例题_任意角的三角函数-优质公开课-人教A版必修4精品
- 格式:ppt
- 大小:1.40 MB
- 文档页数:4
1·2 任意的三角函数1·2·1 任意角的三角函数1. 任意角三角函数的定义(1) 设是一个任意角,在的终边上任取(异于原点的)一点P (x ,y ) 则P 与原点的距离①把比值叫做的正弦 记作:②把比值叫做的余弦 记作:③把比值叫做的正切 记作:上述三个比值都不会随P 点在的终边上的位置的改变而改变.当角的终边在纵轴上时,即时,终边上任意一点P 的横坐标x 都为0,所以tan 无意义;它们都是以角为自变量,以比值为函数值的函数. 以上三种函数,统称为三角函数。
三角函数值的定义域:R R2. 三角函数的符号αα02222>+=+=y x y x rr yαr y =αsin r xαr x =αcos x yαx y =αtan ααZ)(2∈+=k k ππααr y=αsin r x=αcos x y =αtan ⎭⎬⎫⎩⎨⎧∈+≠Z k k ,2|ππαα3. 终边相同的角的同一三角函数值相等例如390°和-330°都与30°终边位置相同,由三角函数定义可知它们的三角函数值相同,即sin390°=sin30° cos390°=cos30°sin (-330°)=sin30° cos (-330°)=cos30° 诱导公式一(其中): 用弧度制可写成这组公式的作用是可把任意角的三角函数值问题转化为0~2π间角的三角函数值问题。
4. 三角函数的集合表示:1.已知角α的终边过点(,2)(0)a a a ≠,求α的六个三角函数值。
【解析】因为过点(,2)(0)a a a ≠,所以|r a =, ,2xa y a ==当0sin y a r α>====时,Z ∈k ααsin )360sin(=︒⋅+k απαsin )2sin(=+k ααcos )360cos(=︒⋅+k απαcos )2cos(=+k ααtan )360tan(=︒⋅+k απαtan )2tan(=+ksin 1y yy MPr α====cos 1x xx OM r α====tan y MP ATAT x OM OAα====cosx r α===;1tan 2;cot ;sec 22αααα====;当0sin5y a r α<====-时,cos5x r α===-;1tan 2;cot ;sec 2αααα====2. 已知角α的终边上一点()P m ,且sin 4α=,求cos ,sin αα的值。