多元函数微分学
- 格式:ppt
- 大小:201.00 KB
- 文档页数:37
第十七章 多元函数的微分学 §1 可微性教学目的 掌握多元函数偏导数,可微性与全微分的定义,可微的必要条件. 教学要求(1) 基本要求:掌握多元函数偏导数,可微性与全微分的定义,熟记可微的必要条件与充分条件.(2) 较高要求:切平面存在定理的证明.教学建议(1)本节的重点是多元函数偏导数,可微性与全微分的定义.(2) 通过讨论可微的必要条件与充分条件,弄清多元函数连续,存在偏导数与可微这三个分析性质之间的关系.教学程序一、 可微性与全微分:由一元函数可微性引入二元函数可微性.定义1(可微性) 设函数(,)z f x y =在点000(,)P x y 的某邻域0()U P 内有定义,对于0()U P 中的点00(,)(,)P x y x x y y =+∆+∆,若函数f 在点0P 处的全增量可表示为 00(,)(,)()z f x x y y f x y A x B y ρ∆=+∆+∆-=∆+∆+,其中A ,B 是仅与点0P 有关的常数,22,()x y ρρ=∆+∆是较ρ高阶的无穷小量,则称函数f 在点0P 处可微。
全微分:当,x y ∆∆充分小时0000(,)(,)()()dz zf x y f x y A x x B y y ≈∆≈+-+-. 例1 考查函数xy y x f =),(在点) , (00y x 处的可微性 .二 、 偏导数(一)、偏导数的定义、记法),(y x f 在点),(00y x 存在偏导数定义为:000000),(),(lim ),(0x x y x f y x f y x f x x x --=→ 或 xy x f y x x f y x f x x x ∆-∆+=→∆),(),(lim ),(0000000 000000),(),(lim ),(0y y y x f y x f y x f y y y --=→ 或 y y x f y y x f y x f y y y ∆-∆+=→),(),(lim ),(0000000 偏导数的几何意义:(二)、求偏导数:例2 ),(y x f =)12sin()32(2+++y x x . 求偏导数.例3 ),(y x f = 1)1ln(2+++y x x . 求偏导数.例4 ),(y x f =22y x y x ++. 求偏导数, 并求) 1 , 2 (-x f . 三 、 可微条件(一)、必要条件定理17.1设) , (00y x 为函数),(y x f 定义域的内点 . ),(y x f 在点) , (00y x 可微的必要条件是) , (00y x f x 和) , (00y x f y 存在 , 且==),(00),(00y x df dfy x ) , (00y x f x +∆x ) , (00y x f y y ∆.证明:由于dy y dx x =∆=∆ , , 微分记为=),(00y x df ) , (00y x f x +dx ) , (00y x f y dy .定理17.1给出了计算可微函数全微分的方法. 但是两个偏导数存在只是可微的必要条件, 而不是充分条件.例5.考查函数 ⎪⎩⎪⎨⎧=+≠++=0 , 0, 0 , ),(222222y x y x y x xy y x f在原点的可微性 .这个例子说明,偏导存在不一定可微,(这一点与一元函数不同!)(二)、充分条件定理17.2(可微的充分条件)若函数),(y x f z =的偏导数在的某邻域内存在 , 且x f 和y f 在点) , (00y x 处连续 . 则函数f 在点) , (00y x 可微。
多元函数微分学一:全微分函数在处可微的充分条件:(,)z f x y =00(,)x y ''22(,)(,)()()x y z f x y x f x y y x y ∆-∆-∆∆+∆22()()0x y ∆+∆→当时是无穷小量222222221()sin ,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩例1:函数在[(0,0)(0,0)]()x y z f x f y o ρ∆-∆+∆=(0,0)处是否可微?0(0,0)(0,0)lim x y z f x f yρρ→∆-∆-∆22222201[()()]sin ()()lim ()()x y x y x y ρ→∆+∆∆+∆=∆+∆0=即函数f (x , y )在原点(0,0)可微.sin 2yz y x e μ=++例2:计算的全微分11,cos ,22yz yz u u y u ze ye x y z∂∂∂==+=∂∂∂解:1(cos )22yz yz y du dx ze dy ye dz =+++所求全微分:二:复合函数求偏导1、偏导数求法(1) 求关于x的偏导数,把z=f (x , y) 中的y看成常数,对x仍用一元函数求导法求偏导.(2) 求关于y的偏导数,把z=f (x , y) 中的x看成常数,对y仍用一元函数求导法求偏导.(3)求分界点、不连续点处的偏导数要用定义求.2:链式法则的几种情况:1:),(,),(,),(,)x y x y x y z f u f v f w x u x v x w xz f u f v f w y u y v y w yμυωμμυυωω===∂∂∂∂∂∂∂=++∂∂∂∂∂∂∂∂∂∂∂∂∂∂=++∂∂∂∂∂∂∂中间变量多于两个的情况:设z=f(,,''2:),(,)(),()x y z f u u z f u u f u f u x u x x y u y yμμμ=∂∂∂∂∂∂∂∂====∂∂∂∂∂∂∂∂中间变量只有一个的情况:设z=f(3:,),(),(),v x v v x z x z f u f v x u x u xμμμ==∂∂∂∂∂=+∂∂∂∂∂自变量只有一个的情况:设z=f(则是的一元复合函数,它对x 的导数称为全导数,有(,,),(,),(,),,z f x y t x x s t y y s t z f x f y z f x f y f s x s y s t x t y t t===∂∂∂∂∂∂∂∂∂∂∂=+=++∂∂∂∂∂∂∂∂∂∂∂4:设则例3:).1())),(,(,()(,)1,1(,)1,1(,1)1,1(,),(2ϕϕ'=='='=求,可微x x f x f x f x b f a f f y x f y x解⋅='))),(,(,(2)(x x f x f x f x ϕ⋅'+'))),(,(,())),(,(,({21x x f x f x f x x f x f x f ⋅'+')),(,()),(,([21x x f x f x x f x f ))]},(),((21x x f x x f '+')]}([{12)1(b a b a b a +++⋅⋅='ϕ)(232b ab ab a +++=解:3个方程, 4个变量的方程组,)(),(),(x z z x y y x u u ===确定3个1元函数:方程组两边对x 求导=x u d d ⎪⎪⎪⎩⎪⎪⎪⎨⎧x g x h x f x y f y d d +x y g y d d ⋅+x z g z d d ⋅+0=xz h z d d ⋅+0=⎪⎩⎪⎨⎧===.0),(,0),,(),,()(z x h z y x g y x f u x u 由方程组设函数例4:,0,0,≠∂∂≠∂∂zh y g 且所确定.d d x u 求=x u d d ⎪⎪⎪⎩⎪⎪⎪⎨⎧x g x h x f x y f y d d +)1(x y g y d d ⋅+x z g z d d ⋅+0=)2(x z h z d d ⋅+0=)3(代入可得:d d y x y z x x y y zf g f g h u f x g g h ⋅⋅⋅=-+⋅三:高阶偏导定理 如果函数),(y x f z =的两个二阶混合偏导数x y z ∂∂∂2及yx z ∂∂∂2在区域D 内连续,那末在该区域内这两个二阶混合偏导数必相等.215()(),y z z f xy xf f y x x y ∂=+∂∂例:有连续二阶偏导数,求'()'()'()z y y y f xy f f x x x x ∂=+-∂解:2()z z x y y x ∂∂∂=∂∂∂∂11''()''()'()''()y y y y xf xy f f f x x x x x x=+--22222222(0,0)(0,0)22(),06:(,),|,|0,0xy x y x y f f f x y x y x y y x x y ⎧-+>∂∂⎪=+⎨∂∂∂∂⎪+=⎩例求22232222222222()(3)2(),0()0,0x y x y y x y x y x y f x y x x y ⎧+---+>∂⎪=+⎨∂⎪+=⎩解:2(0,)(0,0)(0,0)0|||lim 1y y f f f x x x y y →∂∂-∂∂∂==-∂∂22322222222222()(3)2(),0()0,0x y x xy xy x y x y f x y y x y ⎧+---+>∂⎪=+⎨∂⎪+=⎩(,0)(0,0)2(0,0)0|||lim 1x y f f f y y y x x→∂∂-∂∂∂==∂∂注:对不连续的函数求导,用定义法四:隐函数求导1:一个方程的情况:1.1 显化法:(一元隐函数)把一元隐函数化为显函数后,再利用显函数求导的方法,来求该一元隐函数的导数,即(,)0F x y =()y y x ='()xdy dy x y dx dx==2'ln()0,(x y x xy y x+-=例7:设求一元隐函数)22ln()x y y x xy xy e x x -=--⇒-=21x e y x x -⇒=-利用显函数求导方法,有:22222'211(12)(12)11()()x x x e x y x x y x x x x -----==--1.2公式法: .x yF dy dx F =-1.3对数求导法:80,,x zz z z y x y ∂∂-=∂∂例:设求(多元隐函数)ln ln x zz y x z z y ==解:原方程可化为,方程两边同时取对数得:2ln ln ln ln (ln )x y z z z z x z y x y z z z y x z y ⎧==⎪--⎪⎨⎪=⎪-⎩所以2ln ln ln ln (ln )x y z z z z x z y x y z z z y x z y ⎧==⎪--⎪⎨⎪=⎪-⎩所以2:方程组的情况:2.1直接对方程两边求偏导,再解关于偏导数的方程sin ,,cos uu x e u v u u x y y e u v ⎧=+∂∂⎪⎨∂∂=-⎪⎩例9:设求1sin cos 0s cos (sin )u u x u u v e v u v x x xu u v e v u v x x x∂∂∂=++∂∂∂∂∂∂=---∂∂∂两个方程两边关于求偏导,得:(1)(2)(1)sin (2)cos v v v x ∂⨯-⨯∂,消去得22sin (sin cos )(sin cos )uu u v e v v v v x x ∂∂=-++∂∂sin 1sin cos u u u v x e v e v∂=∂+-同理可求:cos 1sin cos u u u v y e v e v∂-=∂+-Thanks for your listening!。
多元函数微分学及其应用总结
多元函数微分学是微积分学的一个分支,研究的是多元函数的导数和微分,并在实际应用中得到广泛的应用。
本文将从多元函数的导数、微分和应用等方面进行总结。
多元函数的导数是指多元函数在某一点处的切向量。
与一元函数的导数不同,多元函数的导数是一个向量,而不是一个数。
多元函数的导数可以通过偏导数来定义,偏导数是指多元函数在某一点处,对于某一个变量求导时,其他所有变量都视为常数的导数。
通过偏导数的定义,我们可以求出多元函数在某一点处的所有偏导数,再将这些偏导数组成一个向量,就是该点的导数。
多元函数的微分是指函数在某一点处沿着切向量的变化率。
对于一个多元函数,其微分可以通过求出该点的导数,再将其与自变量的变化量相乘得到。
多元函数的微分在实际应用中有着重要的作用,比如在经济学中,微分可以用来描述市场需求和供给之间的关系,从而帮助企业做出决策。
在实际应用中,多元函数微分学有着广泛的应用。
其中一个重要的应用是在物理学中,多元函数微分学可以用来描述物理量之间的关系。
比如在热力学中,温度、压力和体积之间的关系可以用多元函数来表示,通过求导和微分可以得到温度、压力和体积的变化率。
在机器学习中,多元函数微分学也有着重要的应用,比如在神经网
络中,通过求导和微分可以得到网络参数的更新量,从而提高模型的准确性。
多元函数微分学是微积分学中一个重要的分支,它可以用来描述多元函数的导数和微分,并在实际应用中得到广泛的应用。
对于学习微积分学的同学们来说,多元函数微分学是一个重要的课程,需要认真学习,并通过实际应用来加深对其的理解。
多元函数微分学
多元函数微分学是研究多变量函数导数及其应用的一门数学学科。
在多元函数微分学中,我们需要学习多维度的导数概念和技巧,如偏导数、全微分、梯度、链式法则、方向
导数等。
在多元函数微分学中,最基础的概念就是偏导数。
对于一个函数$f(x,y)$,在点
$(x_0,y_0)$处的偏导数$\frac{\partial f}{\partial x}$和$\frac{\partial
f}{\partial y}$分别表示在$y=y_0$和$x=x_0$时,函数$f$在$x_0$点和$y_0$点上的导数。
偏导数可以表示函数的切线斜率,也可以用来判断函数在某一个方向上的变化率。
梯度是一个在多元函数微分学中非常重要的概念。
对于一个函数$f(x,y)$,在点
$(x_0,y_0)$处的梯度向量是一个向量$\nabla f(x_0,y_0)$,其由偏导数组成。
梯度向量
的方向是函数在该点上变化最快的方向,它垂直于等值线,指向函数值增加的方向。
梯度
向量的模长表示函数值在该点上变化最快的速率。