牙周组织再生修复缓释材料
- 格式:pptx
- 大小:1.67 MB
- 文档页数:21
羟基磷灰石发展综述
羟基磷灰石(Hydroxyapatite,简称HA)是一种重要的生物陶瓷材料,具有生物相容性、生物活性和化学稳定性等优良特性。
随着生
物医学工程学的发展,羟基磷灰石在医学领域得到了广泛的研究和应用。
羟基磷灰石最早被应用于骨植入材料方面。
骨修复领域的研究发现,羟基磷灰石可以促进骨细胞的黏附、增殖和分化,同时还可以与
骨组织结合,促进骨再生。
因此,羟基磷灰石被广泛应用于骨折修复、骨缺损修复和关节置换等领域。
近年来,随着生物可降解羟基磷灰石
的研究进展,更为广阔的应用前景得以展现。
除了骨植入材料,羟基磷灰石还被应用于牙科材料领域。
羟基磷
灰石可以作为填充剂用于牙齿修复,具有优良的生物相容性和力学性能。
此外,羟基磷灰石还可以用于牙周组织再生,有助于治疗牙周病
和牙周组织缺损。
这些应用展示了羟基磷灰石在牙科领域的潜力。
羟基磷灰石的应用还扩展到了药物传递领域。
由于其具有大量的
微孔和化学吸附性能,羟基磷灰石可以作为药物的载体,实现药物的
缓释和靶向传递。
这对于治疗骨关节炎、骨质疏松症和骨肿瘤等疾病
具有重要意义。
总之,羟基磷灰石作为一种重要的生物陶瓷材料,不仅在骨植入
材料和牙科材料领域发挥着重要作用,还在药物传递领域展示了巨大
的潜力。
随着研究的深入和技术的进步,相信羟基磷灰石在医学领域
的应用将会越来越广泛。
活性玻璃在牙齿再生医学的应用探索活性玻璃作为一种生物活性材料,近年来在牙齿再生医学领域引起了广泛关注。
本文将探讨活性玻璃在牙齿再生医学中的应用,分析其重要性、挑战以及实现途径。
一、活性玻璃概述活性玻璃是一种具有生物活性的硅酸盐玻璃,其主要成分包括硅、钙、磷等元素。
与传统的玻璃材料相比,活性玻璃具有独特的生物相容性和生物活性,能够与人体组织发生反应,促进组织再生。
活性玻璃在牙齿再生医学中的应用,主要得益于其以下几个方面的特性:1.1 促进牙齿硬组织的再生活性玻璃能够与牙齿的硬组织发生反应,形成与牙齿相似的羟基磷灰石晶体,从而促进牙齿硬组织的再生。
这一特性使得活性玻璃在牙齿缺损修复、牙髓病治疗等方面具有广泛的应用前景。
1.2 促进牙周组织的再生活性玻璃不仅能够促进牙齿硬组织的再生,还能够促进牙周组织的再生。
活性玻璃能够刺激牙周细胞的增殖和分化,促进牙周膜、牙槽骨等牙周组织的修复和重建。
1.3 抗菌和抗炎作用活性玻璃具有一定的抗菌和抗炎作用,能够抑制口腔细菌的生长,减少牙周炎等口腔疾病的发生。
此外,活性玻璃还能够降低炎症反应,促进受损组织的修复。
二、活性玻璃在牙齿再生医学中的应用活性玻璃在牙齿再生医学中的应用主要集中在以下几个方面:2.1 牙齿缺损修复活性玻璃可以作为牙齿缺损修复的材料,通过与牙齿硬组织的反应,形成与牙齿相似的羟基磷灰石晶体,实现牙齿缺损的修复。
与传统的牙齿修复材料相比,活性玻璃具有更好的生物相容性和生物活性,能够促进牙齿组织的再生和修复。
2.2 牙髓病治疗活性玻璃在牙髓病治疗中的应用,主要体现在其促进牙髓组织再生的能力。
活性玻璃能够刺激牙髓细胞的增殖和分化,促进牙髓组织的修复和重建。
此外,活性玻璃还具有一定的抗菌和抗炎作用,有助于控制牙髓病的感染和炎症。
2.3 牙周病治疗活性玻璃在牙周病治疗中的应用,主要体现在其促进牙周组织再生的能力。
活性玻璃能够刺激牙周细胞的增殖和分化,促进牙周膜、牙槽骨等牙周组织的修复和重建。
三十六章缓释材料第一节缓释制剂与缓释材料缓释制剂义称延效制剂、长效制剂,足指用适当方法延长药物在人体中的吸收、分布、代谢、排泄过程,而达延长药效目的的制剂。
它足应临球治疗的要求,增加用药安全度和疗效,达到制剂应用方便的宗旨而提出的第二代剂型二延长吸收是药剂学采取的主要手段。
现今使用的大多数药物是以被动扩散机理而吸收的,药物吸收速度受控于药物在吸收部位的浓度。
若采用制剂学方法,在处方设计时加入影响药物从制剂中溶出和扩散的辅料,就可控制吸收部位的浓度而延缓吸收,能起这种作用的辅料均称作缓释材料(sustained releasc miatcrials)。
能起缓释作用的材料大多是高分子化台物:在处方中加入缓释材料,这是药剂学使制剂延效的重要手段之一。
其他的方法如控制药物粒了_大小、制成植入剂,制成微囊、包衣、乳化剂、制成与组织液不馄溶的分散系等制备工"艺和制备技术也可达到延效的目的。
第二节缓释材料延效的药剂学方法在进行延效制剂处方设计时,为达到理想的治疗效果,一般先据药物动力学原理,调整建释与缓释部分的剂量以及可能达到的血药浓度,从理论上解决给药次数与主药的剂量问题。
但要使药物按设计要求释效,还需以处方中缓释材料延效的药剂学原理为基础,以先进的制剂制备工艺为保证。
缓释材料延效的药剂学原理,主要足根据NogeseWhitney溶出速度方程和Fick第一扩散定律,借助缓释材料的特殊性质,改变影响溶出速度和扩散速度的因索,以达到延效的目的。
通常用缓释材料延效的药剂学方法有:一、作阻滞剂加入阻滞剂( retardanis)足一大类疏水性强的脂肪、蜡类高分子材料。
药物混悬或混溶在这类熔融材料中玲却后,被脂溶性材料包被,药物释放速度与脂肪的消化或水解难易有失,脂肪水解速度一般按单、双、三酯顺序而降低,因此,阻滞剂延滞了药物的扩散和溶出。
、这种延效制剂的制备较为简便,小加阻滞剂的作为速释部分,加阻滞剂的作为缓释部分,可做成缓释胶囊、缓释片剂。
2%盐酸米诺环素缓释剂局部用药治疗慢性牙周炎的临床疗效分析发表时间:2017-01-05T11:08:13.507Z 来源:《健康世界》2016年第25期作者:姚悦[导读] 在临床上,牙周炎比较多发,是一种炎症破坏性疾病,对牙周组织会造成一定的损害。
新疆民政康复医院口腔科 830000摘要:目的:研究分析2%盐酸米诺环素缓释剂局部用药治疗慢性牙周炎的临床疗效。
方法:研究对象是我院门诊2015年6月~2016年8月收治的84例慢性牙周炎患者。
以动态随机化分为原则,将患者分为研究组与对照组,一组42例。
对照组患者使用碘甘油治疗,研究组给予2%盐酸米诺环素缓释剂局部用药,对比分析两组患者各指标改善情况。
结果:结果得知,研究组患者牙周袋探诊深度为(3.70±0.61)mm、菌斑指数为(0.81±0.34)分、龈沟出血指数为(1.09±0.51)分,相对于对照组,有较大优势,P<0.05。
结论:2%盐酸米诺环素缓释剂应用于慢性牙周炎患者治疗中,能有效改善牙周袋探诊深度、菌斑指数、龈沟出血指数情况。
关键词:2%盐酸米诺环素缓释剂;局部用药;慢性牙周炎;临床疗效在临床上,牙周炎比较多发,是一种炎症破坏性疾病,对牙周组织会造成一定的损害,导致患者失牙[1]。
本次主要是针对我院84例慢性牙周炎患者,实施有效治疗。
1基线资料和一般方法1.1基线资料将我院收治的慢性牙周炎患者84例(2015年6月~2016年8月)作为研究对象,使用动态随机化分法,分为42例一组,本次研究符合伦理学依据。
研究组中,42例患者男性与女性比例为22:20,年龄最大为63岁,最小为40岁,平均年龄(51.23±3.29)岁。
对照组中,42例患者男性与女性比例为23:19,年龄最大为62岁,最小为41岁,平均年龄(51.81±3.32)岁。
研究组与对照组慢性牙周炎患者在基线资料的比较上,不存在明显差异,P值大于0.05,可以对两者试验指标进行比较。
口腔修复工艺材料的分类
口腔修复工艺材料是一种重要的材料,用于修复和重建牙齿或其他口腔组织。
这些材料可以根据其成分、特性和用途进行分类。
1. 金属材料:金属材料是最常用的口腔修复材料之一,包括金、银、钴铬、钛等。
金属材料具有高度的强度和稳定性,可用于制作牙冠、桥梁和嵌体等。
2. 陶瓷材料:陶瓷材料在口腔修复中也是十分常见的,包括全瓷、贴面瓷、氧化锆等。
陶瓷材料具有天然牙齿相似的颜色和透明度,可以达到很好的美观效果。
3. 复合树脂材料:复合树脂材料是近年来发展起来的一种新型
的口腔修复材料,主要用于牙齿修复和美容修复。
它可以根据需要进行染色和塑形,可为患者提供更好的美观效果。
4. 弹性体材料:弹性体材料主要用于制作假牙、义齿和牙套等。
它具有很好的柔韧性和可塑性,可以更好地适应口腔组织的形状和大小。
以上四种材料是口腔修复工艺材料的主要分类,不同的材料具有不同的特点和用途,医生会根据患者的具体情况来选择使用哪种材料。
- 1 -。
牙周再生治疗为进一步提升牙周炎治疗效果,特别是一些骨下袋牙周缺损患者,在菌斑控制的基础上获得牙周缺损组织的再生,是治疗所希望达到的理想目标。
实现牙周组织再生,可以彻底消除骨下袋及其所带来的再感染风险,重建牙周组织对患牙的支撑功能,意义重大、影响深远。
第一代牙周组织再生技术起源于上世纪八十年代末、九十年代初,以GTR技术引入牙周炎治疗为标志,后来伴随多种骨材料的问世,GTR 与植骨术联合应用已经成为目前常用的临床再生治疗方法;第二代牙周组织再生技术是伴随着蛋白工程等生长因子重组技术的发展而建立起来的,以生长因子的临床应用为主要手段(其中也包含自体来源的内源性生长因子的应用);第三代牙周组织再生技术是基于组织工程、干细胞治疗的再生新策略,通过进一步基础和临床转化研究,有望获得高效、可预期的牙周组织再生。
1 第一代牙周组织再生技术1.1 引导组织再生GTR 技术是指在牙周手术中利用膜性材料作为屏障,阻挡牙龈上皮在愈合过程中沿根面生长,避免牙龈结缔组织与根面接触,同时提供一定的空间,引导具有形成新附着能力的牙周膜细胞优先占据根面,从而在已暴露于牙周袋内的根面上形成新的牙骨质,并有牙周膜纤维埋入,形成牙周组织的再生,即形成新附着性愈合。
因此,屏障膜的选择是该技术的关键因素。
屏障膜包括不可吸收膜和可吸收膜两大类。
不可吸收膜主要以聚四氟乙烯为代表,具有良好的生物相容性和力学性能,临床中可单独使用。
由于需要二次手术取出,不可吸收膜临床应用仅局限于一些特定的病例。
可吸收膜以胶原膜为代表(如Bio-Gide 等),具有良好的生物相容性,表面利于细胞生长、参与组织修复。
但可吸收膜力学性能差,往往需要与植骨材料联合使用,主要适用于垂直型骨缺损(Ⅱ壁或Ⅲ壁)、根分叉病变和个别牙根面裸露的治疗,也可用于种植术所需的牙槽嵴增高等。
虽然GTR 联合植骨术已经成为临床牙周治疗中针对上述情况的常用方法,且临床效果比单纯翻瓣术好,但也有研究表明,GTR 联合植骨术,并不一定可以获得比单纯植骨术更好的临床效果。
生长因子在牙周组织再生中的有效释放方式生长因子在牙周组织再生过程中起重要的作用,是组织修复的基本调节者,但其在体内半衰期短,直接应用达不到预期的效果。
为此,国内外众多学者正致力于寻找一种能够使生长因子持续高效发挥作用的方法,其中,制备生长因子缓释微球,利用智能控释载体材料,使生长因子缓慢而持续地释放;采用基因工程技术,通过载体将生长因子的目的基因整合入目的细胞,也能使生长因子在细胞和组织中持续局限性地表达。
这两种方法均有望解决生长因子不能有效发挥其生物学作用这一难题。
本文就建立生长因子缓释和控释系统以及基因工程技术等研究进展作一综述。
标签:生长因子;牙周组织再生;缓控释系统;基因治疗Effective releasing way of growth factors in periodontal tissue regenerationWang Cha, Xu Yan.(Dept. of Periodontics and Mucosa Disease, The Affiliated Hospital of Stomatology, Anhui Medical University, Hefei 230032, China)[Abstract]Growth factors, which are fundamental regulators of tissue repair, play an enssential role in periodon-tal tissue regeneration. But we can’t receive desired results when applicate them directly for their elimination half-life are short in vivo. For this reason, many domestic and international scholars are exploring the ways to make growth factors releasing sustainable and effective. Preparing growth factor controlled-release microspheres or using intelligent controlled-release carrier materials can make growth factors released slowly and sustainable; Using genetic engineering, that is integrate target gene of growth factors into target cells by carriers, also can make growth factors expressing sustainable and limited in cells and tissues. Both methods are expected to solve the problem that growth factors can’t play their biological role effectively. This paper will make a review on setting up sustained and controlled release system and gene therapy.[Key words]growth factor;periodontal tissue regeneration;sustained and controlled release system;gene therapy生长因子是一种多功能调节肽,在细胞间起信号传递作用,有调节细胞黏附、生长、增殖以及细胞外基质合成的作用,是组织修复的基本调节者。
药物缓释载体材料类型及其临床应用随着医学技术的发展,人们对于药物治疗的要求越来越高。
传统的药物治疗方式存在着一定的局限性,如药物的剂量难以精确控制、药物的代谢和排泄速度难以预测等。
为了解决这些问题,药物缓释技术应运而生。
药物缓释技术可以使药物在体内逐渐释放,从而达到更好的治疗效果。
药物缓释技术的核心就是药物缓释载体材料。
本文将介绍药物缓释载体材料的类型及其临床应用。
一、天然高分子材料天然高分子材料是一类来源于动植物的天然材料,如明胶、海藻酸、羟丙基甲基纤维素等。
这类材料具有良好的生物相容性和生物可降解性,能够有效地缓释药物。
例如,明胶作为一种天然高分子材料,可以制备成微球或凝胶形式,用于缓释肝素、阿霉素等药物,临床应用广泛。
二、合成高分子材料合成高分子材料是一类人工合成的高分子材料,如聚乳酸、聚己内酯、聚乙烯醇等。
这类材料具有良好的可控性和可调性,能够根据药物的特性进行设计和调整。
例如,聚乳酸是一种可生物降解的合成高分子材料,可以用于缓释阿霉素、奥美拉唑等药物。
三、无机材料无机材料是一类来源于矿物和人工合成的无机材料,如硅胶、氧化铝、羟基磷灰石等。
这类材料具有良好的生物相容性和生物可降解性,能够有效地缓释药物。
例如,硅胶是一种常用的无机材料,可以制备成微球或凝胶形式,用于缓释利福平、阿霉素等药物,临床应用广泛。
四、纳米材料纳米材料是一种尺寸在纳米级别的材料,如纳米金、纳米银、纳米氧化锌等。
这类材料具有良好的生物相容性和生物可降解性,能够有效地缓释药物。
例如,纳米氧化锌可以制备成纳米粒子形式,用于缓释阿霉素、多西环素等药物,临床应用广泛。
综上所述,药物缓释载体材料的类型多种多样,每种材料都具有其独特的优势和适用范围。
在临床应用中,医生可以根据药物的特性和患者的情况选择适合的药物缓释载体材料,以达到更好的治疗效果。
载苯妥英钠、硝苯地平、环孢素的PLGA缓释微球对牙周组织再生的作用第一部分大鼠药物性牙龈增生模型的建立实验目的:以SD雄性大鼠为实验对象,建立药物性牙龈增生的动物模型。
实验方法:选择两种致药物性牙龈增生的代表药物,分别为抗癫痫药苯妥英钠和钙通道阻滞剂硝苯地平,给药方式为全身给药(口服),给药时间设定为25天、50天、75天,按不同给药时间对大鼠进行分组,对大鼠进行给药实验,每日给药一次,给药期结束后,处死实验鼠,收集上下颌骨及牙周组织,在体视显微镜下观察并测量牙龈厚度的变化,然后石蜡包埋切片,HE染色及免疫组化,并分析实验结果。
实验结果:在苯妥英钠或硝苯地平长期口服给药下,SD雄性大鼠的牙龈表现出较为明显的增生(p<0.01或p<0.05),与对照组比较发现,实验组牙龈厚度增厚,牙龈上皮钉突伸长。
结论:苯妥英钠和硝苯地平长期全身用药,可以诱导大鼠牙龈组织的药物性增生。
第二部分苯妥英钠局部注射给药对大鼠牙龈的作用实验目的:在SD雄性大鼠上颌磨牙的牙龈局部注射致牙龈增生的药物苯妥英钠溶液,观察苯妥英钠对SD大鼠牙龈的作用情况。
实验方法:SD雄性大鼠行进行全身麻醉,采用自身对照的方法,在大鼠上颌一侧的第一磨牙颊侧龈颊沟黏膜下注射苯妥英钠溶液,每日给药一次,给药剂量为20ul,间隔24小时,40天后处死实验鼠,收集大鼠上颌骨及牙周组织,观察并测量大鼠牙龈厚度的变化。
实验结果:给药结束后收集分析数据结果显示,局部注射苯妥英钠溶液后,与对照组相比,大鼠实验组的牙龈并未出现增生(p>0.05)。
结论:以苯妥英钠溶液的形式进行局部注射给药不能诱导大鼠牙龈增生,有必要改进给药方法和剂型。
第三部分载苯妥英钠、硝苯地平、环孢素的聚乳酸羟基乙酸(PLGA)缓释微球对牙周组织再生的作用实验目的:苯妥英钠、硝苯地平、环孢素是三大类致药物性牙龈增生药(抗癫痫药,钙通道拮抗剂,免疫抑制剂)的代表药,通过一种生物相容性材料PLGA作为载体,将这三种药物分别导入大鼠牙龈退缩模型中,以缓释给药的方式,检验三种药物,对牙龈退缩的治疗效果。
牙周引导性组织再生术(GTR)技术大全一、GTR概述牙周病是人类最常见的口腔疾病之一,是成年人失牙的最主要原因。
在牙周病的病发初期,牙周支撑组织的结构遭到破坏,随着病情的加重,逐渐发展为牙周附着的结构丧失,最后造成牙齿脱落。
获得牙周组织再生的手术治疗称为再生性手术。
主要有引导性组织再生术(GTR)、植骨术和与生长因子有关的促进再生的方法,或上述方法的联合应用。
一)牙周组织损伤破坏后的修复细胞来源二)牙周GTR的应用基础在牙周手术中利用膜性材料作为屏障,阻挡牙龈上皮在愈合过程中沿根面生长,阻挡牙龈结缔组织与根面接触,并提供一定的空间,引导具有形成新附着能力的牙周膜细胞优先占领根面,从而在已暴露于牙周袋内的根面上形成新的牙骨质,并有牙周膜纤维埋入,形成牙周组织的再生,即形成新附着性愈合。
二、GTR技术的理论基础一)GTR的基本原理及示意图二)GTR生物膜材料的类型1、合适的隔离膜必须具备以下性质:1)良好的组织相容性和生物相容性;2)理想的硬度和强度;3)能有效地起到物理屏障作用,产生及维持再生空间;4)良好的细胞封闭性能,屏蔽细胞同时通过营养物质;5)外科手术使用方便,临床可操作性好等。
2、两种GTR生物膜材料类型的比较1)不可吸收性膜包括聚四氟乙烯膜(ePTFE)和钛加强的聚四氟乙烯膜。
其优点是性能稳定,可根据病情灵活选择放置时间。
新型的钛加强膜还能更好地抵抗和支撑牙龈组织,保证膜下再生空间的维持。
缺点是需二次手术取出膜材料,对新生组织造成机械损伤而影响其愈合过程,去除膜后龈瓣可能不能完全覆盖新生组织,而且还增加患者痛苦和费用。
2)可吸收性膜包括天然的胶原膜和人工高分子聚合物膜(包括常用的聚乳酸膜、聚羟基乙酸膜等)。
其优点在于能在体内随时间而逐渐降解,避免了二次手术,减少了损伤。
缺点是当发生膜的暴露时不能去除,从而使感染扩散至膜下的新生组织。
应用实践表明这两大类生物膜均能显著增加牙周附着水平,二者之间并无明显差异;但在可吸收性膜之间比较,似乎高分子聚合物膜效果更佳。
plga在医学中的应用PLGA在医学中的应用1. PLGA在药物传递系统中的应用•PLGA可以被用作药物缓释系统的载体,用于控制药物的释放速率和时间,以提高治疗效果和减少副作用。
•PLGA微粒可以被注射入体内,通过渗透和溶解来释放药物,在治疗癌症等疾病中具有潜在应用前景。
2. PLGA在组织工程中的应用•PLGA可以被用于制备生物可降解的支架,用于组织工程中的细胞培养和组织修复。
•通过调整PLGA支架的特性,如孔径、孔隙率和降解速率,可以改变组织工程中细胞的附着、增殖和分化行为。
3. PLGA在生物成像中的应用•PLGA可以被用于制备纳米粒子,用于生物成像,如荧光成像、磁共振成像(MRI)和超声成像等。
•由于PLGA的生物相容性和可调节的降解速率,PLGA纳米粒子被广泛应用于肿瘤诊断和治疗监测等方面。
•PLGA可以被用于基因传递系统的制备,用于将基因转染到细胞中,以治疗遗传性疾病或促进组织再生。
•PLGA纳米颗粒可以保护DNA或RNA等基因药物,增强其稳定性和细胞摄取能力,提高基因传递的效率。
5. PLGA在修复骨折中的应用•PLGA可以被用于制备骨修复支架,在骨折治疗中起到促进骨愈合和提供支撑的作用。
•PLGA支架可以被设计成有孔的结构,有利于血管生长和新骨生成,并最终被降解为体内的二氧化碳和水。
6. PLGA在眼科治疗中的应用•PLGA可以制备成眼用药物缓释系统,如滴眼剂、眼贴片等,用于治疗眼部疾病,如青光眼和视网膜疾病等。
•通过调整PLGA的降解速率和药物释放速率,可以实现长期的治疗效果,并减少患者的用药频率。
以上是一些PLGA在医学中的应用示例,PLGA的可调控特性使其成为一种理想的生物可降解材料,有望广泛应用于医学领域中的各种应用。
•PLGA可以被用于制备牙周药物传递系统,用于治疗牙周疾病,如牙周炎和牙周脓肿。
•PLGA微球或纳米颗粒可以有效地控制药物的释放速率,延长药物在牙周组织中的停留时间,提高治疗效果。
口腔医学中牙周组织再生技术的研究进展牙周组织再生技术是口腔医学领域的重要研究方向之一。
随着人们对口腔健康的重视以及对牙周疾病防治效果的不断要求提高,牙周组织再生技术的研究进展越来越受到人们的关注。
本文将介绍牙周组织再生技术的定义、发展历程以及新的研究进展,以期为相关领域的研究与临床应用提供参考。
一、牙周组织再生技术的定义牙周组织再生技术(Periodontal Tissue Regeneration)是指通过一系列手段和方法,促进牙周组织的损伤修复和再生,在形态和功能上尽可能恢复正常牙周组织的一种治疗方法。
它旨在通过促进牙周组织的再生,重建被破坏的牙周组织结构,改善牙周环境,提高口腔卫生状况,从而达到治疗牙周疾病和保护牙齿的目的。
二、牙周组织再生技术的发展历程牙周组织再生技术的研究始于20世纪80年代末,当时主要采用的方法是利用自体骨移植和骨代用材料进行骨填充和牙周组织再生。
但是这些方法存在着损伤供区、手术时间长、手术难度大等问题,限制了它们的临床应用。
随着生物学、生物材料学和组织工程学的发展,牙周组织再生技术得到了重要的突破。
新的研究方法包括使用可吸收的膜覆盖创口、利用生物材料和细胞因子等辅助再生,以及通过基因治疗促进牙周组织再生。
这些方法在促进牙周再生、降低手术创伤、提高治疗效果等方面都取得了显著的进展。
三、牙周组织再生技术的新进展1. 可吸收膜覆盖创口可吸收膜作为一种应用广泛的辅助材料,可以覆盖创口,形成良好的微环境,促进软组织再生。
研究表明,可吸收膜的应用能够有效地促进牙周组织再生,减少手术创伤,提高治疗效果。
2. 生物材料和细胞因子辅助再生生物材料和细胞因子的应用也成为牙周组织再生技术研究的热点。
生物材料包括人工骨粉、骨基质蛋白等,它们可以提供支架结构和促进细胞黏附、增殖和分化。
细胞因子则通过刺激细胞的增殖和分化,促进牙周组织的再生。
3. 基因治疗促进再生基因治疗是近年来牙周组织再生技术的新兴领域。
[文章编号]㊀1674⁃8603(2020)04⁃0270⁃00牙周膜干细胞在牙周组织再生中的研究新进展吴博昊1,安莹2∗(1.空军军医大学基础医学院,陕西西安710032;2.军事口腔医学国家重点实验室,国家口腔疾病临床研究中心,陕西省口腔生物工程技术研究中心,空军军医大学口腔医院牙周病科,陕西西安710032)[摘要]㊀牙周膜干细胞(PDLSCs)具有增殖及多向分化潜能等特性,在牙周组织再生方面具有广阔的应用前景㊂本文总结了PDLSCs的生物学特性及其在牙周组织再生中的最新应用,并对其将来的临床应用前景进行展望㊂[关键词]㊀牙周膜干细胞;牙周再生;组织工程[中图分类号]㊀R781.4㊀㊀[文献标识码]㊀A㊀㊀[doi]㊀10.3969/j.issn.1674⁃8603.2020.04.013基金项目:国家自然科学基金(81700971)∗通信作者:安莹,Email:anying@fmmu.edu.cn㊀㊀牙周炎是由牙菌斑引起的牙周组织的慢性炎症,进而造成牙槽骨的破坏吸收,是导致牙齿缺失的主要原因之一㊂近期的研究表明牙周炎与一些全身系统的疾病密切相关,例如阿兹海默症[1]㊁冠心病[2]以及免疫系统疾病[3]等㊂牙周炎的传统治疗,如洁治术和刮治术等,可以控制炎症,但难以恢复牙周组织的形态和功能㊂牙周组织再生是通过组织工程的方法,在体外利用种子细胞㊁生长因子以及生物支架,搭建出三维的移植复合体,以修复和改善牙周组织的形态和功能[4]㊂种子细胞是组织工程的核心和必要成分,牙周膜干细胞(periodontalligamentstemcells,PDLSCs)是一类有克隆增殖能力㊁多向分化潜能和免疫调控等生物学特性的成体干细胞㊂由于PDLSCs是从牙周组织中分离获取,因而也是最适宜牙周再生的种子细胞之一㊂生长因子在牙周再生中具有重要作用,适宜的生长因子可以促进干细胞的增殖㊁分化以及生成组织的能力㊂支架材料应当具有生物相容性㊁可降解性㊁高孔隙率以及良好的表面活性等特性[5],为干细胞提供附着㊁增殖㊁分化和分泌细胞外基质的土壤㊂本文从上述角度出发,对PDLSCs生物学特性㊁牙周再生的支架材料㊁牙周再生的生物活性分子以及近年用PDLSCs进行牙周再生的临床实验作一综述㊂1㊀PDLSCs的生物学特性1.1㊀PDLSCs的来源以及表面标记牙周膜组织是连接牙根与牙槽骨的致密结缔组织,其主要生理功能是缓冲牙合力㊁稳固支持和营养等作用㊂PDLSCs是从牙周膜组织中分离出的一类干细胞㊂2004年,Seo等[6]首次利用酶消化法从人的牙周膜组织中分离出PDLSCs,这种干细胞表现出类似间充质干细胞(mysenchymalstemcells,MSCs)的生物学特性,同时也会表达MSCs的相关标记㊂因而,起初研究者会使用MSCs的相关标记物鉴别PDLSCs,如基质细胞抗原1(stromalcellantigen1,STRO1)㊁CD146和粘蛋白18(mucoprotein,MUC18)㊂Trubiani等[7]在PDLSCs表面检测到了更多的MSCs标记物,包括CD10㊁CD26㊁CD29㊁CD73和卷曲受体蛋白9(Frizzled⁃9,FZD9)等;同时PDLSCs表面也会存在一些基质细胞㊁内皮细胞的标记物,如CD44㊁CD90㊁CD105㊁CD166㊁STRO3等[8]㊂相对于外周血和脐带来源的MSCs,PDLSCs有更多的胚胎干细胞的标记物表达[9],这些分子能够一定程度体现干细胞的未分化特性㊂例如:相比牙髓干细胞(dentalpulpstemcells,DPSCs)和骨髓间充质干细胞(bonemarrowmesenchymalstemcells,BMMSCs),PDLSCs会表达更多的阶段特异性抗原4(stage⁃specificembryonicantigen4,SSEA⁃4),这表明PDLSCs具有MSCs样的性质以及更多未分化细胞的特性[8]㊂1.2㊀PDLSCs的增殖能力PDLSCs在体外具有一定克隆增殖的能力,其增殖潜能比BMMSCs和DPSCs更强[10],通常BMMSCs在第50代时就已经无法继续传代,而PDLSCs在第100代时仍然保有一定的增殖能力[11]㊂Liu等[12]发现处于咀嚼应力区的牙周组织,会表现出更强的活性和自我修复能力,这表明PDLSCs的增殖能力与机械负荷相关㊂Monnouchi等[13]发现白介素(interleukin,IL)⁃11㊁血管紧缩素(angiotensin,Ang)Ⅱ及其2型受体(AngⅡreceptortype2,AGTR2)参与了机械负荷对PDLSCs的增殖能力的调控,机械负荷会促进PDLSCs分泌IL⁃11,作用于AngⅡ/AGTR2通路促进PDLSCs的增殖㊂缺氧环境也会促进PDLSCs的增殖[14],经过音猬因子(sonichedgehog,Shh)处理的PDLSCs也表现出更高的增殖能力[15]㊂还有研究表明,在牙周病中起重要作用的炎症调控因子IL⁃10的上调也可以促进PDLSCs的增殖[16]㊂1.3㊀PDLSCs的多向分化潜能1.3.1㊀成骨分化能力㊀Seo等[6]首次发现了PDLSCs的成骨能力,他们将PDLSCs与羟基磷灰石(hydroxyapatite,HA)/β⁃磷酸三钙(β⁃tricalciumphosphate,β⁃TCP)陶瓷的复合材料移植至大鼠体内,6 8周后处死大鼠,茜素红染色显示生成大量矿化结节,免疫组化结果检测到大量成骨相关分子的高表达㊂PDLSCs的成骨能力也受多方面因素影响,Zhao等[17]用脂多糖(lipopolysaccharide,LPS)模拟PDLSCs的炎症环境,并加入了芦丁,碱性磷酸酶(alkalinephosphatase,ALP)和茜素红染色等结果显示,芦丁可以有效地减弱炎症状态对于PDLSCs成骨的抑制㊂外泌体对PDLSCs的成骨分化也有调节作用,Wang等[18]在成骨诱导条件下的PDLSCs中加入了人脱落乳牙牙髓干细胞(stemcellsfromexfo⁃liateddeciduousteeth,SHED)来源的外泌体,促进了PDLSCs的成骨分化㊂骨组织的恢复是牙周组织再生的关键之一,因而PDLSCs成骨能力方面的研究,对于牙周再生有十分重要的意义㊂1.3.2㊀成脂分化能力㊀PDLSCs的成脂能力最早也是由Seo的团队所发现,他们在PDLSCs的培养基中加入含有胰岛素㊁地塞米松等成分的 鸡尾酒 成脂诱导液,3周后油红O染色后可见细胞内的脂滴,RT⁃PCR检测也显示成脂分子 过氧化物酶体增殖物激活受体γ2(peroxisomeproliferator⁃activatedreceptorγ2,PPARγ2)的表达大量上调[6]㊂Deng等[19]在25mmol/L葡萄糖的高糖环境下培养PDLSCs,发现其成脂能力会有提升,成脂诱导7d后RT⁃PCR结果显示,PPARγ等成脂相关分子的mRNA远高于对照组,但成骨能力会受到抑制,这或许也是糖尿病患者PDLSCs修复能力明显减弱的原因之一㊂Yang等[20]用一氧化氮合成酶的抑制剂 L⁃单甲基精氨酸作用于PDLSCs,其成脂的能力明显提升,但成骨能力也受到了抑制㊂许多研究都证实了PDLSCs的成脂能力,但上文所述的成脂能力和成骨能力互相拮抗的机制或许会为如何提高PDLSCs的成骨能力,提供一种新的思路㊂1.3.3㊀其他的分化能力㊀PDLSCs可以形成Sharpey纤维样的组织:Lim等[21]用β⁃卡波林生物碱处理PDLSCs,将其播种至双相磷酸钙,移植到免疫缺陷小鼠的皮下,8周后PDLSCs表现出更高的矿化程度,并且形成类似Sharpey纤维样的组织垂直连接矿化组织,这对牙周再生具有重要意义㊂PDLSCs还具有成牙骨质的能力:Jin等[22]用纤溶酶原激活物抑制剂(plasminogenactivatorinhibitor⁃1,PAI⁃1)处理PDLSCs,将其与HA/β⁃TCP和人牙根牙本质基质制成的移植复合物移植至免疫缺陷小鼠的背部,8周后在HA/β⁃TCP表面形成了牙骨质样物质㊂除此以外,PDLSCs还可通过短时机械应力刺激,分化为表达肌动蛋白㊁心肌肌钙蛋白T等心肌标记物的心肌样细胞[23];用胰岛素㊁激活素⁃A㊁丁酸钠㊁2⁃巯基乙醇等可将PDLSCs诱导为可在高糖环境下分泌胰岛素的胰岛样细胞[24];PDLSCs还可以分化为视网膜神经节样细胞,表达神经元和视网膜的相关标记物,并且可以形成有效突触[25]㊂由于人PDLSCs可以来源于作用较少的第三磨牙,因而除了用于骨组织和牙周组织再生,还被用于软骨组织㊁神经组织㊁心肌组织等多种组织的再生㊂2㊀生长因子对PDLSCs调控生长因子可以有效地促进PDLSCs的增殖㊁分化以及成骨能力㊂近年来,除了经典的生长因子,其他一些生物活性分子也被用于牙周再生,如微小RNA(microRNA,miRNA)㊁成骨信号分子等㊂2.1㊀经典生长因子转化生长因子(transforminggrowthfactor,TGF)β1㊁胰岛素样生长因子(insulin⁃likegrowthfactor,IGF)等经典生长因子广泛存在于外周血及血小板制品中,如富血小板血浆(platelet⁃richplasma,PRP)㊁富血小板纤维蛋白(platelet⁃richfibrin,PRF)等㊂因此,许多学者研究了这类血小板制品对于牙周再生的影响㊂Kornsuthisopon等[26]在犬的牙周炎动物模型中采取翻瓣术并加入PRF的方法,这种方法有效地减轻了炎症,并且有更多的A1型Ⅰ型胶原(Collagen1A1,Col1A1)和A1型Ⅲ型胶原(Colla⁃gen3A1,Col3A1)的分泌,而Col1A1和Col3A1的分泌水平能够反映PDLSCs的成骨能力㊂Duan等[27]将PRF与PDLSCs的复合物移植至小鼠的牙周组织,结果显示这种处理会上调移植物骨涎蛋白(bonesialoprotein,BSP)㊁骨钙蛋白(osteocalcin,OCN)㊁Runt相关转录因子2(runt⁃relatedtranscriptionfactor2,RUNX2)和ALP的水平,且可以观察到更多的骨质的生成㊂Ammar等[28]利用水凝胶材料包裹含TGF⁃β1㊁IGF⁃1㊁血小板源生长因子(plateletderivedgrowthfactor,PDGF)的冻干血小板浓缩液,研究表明这种材料可以有效地释放生长因子,提升PDLCSs的生物活性及增殖能力㊂这也为解决生长因子难以被缓释㊁有效递送和吸收的问题,提供了一种值得借鉴的方法㊂2.2㊀成骨相关分子成骨相关分子在组织再生的过程中起到调控和诱导成骨的作用,其中一类重要的成骨相关分子是信号分子,这是一类在细胞间或是细胞内传递信息的生物分子㊂常用于牙周再生的信号分子主要是成骨相关的信号分子,例如骨形成蛋白(bonemorpho⁃geneticprotein,BMP)㊂Acil等[29]研究表明BMP⁃7可以上调PDLSCs中骨桥蛋白(osteopontine,OPN)和OCN等成骨相关蛋白的表达,而且PDLSCs会被诱导为成骨细胞样/成牙骨质细胞样的细胞㊂Kang等[30]利用碱性成纤维细胞生长因子(basicfibroblastgrowthfactor,bFGF)对PDLSCs的增殖能力的促进作用,将其与BMP⁃2协同作用于PDLSCs,增强了PDLSCs的成骨及矿化能力,同时有效地弥补了bFGF对PDLSCs成骨的抑制作用,这种处理方法在牙周再生中值得借鉴㊂2.3㊀miRNA根据目前文献,可以促进PDLSCs成骨分化的miRNA有miR22㊁miR210㊁miR299⁃5p㊁miR543等,而抑制PDLSCs成骨分化能力的有miR125b㊁miR132等[31⁃36]㊂值得注意的是miR218,虽然尚未有文献报导miR218对PDLSCs的调控,但是miR218却可以通过基质金属蛋白酶⁃9(matrixmetalloproteinases,MMP9),抑制破骨细胞的活性,缓解炎症状态,这无疑对牙周再生也是有积极意义的[37]㊂但是,在临床上实现miRNA的有效递送和转运却极其困难㊂Liu等[38]利用聚乳酸㊁聚乙二醇㊁介孔二氧化硅纳米粒子㊁聚乳酸⁃乙醇酸微球等材料,制作出一种可以携带并长时间缓释miRNA以及生长因子的纳米纤维海绵球,将这种材料复合miR⁃10a/IL⁃2/TGF⁃β,移植至牙周炎小鼠模型后,成骨相关分子的表达上调,再生的骨量也有明显提升㊂2.4㊀其他调控PDLSCs成骨作用的分子其他一些生物活性分子,对于PDLSCs的成骨也具有促进作用㊂Jia等[39]发现二甲双胍可以通过蛋白激酶B/核因子相关因子2通路,促进PDLSCs的成骨作用,并对氧化应激状态下的PDLSCs具有一定的保护作用㊂芦丁也可以有效地抵抗炎症状态下PDLSCs成骨分化受到的抑制作用[17]㊂3㊀用于PDLSCs进行牙周再生支架材料生物支架材料为干细胞提供了适宜再生的三维微环境,良好的生物支架材料可以有效地促进细胞的附着㊁增殖㊁分化和组织生成㊂随着材料学的发展,近年也出现了更多应用于牙周再生的新材料㊂3.1㊀羟基磷灰石HA是人骨骼的主要无机成分,具有良好的生物相容性㊂Park等[40]将HA与TCP复合的生物材料作为支架,播种PDLSCs后移植至小鼠皮下,观察到了牙周膜样组织㊁骨样组织和牙骨质样的组织,甚至还观察到了类似Shapey纤维的组织,这对于实现牙周组织更全面的再生无疑有重大意义㊂Higuchi等[41]利用超声喷涂和静电喷涂的方法,在聚合物生物膜表面修饰了一层厚度约为2 3μm的纳米羟基磷灰石,涂层可以有效减缓生物膜的降解,增加生物膜的润湿度,而且细胞毒性较低㊂Wijedasa等[42]将鲷鱼和鲑鱼两种鱼鳞来源的HA,与肽纳米纤维复合成支架材料进行细胞学实验,细胞活力㊁ALP活性和茜素红染色的结果都显示,这两种材料明显优于对照组,且鲑鱼组的细胞成骨分化能力更强㊂Ou等[43]同样利用静电纺丝技术在一种玉米蛋白复合明胶的支架材料中加入了纳米羟基磷灰石,研制出了一种玉米蛋白/明胶/纳米羟基磷灰石复合的纳米生物支架,这种材料具有极为良好的表面润湿性,并且还可以促进人PDLSCs的附着㊁增殖和成骨的分化㊂HA具有与骨质相似的结构㊂其前体β⁃TCP会在植入后6 9个月内被替代㊁吸收,并在吸收的过程中提供成骨相关的钙离子㊁镁离子㊁磷酸根离子等,这些离子还会激活ALP等成骨的关键酶,这些对于成骨及矿化至关重要的离子是其他材料所不具备的[44⁃45]㊂3.2㊀明胶明胶因其生物相容性㊁可降解㊁亲水等性能,近年来常作为生物支架材料用于组织再生㊂Yang等[46]研制出了一种玉米蛋白复合明胶的生物支架,这种材料具有良好的表面润湿性,并且其中的玉米蛋白有良好的生物亲和性能以及可降解性,可以有效地促进人PDLSCs的增殖和附着,但是对于PDLSCs的成骨性能并无明显的调节作用㊂Pan等[47]构建了一种明胶/甲基丙烯酸盐(gelatinmeth⁃acrylate,GelMA)水凝胶的包裹体系,其具有较大的溶胀比㊁良好的通透性和大量的纤维网络,可以为PDLSCs提供适宜附着㊁增殖和成骨分化的微环境㊂GelMA水凝胶包裹PDLSCs修复牙周病所造成的骨缺损,显微CT和组织学切片显示可以形成更多的骨增量,ALP的活性也有显著提升㊂明胶可以加工成为水凝胶的形态,这种形态具有多孔结构,有利于进行细胞和分子的有效募集和递送;同时这种形态可以在募集了干细胞和生长因子后,采用注射的方式移植至缺损部位,对于骨缺损体积普遍较小的牙周组织,这种方式会有效降低手术难度[48]㊂3.3㊀壳聚糖壳聚糖具有利于生物分子缓释的多孔结构,也是组织工程的理想材料之一㊂NivedhithaSundaram等[49]用静电纺丝技术制作出了聚己内酯和壳聚糖的双层复合物,这种材料具有多孔性和利于蛋白质粘附的特性,播种干细胞以后,干细胞的ALP活性以及胶原蛋白的表达都有明显升高㊂Li等[50]研制了一种TGF⁃β3和壳聚糖凝胶海绵的的复合物,可以大幅提升体外实验中人PDLSCs的增殖速率和ALP活性,Ⅰ型胶原㊁ALP㊁TGF⁃βRI㊁TGF⁃βRII等成骨相关分子也有更高的表达㊂同时壳聚糖还存在一定的免疫调节效应㊂Shu等[51]将壳聚糖修饰为2⁃O,6⁃N硫酸化壳聚糖(2⁃N,6⁃O⁃sulfatedchitosan,26SCS),26SCS会在移植的初期短时地活化巨噬细胞,并促进炎症反应,这种反应会逐渐转变为对炎症反应的抑制,他们推测这种免疫调节能力可能形成良好的免疫微环境,这种微环境在成骨的过程中会增强干细胞与免疫细胞间的交流,有利于成骨的过程,并且26SCS还会通过成骨相关的通路促进干细胞的成骨能力㊂Li等[52]还将壳寡糖进行磺酸化处理,磺化壳寡糖可以与bFGF产生更紧密的结合㊂bFGF可以有效促进人PLDSCs的体外增殖,抑制其成骨分化,但磺化壳寡糖可以缓解bFGF对于PDLSCs的成骨分化抑制,表明磺化壳寡糖可能存在一定的促进成骨能力㊂Ge等[53]将壳聚糖涂布于纳米羟基磷灰石,在其表面培养的PDLSCs表现出更高的成活率,更高的ALP活性以及BSP㊁OPN㊁OCN等成骨相关蛋白的表达㊂壳聚糖的独特优势在于其抗菌特性,这种特性在有菌的口腔环境下具有独特优势;同时壳聚糖还可以加工成与上述明胶类似的水凝胶形态支架材料㊂但壳聚糖的缺点是灭菌过程会降低其分子量㊁黏度和凝胶化程度,这可能会导致其对细胞的募集能力下降[54⁃55]㊂如上文所述,不同材料具有不同的生物学特性,各有优劣,因而可以结合各种材料优势,研制出多种材料复合的㊁具有良好生物学特性㊁理化性质以适宜的微观表面结构的材料,或许是未来牙周组织再生的关键㊂4㊀PDLSCs用于牙周再生的动物实验及临床研究关于PDLSCs应用于牙周再生的动物实验前文已有所叙述,但许多动物模型并不是牙周炎模型,未将细胞移植至颌骨内㊂Iwasaki等[56]在免疫缺陷小鼠的第一磨牙处通过手术建立了Ⅱ度骨缺损的牙周炎模型,以人的羊膜为支架移植入人PDLSCs,结果显示在牙周膜间隙内形成更加粗大的胶原束,几近垂直的连接着新形成的类牙骨质层与新生骨组织㊂Nuñez等[57]则在犬的上颌第一磨牙通过手术建立了牙周炎模型,但实验结果却显示PDLSCs对于牙周组织再生无影响,其原因可能是手术破坏较深,达到了根分叉以下,移植的细胞数量可能不足,而且未使用生物膜㊂这提示在牙周再生中,移植与缺损量相匹配的PDLSCs以及维持PDLSCs的相对稳定,都是十分重要的㊂鉴于干细胞疗法安全和伦理学问题一直存在争议,近年来PDLSCs用于临床研究十分有限㊂Chen等[58]采用单中心随机实验的方法将30名有骨缺损的牙周炎患者分为两组,实验组用自体PDLSCs+引导组织再生(guidedtissueengineering,GTR)+人工骨粉,而对照组仅用GTR+人工骨粉,虽然实验结果显示两组的临床疗效并无统计学差异,然而却证实了自体PDLSCs移植的安全性㊂Shalini等[59]将28名中重度牙周炎患者随机分为两组,比较了在翻瓣手术中移植自体PDLSCs与仅实施翻瓣术两种治疗方法的疗效㊂PDLSCs从患者自身智齿获取,与其周围的细胞外基质一同迅速与明胶支架材料混合,植入骨缺损;术后3㊁6㊁9㊁12个月,相对于对照组,实验组牙周袋深度明显降低,骨缺损区的骨密度明显增加㊂Iwata等[60]则是挑选了牙周袋深度超过了4mm的患者,利用患者自体智齿获取的PDLSCs,在体外用自体PDLSCs与β⁃TCP支架和可降解的聚乙二醇酸网制成的细胞膜片移植至牙周缺损的区域;6个月后,相比对照组,实验组患者牙周袋深度㊁临床附着丧失和骨高度都得到了明显地改善㊂上述研究结果表明,使用自体PDLSCs治疗牙周炎,目前为止是相对安全的㊂然而目前对于此种疗法的适应证(如牙周袋深度㊁牙齿松动度㊁骨缺损度等)和根分叉病变等牙周炎并发症是否也适用此种疗法,并没有文献报道㊂目前已报道的文献是以需翻瓣治疗甚至植骨的中重度牙周炎作为此种疗法的适应症㊂临床的有效性方面,目前只有文献证明对于牙周袋超过4mm的中重度牙周炎患者,PDLSCs自体移植的治疗可能是有效的[60]㊂因而还需要大样本量的临床研究,以进一步探究其临床的有效性和具体适应症㊂5 展望组织工程技术的飞速发展,为牙周再生这一新型治疗方法打下了更深厚的基础,但牙周再生需要面临诸多方面的问题和挑战㊂首先是干细胞的大量获取,作为最适宜牙周再生的干细胞之一的PDLSCs,人体来源极其单一,尤其是患有重度牙周病的患者㊂近年来细胞编程技术的出现可以提供解决思路,即用成体细胞诱导为诱导多能干细胞(in⁃ducedpluripotentstemcells,iPSCs),进而诱导为所需的细胞[61]㊂Hamano等[62]曾将真皮成纤维细胞诱导为iPSCs,进而诱导为PDLSCs㊂其次是如何便捷地制作出适宜PDLSCs生长分化,可以递送各种生长因子的支架材料,这类支架材料应当具有良好的生物相容性㊁可降解㊁亲水性,适宜的微观表面形貌和多孔结构,能够与一些包裹生长因子的载体紧密的结合㊂最后,PDLSCs应用于牙周再生的安全性和有效性还需要大样本量的临床实验来证明㊂[参㊀考㊀文㊀献][1]㊀TonsekarPP,JiangSS,YueG.Periodontaldisease,toothlossanddementia:Istherealink?Asystematicreview[J/OL].Ger⁃odontology,2017,34(2):151⁃163[2020⁃02⁃22].https://doi.org/10.1111/ger.12261.[2]㊀ZanellaSM,PereiraSS,BarbisanJN,etal.Periodontaldisease,toothlossandcoronaryheartdiseaseassessedbycoronaryangiog⁃raphy:across⁃sectionalobservationalstudy[J/OL].JPeriodontalRes,2016,51(2):221⁃227[2020⁃02⁃22].https://doi.org/10.1111/jre.12301.[3]㊀MichaudDS,FuZ,ShiJ,etal.PeriodontalDisease,ToothLoss,andCancerRisk[J/OL].EpidemiolRev,2017,39(1):49⁃58[2020⁃02⁃22].https://doi.org/10.1093/epirev/mxx006.[4]㊀LangerR,VacantiJP.Tissueengineering[J/OL].Science,1993,260(5110):920⁃926[2020⁃02⁃22].https://doi.org/10.1126/science.8493529.[5]㊀CarmagnolaD,TarceM,DellaviaC,etal.Engineeredscaffoldsandcell⁃basedtherapyforperiodontalregeneration[J/OL].JApplBiomaterFunctMater,2017,15(4):e303⁃e312[2020⁃02⁃22].https://doi.org/10.5301/jabfm.5000389.[6]㊀SeoBM,MiuraM,GronthosS,etal.Investigationofmultipotentpostnatalstemcellsfromhumanperiodontalligament[J/OL].Lancet,2004,364(9429):149⁃155[2020⁃02⁃22].https://doi.org/10.1016/S0140⁃6736(04)16627⁃0.[7]㊀TrubianiO,ZalzalSF,PaganelliR,etal.Expressionprofileoftheembryonicmarkersnanog,OCT⁃4,SSEA⁃1,SSEA⁃4,andfrizzled⁃9receptorinhumanperiodontalligamentmesenchymalstemcells[J/OL].JCellPhysiol,2010,225(1):123⁃131[2020⁃02⁃22].https://doi.org/10.1002/jcp.22203.[8]㊀WadaN,MenicaninD,ShiS,etal.Immunomodulatorypropertiesofhumanperiodontalligamentstemcells[J/OL].JCellPhysiol,2009,219(3):667⁃676[2020⁃02⁃22].https://doi.org/10.1002/jcp.21710.[9]㊀Trivanovic'D,Jaukovic'A,Popovic'B,etal.Mesenchymalstemcellsofdifferentorigin:Comparativeevaluationofproliferativeca⁃pacity,telomerelengthandpluripotencymarkerexpression[J/OL].LifeSci,2015,141:61⁃73[2020⁃02⁃22].https://doi.org/10.1016/j.lfs.2015.09.019.[10]EleuterioE,TrubianiO,SulpizioM,etal.Proteomeofhumanstemcellsfromperiodontalligamentanddentalpulp[J/OL].PLoSOne,2013,8(8):e71101[2020⁃02⁃22].https://doi.org/10.1371/journal.pone.0071101.[11]ShiS,BartoldPM,MiuraM,etal.Theefficacyofmesenchymalstemcellstoregenerateandrepairdentalstructures[J/OL].OrthodCraniofacRes,2005,8(3):191⁃199[2020⁃02⁃22].ht⁃tps://doi.org/10.1111/j.1601⁃6343.2005.00331.x.[12]LiuJ,LiQ,LiuS,etal.PeriodontalLigamentStemCellsinthePeriodontitisMicroenvironmentAreSensitivetoStaticMechanicalStrain[J/OL].StemCellsInt,2017,2017:1380851[2020⁃02⁃22].https://doi.org/10.1155/2017/1380851.[13]MonnouchiS,MaedaH,YudaA,etal.Mechanicalinductionofinterleukin⁃11regulatesosteoblasticcementoblasticdifferentiationofhumanperiodontalligamentstemprogenitorcells[J/OL].JPer⁃iodontalRes,2015,50(2):231⁃239[2020⁃02⁃22].https://doi.org/10.1111/jre.12200.[14]HeY,JianCX,ZhangHY,etal.HypoxiaenhancesperiodontalligamentstemcellproliferationviatheMAPKsignalingpathway[J/OL].GenetMolRes,2016,15(4)[2020⁃02⁃22].https://doi.org/10.4238/gmr15048965.[15]MartinezC,SmithPC,RodriguezJP,etal.Sonichedgehogstim⁃ulatesproliferationofhumanperiodontalligamentstemcells[J/OL].JDentRes,2011,90(4):483⁃488[2020⁃02⁃22].http://dx.doi.org/10.1177/0022034510391797.[16]LiuY,YangJ,SunW.UpregulationofIL⁃10expressioninhibitstheproliferationofhumanperiodontalligamentstemcells[J/OL].BrazOralRes,2020,34:e030[2020⁃02⁃22].https://doi.org/10.1590/1807⁃3107bor⁃2020.vol34.0030.[17]ZhaoB,ZhangW,XiongY,etal.Effectsofrutinontheoxidativestress,proliferationandosteogenicdifferentiationofperiodontalligamentstemcellsinLPS⁃inducedinflammatoryenvironmentandtheunderlyingmechanism[J/OL].JMolHistol,2020,51(2):161⁃171[2020⁃02⁃22].https://doi.org/10.1007/s10735⁃020⁃09866⁃9.[18]WangM,LiJ,YeY,etal.SHED⁃derivedconditionedexosomesenhancetheosteogenicdifferentiationofPDLSCsviaWntandBMPsignalinginvitro[J/OL].Differentiation,2020,111:1⁃11[2020⁃02⁃22].https://doi.org/10.1016/j.diff.2019.10.003.[19]DengC,SunY,LiuH,etal.Selectiveadipogenicdifferentiationofhumanperiodontalligamentstemcellsstimulatedwithhighdosesofglucose[J/OL].PloSone,2018,13(7):e0199603[2020⁃02⁃22].https://doi.org/10.1371/journal.pone.0199603.[20]YangS,GuoL,SuY,etal.NitricoxidebalancesosteoblastandadipocytelineagedifferentiationviatheJNK/MAPKsignalingpathwayinperiodontalligamentstemcells[J/OL].StemCellResTher,2018,9(1):118[2020⁃02⁃22].https://doi.org/10.1186/s13287⁃018⁃0869⁃2.[21]LimHC,ChaBY,SongSU,etal.Harminepromotesperiodontalligamentcell⁃inducedtissueregeneration[J/OL].OralDis,2018,24(3):456⁃464[2020⁃02⁃22].https://doi.org/10.1111/odi.12770.㊀㊀[22]JinH,ChoungHW,LimKT,etal.RecombinantHumanPlasmino⁃genActivatorInhibitor⁃1PromotesCementogenicDifferentiationofHumanPeriodontalLigamentStemCells[J/OL].TissueEngPartA,2015,21(23/24):2817⁃2828[2020⁃02⁃22].https://doi.org/10.1089/ten.TEA.2014.0399.[23]PelaezD,AcostaTorresZ,NgTK,etal.Cardiomyogenesisofper⁃iodontalligament⁃derivedstemcellsbydynamictensilestrain[J/OL].CellTissueRes,2017,367(2):229⁃241[2020⁃02⁃22].ht⁃tps://doi.org/10.1007/s00441⁃016⁃2503⁃x.[24]LeeJS,AnSY,KwonIK,etal.Transdifferentiationofhumanperiodontalligamentstemcellsinto;pancreaticcelllineage[J/OL].CellBiochemFunct,2014,32(7):605⁃611[2020⁃02⁃22].http://dx.doi.org/10.1002/cbf.3057.[25]NgTK,YungJS,ChoyKW,etal.Transdifferentiationofperio⁃dontalligament⁃derivedstemcellsintoretinalganglion⁃likecellsanditsmicroRNAsignature[J/OL].SciRep,2015,5:16429[2020⁃02⁃22].https://doi.org/10.1038/srep16429.[26]KornsuthisoponC,PiraratN,OsathanonT,etal.Autologousplatelet⁃richfibrinstimulatescanineperiodontalregeneration[J/OL].SciRep,2020,10(1):1850[2020⁃02⁃22].https://doi.org/10.1038/s41598⁃020⁃58732⁃x.[27]DuanX,LinZ,LinX,etal.Studyofplatelet⁃richfibrincombinedwithratperiodontalligamentstemcellsinperiodontaltissueregeneration[J/OL].JCelMolMed,2018,22(2):1047⁃1055[2020⁃02⁃22].https://doi.org/10.1111/jcmm.13461.[28]AmmarMM,WalyGH,SaniourSH,etal.Growthfactorreleaseandenhancedencapsulatedperiodontalstemcellsviabilitybyfreeze⁃driedplateletconcentrateloadedthermo⁃sensitivehydrogelforperiodontalregeneration[J/OL].SaudiDentJ,2018,30(4):355⁃364[2020⁃02⁃22].https://doi.org/10.1016/j.sdentj.2018.06.002.[29]AçilY,YangF,GulsesA,etal.Isolation,characterizationandinvestigationofdifferentiationpotentialofhumanperiodontalliga⁃mentcellsanddentalfollicleprogenitorcellsandtheirresponsetoBMP⁃7invitro[J/OL].Odontology,2016,104(2):123⁃135[2020⁃02⁃22].https://doi.org/10.1007/s10266⁃015⁃0198⁃1.[30]KangW,LiangQ,DuL,etal.SequentialapplicationofbFGFandBMP⁃2facilitatesosteogenicdifferentiationofhumanperio⁃dontalligamentstemcells[J/OL].JPeriodontalRes,2019,54(4):424⁃434[2020⁃02⁃22].https://doi.org/10.1111/jre.1264434.㊀㊀[31]YanGQ,WangX,YangF,etal.MicroRNA⁃22PromotedOsteo⁃genicDifferentiationofHumanPeriodontalLigamentStemCellsbyTargetingHDAC6[J/OL].JCelBiochem,2017,118(7):1653⁃1658[2020⁃02⁃22].https://doi.org/10.1002/jcb.25931.[32]PizzicannellaJ,CavalcantiM,TrubianiO,etal.MicroRNA210MediatesVEGFUpregulationinHumanPeriodontalLigamentStemCellsCulturedon3DHydroxyapatiteCeramicScaffold[J/OL].IntJMolSci,2018,19(12):3916[2020⁃02⁃22].https://doi.org/10.3390/ijms19123916.[33]Kaneda⁃IkedaE,IwataT,MizunoN,etal.PeriodontalligamentcellsregulateosteogenesisviamiR⁃299⁃5pinmesenchymalstemcells[J/OL].Differentiation,2020,112:47⁃57[2020⁃02⁃22].ht⁃tps://doi.org/10.1016/j.diff.2020.01.001.[34]GeY,LiJ,HaoY,etal.MicroRNA⁃543functionsasanosteo⁃genesispromoterinhumanperiodontalligament⁃derivedstemcellsbyinhibitingtransducerofERBB2,2[J/OL].JPeriodontalRes,2018,53(5):832⁃841[2020⁃02⁃22].https://doi.org/10.1111/jre.12572.[35]杜莉,曹伟靖,田莹,等.MicroRNA⁃125b对人牙周膜干细胞成骨分化的影响[J].上海口腔医学,2018,27(1):11⁃17.[36]XuY,RenC,ZhaoX,etal.microRNA⁃132inhibitsosteogenicdifferentiationofperiodontalligamentstemcellsviaGDF5andtheNF⁃κBsignalingpathway[J/OL].PatholResPract,2019,215(12):152722[2020⁃02⁃22].https://doi.org/10.1016/j.prp.2019.152722.[37]GuoJ,ZengX,MiaoJ,etal.MiRNA⁃218regulatesosteoclastdif⁃ferentiationandinflammationresponseinperiodontitisratsthroughMmp9[J/OL].CellMicrobiol,2019,21(4):e12979[2020⁃02⁃22].https://doi.org/10.1111/cmi.12979.[38]LiuZ,ChenX,ZhangZ,etal.NanofibrousSpongyMicrospheresToDistinctlyReleasemiRNAandGrowthFactorsToEnrichRegu⁃latoryTCellsandRescuePeriodontalBoneLoss[J/OL].ACSnano,2018,12(10):9785⁃9799[2020⁃02⁃22].https://doi.org/10.1021/acsnano.7b08976.[39]JiaL,XiongY,ZhangW,etal.Metforminpromotesosteogenicdifferentiationandprotectsagainstoxidativestress⁃induceddamageinperiodontalligamentstemcellsviaactivationoftheAkt/Nrf2signalingpathway[J/OL].ExpCellRes,2020,386(2):111717[2020⁃02⁃22].https://doi.org/10.1016/j.yexcr.2019.111717.[40]ParkJC,KimJM,JungIH,etal.Isolationandcharacterizationofhumanperiodontalligament(PDL)stemcells(PDLSCs)fromtheinflamedPDLtissue:invitroandinvivoevaluations[J/OL].JClinPeriodontol,2011,38(8):721⁃731[2020⁃02⁃22].https://doi.org/10.1111/j.1600⁃051X.2011.01716.x.[41]HiguchiJ,FortunatoG,Woz'niakB,etal.PolymerMembranesSonocoatedandElectrosprayedwithNano⁃HydroxyapatiteforPeri⁃odontalTissuesRegeneration[J/OL].Nanomaterials(Basel),2019,9(11):1625[2020⁃02⁃22].https://doi.org/10.3390/nano9111625.[42]WijedasaNP,BroasSM,DasoRE,etal.Varyingfishscalede⁃rivedhydroxyapatiteboundhybridpeptidenanofiberscaffoldsforpotentialapplicationsinperiodontaltissueregeneration[J/OL].MaterSciEngCMaterBiolAppl,2020,109:110540[2020⁃02⁃22].https://doi.org/10.1016/j.msec.2019.110540.[43]OuQ,MiaoY,YangF,etal.Zein/gelatin/nanohydroxyapatitenanofibrousscaffoldsarebiocompatibleandpromoteosteogenicdifferentiationofhumanperiodontalligamentstemcells[J/OL].BiomaterSci,2019,7(5):1973⁃1983[2020⁃02⁃22].https://doi.org/10.1039/c8bm01653d.[44]SowmyaS,BumgardenerJD,ChennazhiKP,etal.Roleofnano⁃structuredbiopolymersandbioceramicsinenamel,dentinandperiodontaltissueregeneration[J/OL].ProgPolymSci,2013,38(10/11):1748⁃1772[2020⁃02⁃22].https://doi.org/10.1016/j.progpolymsci.2013.05.005.[45]SculeanA,NikolidakisD,NikouG,etal.Biomaterialsforpromo⁃tingperiodontalregenerationinhumanintrabonydefects:asys⁃tematicreview[J/OL].Periodontol2000,2015,68(1):182⁃216[2020⁃02⁃22].https://doi.org/10.1111/prd.12086.[46]YangF,MiaoY,WangY,etal.ElectrospunZein/GelatinScaf⁃fold⁃EnhancedCellAttachmentandGrowthofHumanPeriodontalLigamentStemCells[J/OL].Materials(Basel),2017,10(10):1168[2020⁃02⁃22].https://doi.org/10.3390/ma10101168.[47]PanJ,DengJ,YuL,etal.Investigatingtherepairofalveolarbonedefectsbygelatinmethacrylatehydrogels⁃encapsulatedhumanperiodontalligamentstemcells[J/OL].JMaterSciMaterMed,2019,31(1):3[2020⁃02⁃22].https://doi.org/10.1007/s10856⁃019⁃6333⁃8.[48]ChenX,BaiS,LiB,etal.Fabricationofgelatinmethacrylate/na⁃nohydroxyapatitemicrogelarraysforperiodontaltissueregeneration[J/OL].IntJNanomedicine,2016,11:4707⁃4718[2020⁃02⁃22].https://doi.org/10.2147/IJN.S111701.[49]NivedhithaSundaramM,SowmyaS,etal.Bilayeredconstructforsimultaneousregenerationofalveolarboneandperiodontalligament[J/OL].JBiomedMaterResBApplBiomater,2016,104(4):761⁃770[2020⁃02⁃22].https://doi.org/10.1002/jbm.b.33480.[50]LiY,QiaoZ,YuF,etal.TransformingGrowthFactor⁃β3/Chi⁃tosanSponge(TGF⁃β3/CS)FacilitatesOsteogenicDifferentiationofHumanPeriodontalLigamentStemCells[J/OL].IntJMolSci,2019,20(20):4982[2020⁃02⁃22].https://doi.org/10.3390/ijms20204982.[51]ShuY,YuY,ZhangS,etal.Theimmunomodulatoryroleofsul⁃fatedchitosaninBMP⁃2⁃mediatedboneregeneration[J/OL].Bio⁃materSci,2018,6(9):2496⁃2507[2020⁃02⁃22].https://doi.org/10.1039/c8bm00701b.[52]LiY,YuF,LiuY,etal.Sulfonatedchitosanoligosaccharidealle⁃viatestheinhibitoryeffectofbasicfibroblastgrowthfactoronos⁃teogenicdifferentiationofhumanperiodontalligamentstemcells[J/OL].JPeriodontol,2020,91(7):975⁃985[2020⁃02⁃22].ht⁃tps://doi.org/10.1002/JPER.19⁃0273.[53]GeS,ZhaoN,WangL,etal.Bonerepairbyperiodontalligamentstemcellseedednanohydroxyapatite⁃chitosanscaffold[J/OL].IntJNanomedicine,2012,7:5405⁃5414[2020⁃02⁃22].https://doi.org/10.2147/IJN.S36714.[54]BabrawalaI,MunivenkatappaLakshmaiahVenkateshP,Bangal⁃oreVaradhanK.Anovelapproachusing15%naturalchitosangelinthemanagementofintrabonydefects:apilotstudy[J/OL].ChinJDentRes,2016,19(4):231⁃237[2020⁃02⁃22].https://doi.org/10.3290/j.cjdr.a37148.[55]ZangS,DongG,PengB,etal.Acomparisonofphysicochemicalpropertiesofsterilizedchitosanhydrogelanditsapplicabilityinacaninemodelofperiodontalregeneration[J/OL].CarbohydrPolym,2014,113:240⁃248[2020⁃02⁃22].https://doi.org/10.1016/j.carbpol.2014.07.018.[56]IwasakiK,KomakiM,YokoyamaN,etal.Periodontalregenera⁃tionusingperiodontalligamentstemcell⁃transferredamnion[J/OL].TissueEngPartA,2014,20(3/4):693⁃704[2020⁃02⁃22].https://doi.org/10.1089/ten.TEA.2013.0017.[57]NuñezJ,VignolettiF,CaffesseRG,etal.Cellulartherapyinper⁃iodontalregeneration[J/OL].Periodontal2000,2019,79(1):107⁃116[2020⁃02⁃22].https://doi.org/10.1111/prd.12250.[58]ChenFM,GaoLN,TianBM,etal.Treatmentofperiodontalin⁃trabonydefectsusingautologousperiodontalligamentstemcells:arandomizedclinicaltrial[J/OL].StemCellResTher,2016,7:33[2020⁃02⁃22].https://doi.org/10.1186/s13287⁃016⁃0288⁃1.[59]ShaliniHS,VandanaKL.Directapplicationofautologousperiodon⁃talligamentstemcellnicheintreatmentofperiodontalosseousde⁃fects:Arandomizedcontrolledtrial[J/OL].JIndianSocPeriod⁃ontol,2018,22(6):503⁃512[2020⁃02⁃22].https://doi.org/10.4103/jisp.jisp_92_18.[60]IwataT,YamatoM,WashioK,etal.Periodontalregenerationwithautologousperiodontalligament⁃derivedcellsheets⁃Asafetyandefficacystudyintenpatients[J/OL].RegenTher,2018,9:38⁃44[2020⁃02⁃22].https://doi.org/10.1016/j.reth.2018.07.002.㊀㊀㊀[61]TakahashiK,TanabeK,OhnukiM,etal.Inductionofpluripotentstemcellsfromadulthumanfibroblastsbydefinedfactors[J/OL].Cell,2007,131(5):861⁃872[2020⁃02⁃22].https://doi.org/10.1016/j.cell.2007.11.019.[62]HamanoS,TomokiyoA,HasegawaD,etal.ExtracellularMatrixfromPeriodontalLigamentCellsCouldInducetheDifferentiationofInducedPluripotentStemCellstoPeriodontalLigamentStemCell⁃LikeCells[J/OL].StemCellsDev,2018,27(2):100⁃111[2020⁃02⁃22].https://doi.org/10.1089/scd.2017.0077.(收稿日期:2020-02-22)(本文编辑:曹灵)。
生物材料在牙科修复中的应用现代牙科修复领域的发展离不开生物材料的应用。
生物材料是指能够与人体组织相容并且不会产生毒副作用的材料。
它们在牙科修复中起到了非常重要的作用,不仅可以恢复牙齿的功能和外观,还可以提高修复体的耐久性和稳定性。
下面将介绍一些常见的生物材料在牙科修复中的应用。
1.金属材料:金属材料是牙科修复中最常用的材料之一、例如,合金材料可以制作金属冠和修复体,在修复过程中提供优良的强度和耐磨性。
此外,合金材料还可以与牙齿组织发生化学键连接,提高修复体的稳定性。
2.陶瓷材料:陶瓷材料在牙科修复中应用广泛。
它们具有良好的生物相容性和美观性,并且可以与自然牙齿相似的颜色和质感。
陶瓷修复体可以用于制作牙冠、固定桥、烤瓷贴面和牙齿种植体等。
现代陶瓷材料的发展使得修复体具有更好的透明性和抗磨性能,更加符合人们对美观和耐用的需求。
3.树脂材料:树脂材料在牙科修复中主要用于修复小面积的龋洞和牙齿缺损。
树脂材料有很好的可塑性,可以粘合在龋洞表面并恢复牙齿的形状和功能。
与传统的金属修复相比,树脂修复体的颜色更接近自然牙齿,因此更加美观。
4.生物陶瓷材料:生物陶瓷材料是一种用于牙科修复的新型材料。
它们具有良好的生物相容性和机械性能,可以有效地恢复牙齿的功能和形状。
生物陶瓷材料可以制作牙冠、贴面和牙齿种植体,其优点包括:高强度、优良的耐磨性、卓越的美观性和优异的生物相容性。
5.生物骨材料:在牙科种植修复中,生物骨材料被广泛应用于填补骨缺损和增加人工种植体的稳定性。
生物骨材料可以提供支撑和保护种植体的骨组织,促进骨再生并加速修复过程。
它们可以是自体骨组织、异体骨组织或合成骨替代物,具有与自然骨组织相似的结构和功能。
综上所述,生物材料在牙科修复中具有重要的应用价值。
它们可以恢复和改善牙齿的功能和外观,提高修复体的耐久性和稳定性,同时还可以提升患者的生活质量。
随着科技的不断进步,相信生物材料在牙科修复中的应用会有更大的突破和发展。