和选择性好的渗透蒸发膜材料,渗透蒸发过程一直没有得到应用。
直到上世纪50年代以后,对渗透汽化的研究才较广泛展开。
其中Binning等人对渗透蒸发过程进行了较系统的学术研究,发现了渗透蒸发过程潜在的工业应用价值,并于60年代在渗透汽化膜、组件和装置制造上申请了专利。
70年代后期至80年代初,随着对能源危机问题的日益重视,渗透汽化的优点又重新引起学术界和技术界的兴趣,德国GFT公司在欧洲首先建立了乙醇脱水制高纯酒精的渗透蒸发装置。
到90年代初已有100多套渗透蒸发装置相继投入应用。
除了用于乙醇、异丙醇脱水外,还用于丙酮、乙二醇、乙酸等溶剂的脱水。
我国在1984年前后开始对渗透汽化过程进行研究,主要工作集中在优先透水膜的研制与醇水溶液的脱水。
近年来主要开展优先透有机物膜、水中有机物脱除、有机物-有机物分离以及渗透汽化与反应耦合的集中过程的研究。
二、渗透汽化的分类渗透汽化是以混合物中组分蒸汽压差为推动力,依靠各组分在膜中的溶解与扩散速率不同的性质来实现混合物分离的过程。
渗透汽化装置包括预热器、膜分离器、冷凝器和真空泵等四个主要设备。
料液进入渗透汽化膜分离器后,在膜两侧蒸汽压差的驱动下,扩散快的组分较多透过膜进入膜后侧,经冷凝后达到分离目的。
按照形成膜两侧蒸汽压差的方法,渗透汽化主要有以下几种形式:1.减压渗透汽化:膜透过侧用真空泵抽真空,以造成膜两侧组分的蒸汽压差。
在实验室中若不需收集透过侧物料,用该法最方便。
2.加热渗透汽化:通过料液加热和透过侧冷凝的方法,形成膜两侧组分的蒸汽压差。
一般冷凝和加热费用远小于真空泵的费用,且操作也比较简单,但传质动力比第一类小。
3.吹扫渗透汽化:用载气吹扫膜的透过侧,以带走透过组分,吹扫气经冷却冷凝以回收透过组分,载气循环使用。
渗透汽化膜分离技术的进展及应用摘要: 综述了渗透汽化膜传递理论研究的现状, 分析了各种模型的特点, 并就渗透汽化膜传递理论的研究方向提出了建议。
叙述了渗透汽化过程的新进展,并着重介绍了它在石化中的四方面应用,即(1) 有机溶剂及混合溶剂的脱水;(2) 废水处理及溶剂回收;(3) 有机混合物的分离;(4) 化学反应过程中溶剂的脱水。
关键词:渗透汽化;传递理论;模型;膜组件;脱水膜前言渗透汽化(Pervaporation, 简称PV ) 是用于液体混合物分离的一种新型膜技术。
自80年代以来, 渗透汽化技术得到了很大的发展, 目前世界范围内有100 多套工业装置。
然而, 渗透汽化膜分离的机理由于涉及到渗透物和膜的结构和性质, 渗透物组分之间、渗透物与膜之间复杂的相互作用, 涉及到化学、化工、材料、非晶态物理、统计学等学科的交叉, 研究工作的难度较大, 认识也不够深入。
也提出了几种描述渗透汽化膜传递机理的模型, 其中主要有溶解扩散膜型和孔流模型[1]。
膜技术作为一种高新技术,近30 多年来获得了极为迅速的发展,已在石油化工、海运、冶金、电子、轻工、纺织、食品、医疗卫生、生化制药、环保、航天等领域内广泛应用,形成了独立的新兴技术产业。
据专家断言:“今后,谁掌握了膜技术,谁就掌握了石油化工技术的未来”。
1 渗透汽化过程传递机理1.1溶解扩散模型溶解扩散模型认为PV 传质过程分为三步: 渗透物小分子在进料侧膜面溶解(吸附) ; 在活度梯度的作用下扩散过膜; 在透过侧膜面解吸(汽化)。
在PV 的典型操作条件下, 第三步速度很快, 对整个传质过程影响不大。
而第一步的溶解过程和第二步的扩散过程不仅取决于高聚物膜的性质和状态, 还和渗透物分子的性质、渗透物分子之间及渗透物分子和高聚物材料之间的相互作用密切相关。
因而溶解扩散模型最终归结到对第一步和第二步, 即渗透物小分子在膜中的溶解过程和扩散过程的描述。
一般研究者都认为PV 过程的溶解过程达到了平衡[2]。
渗透汽化与蒸汽渗透技术辨析渗透汽化技术(pervaporation, PV)是一种新兴的膜分离过程,利用组分在膜内的溶解速度和扩散速度的不同,在液体混合物中组分蒸汽分压差的推动下实现分离。
该技术已在有机物脱水领域实现了工业化应用,并且对于痕量水或有机物的移除过程具有良好的应用前景。
图1 渗透汽化过程示意图渗透汽化技术最早由Kober于1917年在研究水通过火棉胶器壁从蛋白质/甲苯溶液中选择渗透时提出。
20世纪60年代,渗透汽化技术的研究取得了较大的发展。
我国于20世纪80年代初开始对渗透汽化技术进行研究。
渗透汽化技术的分离原理普遍认为是溶解扩散原理,其机理如图2所示。
图2 溶解扩散示意图蒸汽渗透技术(Vapor permeation,简称VP)是上世纪80年代末由Uragami 等首次提出,其分离原理、设备流程以及所用的膜与PV技术较为相似,容易让初学者对二者产生混淆。
因此,本文主要介绍两种技术的本质区别。
蒸汽渗透技术的原理示意图如图3所示。
图3 蒸汽渗透过程原理示意图从操作上,VP技术是以蒸汽进料,这是与PV技术本质上的不同,而且正是如此,二者在应用过程中所表现出的优势与缺点也有显著的区别。
对于PV过程,由于液相与膜直接接触,因此料液对于膜的影响不容忽视1. 料液容易在膜表面或膜内累积,从而造成污染,使膜的通量和分离因子大幅下降;2. 对于一些粘度较大体系的分离过程,待分离物质首先传递到膜表面再透过致密膜到达膜的另一侧,其中,该组分在液相的扩散速率较慢,从而导致物质在膜表面处的浓度低于主体浓度,使通量和分离因子较理论值下降较大,即浓差极化现象,其本质是组分在液相中的扩散系数较小引起的;3. 对于一些强酸强碱等苛刻条件下的分离过程,膜的结构容易被破坏从而导致PV过程难以进行。
此外,PV过程更多与化学反应或生物过程耦合使用,由于膜器的内部流道狭窄,需要采用外置式设备以扩大膜的分离通量。
若将PV技术与生物过程耦合,则为设备的消毒带来较大困难,实际生产过程中易引入杂菌。