概率论与数理统计试题与答案(1_2)
- 格式:doc
- 大小:595.00 KB
- 文档页数:12
《概率论与数理统计》期末测试件(二)(答案解析版)一、(12分)一学生接连参加同一课程的两次考试。
第一次及格的概率为P ,若第一次及格则第二次及格的概率也为P ;若第一次不及格则第二次及格的概率为P 2。
(1)若至少有一次及格则他能取得某种资格,求他取得该资格的概率。
(2)若已知他第二次已经及格,求他第一次及格的概率。
解:A i ={他第i 次及格},i=1,2已知P (A 1)=P (A 2|A 1)=P ,21P P(A /A )2= (1)B ={至少有一次及格}所以21}{A A B ==两次均不及格∴ )|()(1)(1)(1)(12121A A P A P A A P B P B P -=-=-= )]|(1)][(1[1121A A P A P ---=22123)21)(1(1P P P P -=---= (2)由乘法公式,有P (A 1 A 2)= P (A 1) P (A 2| A 1) = P 2 由全概率公式,有)|()()|()()(1211212A A P A P A A P A P A P +=222)1(2P P PP P P +=⋅-+⋅=得1222)|(2221+=+=P PP P P A A P .二、(14分)设随机变量~,22X U ππ⎛⎫- ⎪⎝⎭,求(1)随机变量X 的分布函数()F x ; (2) cos Y X =的密度函数 . 解:X 的密度函数为()1,220,x f x πππ⎧-<<⎪=⎨⎪⎩其他cos Y X= 的可取值范围是()0,1当01y <<时,()()Y F y P Y y =≤arccos 2arccos 2arccos arccos 2211y yP Y y P y Y dx dxππππππ--⎛⎫⎛⎫=-≤≤-+≤≤ ⎪ ⎪⎝⎭⎝⎭=+⎰⎰因此,cos Y X = 的密度函数()(),01Y Y f y F y y '===<<故,,01()0,Y y f y <<=⎩其他三、(16分)设随机向量(X , Y )的联合密度为⎩⎨⎧<<<<=.,0,10,10 ,2),(其他y x x y x f(1) 计算P (Y > X );(2) 求X , Y 的概率密度f X (x ),f Y (y );(3) 判断X 与Y 是否相互独立,说明理由; (4) 求Z = X+Y 的概率密度f Z (z ). 解:(1).312),()(110===>⎰⎰⎰⎰>x xy xdy dx dxdy y x f X Y P(2)dyy x f x f X ⎰∞∞-=),()(.2x 2)(101x dy x f x X ==<<⎰时,当⎩⎨⎧<<=.,0,10,2)(其他x x x f Xdxy x f y f Y ⎰∞∞-=),()(.10,1 2)(10<<==⎰y dx x y f Y⎩⎨⎧<<=.,0,10,1)(其他y y f Y(3)因为,..),()(),(e a y f x f y x f Y X =所以X 与Y 相互独立. (4).),()(dx x z x f z f Z ⎰∞∞--=.22)(21,2)(1021120z z dx x z f z z dx x z f z z Z zZ -==<<==<<⎰⎰-时,当时,当⎪⎩⎪⎨⎧<<-<<=. ,0,2z 1 ,2,10 ,)(22其他z z z z z f Z四、(18分)设二维连续型随机变量(X ,Y )在区域D 上服从均匀分布。
概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
一、选 择 题 (本大题分5小题, 每小题3分, 共15分)(1)设A 、B 互不相容,且P(A)〉0,P (B )〉0,则必有(A )0)(>A B P (B ))()(A P B A P =(C )0)(=B A P (D))()()(B P A P AB P =(2)某人花钱买了C B A 、、三种不同的奖券各一张。
已知各种奖券中奖是相互独立的,中奖的概率分别为,02.0)(,01.0)(,03.0)(===C p B P A p 如果只要有一种奖券中奖此人就一定赚钱,则此人赚钱的概率约为(A) 0.05 (B ) 0。
06 (C ) 0.07 (D) 0.08(3)),4,(~2μN X ),5,(~2μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则(A )对任意实数21,p p =μ (B )对任意实数21,p p <μ(C )只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p >(4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意实数a 成立的是(A )⎰-=-adx x f a F 0)(1)( (B )⎰-=-a dx x f a F 0)(21)( (C ))()(a F a F =- (D)1)(2)(-=-a F a F(5)二维随机变量(X ,Y )服从二维正态分布,则X +Y 与X -Y 不相关的充要条件为(A )EY EX = (B)2222][][EY EY EX EX -=-(C )22EY EX = (D ) 2222][][EY EY EX EX +=+二、填 空 题 (本大题5小题, 每小题4分, 共20分)(1) 4.0)(=A P ,3.0)(=B P ,4.0)(=⋃B A P ,则___________)(=B A P 0。
《概率论与数理统计》习题及答案第 二 章1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =,所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+所以 312()()()0.60.30.9P A P A P A =+=+=131()()0.6P A A P A ==故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.解 ()()()() 1.1()(|) 1.10P AB P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。
概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
一、 本题满分20分,每小题5分⒈某市有30 %住户订日报,有50 %住户订晚报,有65 %的住户至少订这两种报纸中的一种, 求同时订这两种报纸的住户的百分比。
解:设A 表示订日报的住户,B 表示订晚报的住户,则由题意:()0.3()0.5()0.65P A P B P A B ===同时订两种报纸的住户为()()()()0.15P AB P A P B P A B =+-=⒉三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,求三台机器中至少有一台发生故障的概率。
解:令i A 表示第i 份机器有故障,i =1、2、3 且各机器相互独立运转则:112323()1()()()P A A A P A P A P A =-= 10.90.80.710.5040.496-⨯⨯=-=3.设,6/1)|(,3/1)()(===B A P B P A P 求 )|(B A P 。
解:111()()()3618P AB P B P A B ==⨯=11171()()()1()[()()]7331818()121()1()12()133P AB P A P AB P A P B P AB P A B P B P B P B --+----======--- 4.已知,25.0)(,5.0)(==B P A P 分别对事件A , B 相互独立、互不相容两种情形求)(),(A B P B A P - .解:(1)A,B 独立时,则P(AB)=P(A)P(B)故()()()()()()()()0.50.250.50.250.625P A B P A P B P AB P A P B P A P B =+-=+-=+-⨯= ()()()()()()0.250.50.250.125P B A P B P AB P B P A P B -=-=-=-⨯=(2)A,B 互不相容时,P(AB)=0故()()()P A B P A P B =+=0.5+0.25=0.75()()()()P B A P B P AB P B -=-==0.25二、本题30分,每题6分5.一射手对同一目标独立地进行射击,直到射中2次目标为止,已知每次命中率为53,求射击次数的分布率。
概率论与数理统计复习题(1)一.填空.1.3.0)(,4.0)(==B P A P 。
若A 与B 独立,则=-)(B A P ;若已知B A ,中至少有一个事件发生的概率为6.0,则=-)(B A P 。
2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。
3.设),(~2σμN X ,且3.0}42{ },2{}2{=<<≥=<X P X P X P ,则=μ ;=>}0{X P 。
4.1)()(==X D X E 。
若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。
5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。
7.)16,1(~),9,0(~N Y N X ,且X 与Y 独立,则=-<-<-}12{Y X P (用Φ表示),=XY ρ 。
8.已知X 的期望为5,而均方差为2,估计≥<<}82{X P 。
9.设1ˆθ和2ˆθ均是未知参数θ的无偏估计量,且)ˆ()ˆ(2221θθE E >,则其中的统计量 更有效。
10.在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的长度愈 愈好。
但当增大置信水平时,则相应的置信区间长度总是 。
二.假设某地区位于甲、乙两河流的汇合处,当任一河流泛滥时,该地区即遭受水灾。
设某时期内甲河流泛滥的概率为0.1;乙河流泛滥的概率为0.2;当甲河流泛滥时,乙河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受水灾的概率;(2)当乙河流泛滥时,甲河流泛滥的概率。
三.高射炮向敌机发射三发炮弹(每弹击中与否相互独立),每发炮弹击中敌机的概率均为0.3,又知若敌机中一弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。
3.将3个球随机地投入4个盒子中,求下列事件的概率 (1)A ---任意3个盒子中各有一球;(2)B ---任意一个盒子中有3个球; (3)C---任意1个盒子中有2个球,其他任意1个盒子中有1个球。
解:(1)834!3)(334==C A P (2)1614)(314==C B P (3)1694)(3132314==C C C C P 三、2.一批产品共20件,其中一等品9件,二等品7件,三等品4件。
从这批产品中任取3件,求: (1) 取出的3件产品中恰有2件等级相同的概率;(2)取出的3件产品中至少有2件等级相同的概率。
解:设事件i A 表示取出的3件产品中有2件i 等品,其中i =1,2,3;(1)所求事件为事件1A 、2A 、3A 的和事件,由于这三个事件彼此互不相容,故)()()()(321321A P A P A P A A A P ++=++320116241132711129C C C C C C C ++==0.671 (2)设事件A 表示取出的3件产品中至少有2件等级相同,那么事件A 表示取出的3件产品中等级各不相同,则779.01)(1)(320141719=-=-=C C C C A P A P 2.玻璃杯成箱出售,每箱20只.假设各箱含0,1,2只残次品的概率分别为0.8, 0.1和0.1. 一顾客欲购一箱玻璃杯,在购买时,售货员任取一箱,而顾客随机的察看4只,若无残次品,则买下该箱玻璃杯,否则退还.试求顾客买下该箱的概率。
解:设=i A “每箱有i 只次品” (),2,1,0=i , =B “买下该箱” . )|()()|()()|()()(221100A B P A P A B P A P A B P A P B P ++==94.01.01.018.0420418420419≈⨯+⨯+⨯C C C C1.一个工人看管三台车床,在一小时内车床不需要工人看管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7。
《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。
正确打“√”,错误打“×”)⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( )⑸ 样本方差2n S=n121)(X Xni i-∑=是母体方差DX 的无偏估计 ( )二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。
三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为210131111115651530XP-- 求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》试题(1)评分标准一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。
概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。
把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。
概率论与数理统计试题(2)一、填空题(每题3分,共15分)1、已知随机变量X 服从参数为2的泊松(Poisson )分布,且随机变量22-=X Z ,则()=Z E ____________.2、设A 、B 是随机事件,()7.0=A P ,()3.0=-B A P ,则()=AB P3、设二维随机变量()Y X ,的分布列为若X 与Y 相互独立,则βα、的值分别为 。
4、设 ()()()4, 1, ,0.6D X D Y R X Y ===,则 ()D X Y -=___ _5、设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()nii Xμσ=-∑服从_____分布.二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】(A) 11a a b -+-; (B) (1)()(1)a a a b a b -++-; (C) a a b +; (D) 2a ab ⎛⎫ ⎪+⎝⎭.2、设事件A 与B 互不相容,且()0≠A P ,()0≠B P ,则下面结论正确的是【 】(A) A 与B 互不相容; (B)()0>A B P ;(C) ()()()B P A P AB P =; (D)()()A P B A P =.3、设两个相互独立的随机变量X 与Y 分别服从正态分布()1,0N 和()1,1N ,则【 】 (A)()210=≤+Y X P ; (B) ()211=≤+Y X P ; (C)()210=≤-Y X P ; (D)()211=≤-Y X P 。
4、 如果Y X ,满足()Y X D Y X D -=+)(,则必有【 】(A )X 与Y 独立;(B )X 与Y 不相关;(C )0=DY ;(D )0=DX 5、设相互独立的两个随机变量X 与Y 具有同一分布律,且X 的分布律为 则随机变量()Y X Z ,max =的分布律为【 】(A)()()211,210====z P z P ; (B) ()()01,10====z P z P ; (C) ()()431,410====z P z P ;(D) ()()411,430====z P z P 。
概率论与数理统计一、单选题1.随机地掷一骰子两次,则两次出现的点数之和等于8的概率为()。
(4分)A :3/36B :4/36C :5/36D :2/362.A,B为任意两事件,若A,B之积为不可能事件,则称()。
(4分)A :A与B相互独立B :A与B互不相容C :A与B互为对立事件D :A与B为样本空间Ω的一个划分3.设A,B,C是三个事件,在下列各式中,不成立的是( ) .(4分)A :(A-B)UB=AUBB :(AUB)-B=AC :(AUB)-AB= UBD :(AUB)-C=(A-C)U(B-C)4.以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A为().(4分)A :“甲种产品滞销,乙种产品畅销”;B :“甲,乙两种产品均畅销”;C :“甲种产品滞销”;D :“甲种产品滞销或乙种产品畅销”。
5..掷二枚骰子,事件A为出现的点数之和等于3的概率为()。
(4分)A :11B :44,214C :44,202D :都不对6.设A,B为两个事件,且B A,则下列各式中正确的是( ).(4分)A :P(AUB)= P(A)B :P(AB)=P(A)C :P(BIA)= P(B)D :P(B-A)=P(B)- P(A)7.某小组共9人,分得一张观看亚运会的入场券,组长将一张写有“得票”字样和8张写有“不得票”字样的纸签混合后让大家依次各抽一张,以决定谁得入场券,则()。
(4分)A :A.第1个抽签者得“得票”的概率最大B :第5个抽签者“得票”的概率最大C :每个抽签者得“得票”的概率相等D :最后抽签者得“得票”的概率最小8.设A,B是两个事件,且P(A)≤P(AIB)则有( ).(4分)A :P(A)= P(AIB)B :P(B)>0C :P(A)≥P(AIB)D :前三者都不一定成立9.设有10个零件,其中2个是次品,现随机抽取2个,恰有一个是正品的概率为().(4分)A :8/45B :16/45C :8/15D :8/3010.设盒中有10个木质球,6个玻璃球,玻璃球有两个为红色,4个为蓝色;木质球有3个为红色,7个为蓝色,现从盒中任取一球,用A表示“取到蓝色球”;B表示“取到玻璃球”。
一.选择题(18分,每题3分)1. 如果 1)()(>+B P A P ,则 事件A 与B 必定 ( ))(A 独立; )(B 不独立; )(C 相容; )(D 不相容.2. 已知人的血型为 O 、A 、B 、AB 的概率分别是0.4; 0.3;0.2;0.1。
现任选4人,则4人血型全不相同的概率为: ( ))(A 0.0024; )(B 40024.0; )(C 0. 24; )(D 224.0.3. 设~),(Y X ⎩⎨⎧<+=.,0,1,/1),(22他其y x y x f π 则X 与Y 为 ( ))(A 独立同分布的随机变量; )(B 独立不同分布的随机变量;)(C 不独立同分布的随机变量;)(D 不独立也不同分布的随机变量. 4. 某人射击直到中靶为止,已知每次射击中靶的概率为0.75. 则射击次数的数学期望与方差分别为 ( ))(A 4934与; )(B 16934与; )(C 4941与; (D) 9434与.5. 设321,,X X X 是取自N (,)μ1的样本,以下μ的四个估计量中最有效的是( ))(A 32112110351ˆX X X ++=μ; )(B 3212949231ˆX X X ++=μ; )(C 3213216131ˆX X X ++=μ; )(D 32141254131ˆX X X ++=μ. 6. 检验假设222201:10,:10H H σσ≤>时,取统计量)(~10)(22212n Xini χμχ-=∑=,其拒域为(1.0=α) ( ))(A )(21.02n χχ≤;)(B )(21.02n χχ≥;)(C )(205.02n χχ≤;)(D )(205.02n χχ≥.二. 填空题(15分,每题3分)1. 已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则=⋃)(B A P .2. 设随机变量X 的分布律为⎪⎪⎭⎫⎝⎛-+c b a 4.01.02.04321,则常数c b a ,,应满足的条件 为 .3. 已知二维随机变量),(Y X 的联合分布函数为),(y x F ,试用),(y x F 表示概率=>>),(b Y a X P .4. 设随机变量)2,2(~-U X ,Y 表示作独立重复m 次试验中事件)0(>X 发生的次数,则=)(Y E ,=)(Y D . 5.设),,,(21n X X X 是从正态总体),(~2σμN X 中抽取的样本,则 概率 =≤-≤∑=)76.1)(37.0(222012012σσX XP ii .5. 设n X X X ,,,21 为正态总体),(2σμN (2σ未知)的一个样本,则μ的置信 度为1α-的单侧置信区间的下限为 . 三. 计算题 (54分,每题9分)1.自动包装机把白色和淡黄色的乒乓球混装入盒子,每盒装12只,已知每盒内装有的白球的个数是等可能的。
《概率论与数理统计》习题及答案习题2,3,4,5,在其中同时取3只,以X 表示取出的3只 X 的分布律.2.设在15只同类型零件中有 2只为次品,在其中取 3次,每次任取1只,作不放回抽样, 以X 表示取出的次品个数,求: (1) X 的分布律;(2) X 的分布函数并作图;(3)13 3P{X <—}, P{1 c X <—}, P{1 <X <—}2 22【解】X =0,1,2.1.一袋中有5只乒乓球,编号为1,球中的最大号码,写出随机变量 【解】X =3,4,5 1 P(X =3) C ;P(X =4)=|3C5c 2P(X =5)卡C5= 0.1 = 0.3 = 0.6P{1 cX C2}.P(XP(X P(X0) C 133C151) C 2C 23T 一 C 135=2)=企=丄 ^22 35 _ 12 "35C 15 35x>3P(X >2) = P(X =2) +P(X =3) =0.896(2)当 x<0 时,F (x ) =P (X w x ) =0当 0 w x<1 时, F (x )22当 1 w x<2 时, F (x ) =P (X w x ) =P(X=0)=3534 =P (X w x ) =P(X=0)+ P(X=1)= = 35当x >2时,F 故X 的分布函数(X )=P (X w x ) =10, 22X v 0135 ' F(x) =*353435,1,1<xc2 x>2兰 2)=F (1)=2|,2 2 353 3 34 34P (1cX <:) = F(:)-F(1) =晶一;;^=02 2 35 353 3 12P(1 < X < —) = P(X =1) + P(1 c X < —)= —2 2 35341P(1 c X <2) =F(2) -F(1)-P(X =2) =1-—一一 =0.P(X 3.射手向目标独立地进行了 3次射击,每次击中率为 0.8,求3次射击中击中目标的次数的分布律及分布函数,并求 3次射击中至少击中 2次的概率.【解】设X 表示击中目标的次数.则X=0, 1, 2, 3.P( X =0) =(0.2)3=0.0081 2 P (X =1) = C 3O.8(O.2) =0.096 P (X =2)=C 3(0.8)20.2 = 0.384 P( X =3) =(0.8)3=0.512故X 的分布律为 X P分布函数0 0.0081 0.0962 0.3843 0.5120,0.008, F(x) =<0.104,0.488, X <0 0<x<1 1<x v2 2<x<3 L 1,(2)由分布律的性质知N1=2 P(X=k)=送—=a k=3 k=1 N即a=1.5.甲、乙两人投篮,投中的概率分别为 0.6,0.7,今各投3次,求:(1) 两人投中次数相等的概率; (2)甲比乙投中次数多的概率.【解】分别令X 、Y 表示甲、乙投中次数,贝y X~b (3,0.6) Y~b(3,0.7)(1) P(X =Y) =P( X =0, Y =0) + P(X =1,Y =1) + P(X =2 ,Y = 2) +P(X =3, Y =3)331212= (0.4) (0.3) + C 30.6(0.4) C 30.7(0.3) +2 2 2 23 3C 3(0.6) 0.4C 3(0.7) 0.3+(0.6) (0.7)= 0.32076(2) P(X A Y) =P(X =1,Y =0) + P(X =2,Y =0) + P(X =3,Y = 0) +P(X =2,Y =1) + P(X =3, Y=1) + P( X =3 ,Y=2) 1 2 3 2 2 3= C 30.6(0.4) (0.3) + C 3(0.6) 0.4(0.3) +(0.6)3(0.3)3+C 2(0.6)20.4C ;0.7(0.3)2 +(0.6)3C 10.7(0.3)^(0.6)3C 2(0.7)20.3=0.2434. (1)设随机变量X 的分布律为kAP {X=k}= a ——,k!其中k=0, 1, 2,…,入>0为常数,试确定常数 a.(2)设随机变量X 的分布律为P{ X=k}= a/N ,k=1, 2,…,N ,试确定常数a.【解】(1)由分布律的性质知□c =Z P(Xkz0□c - k=k 2a S?k r a L'6.设某机场每天有 200架飞机在此降落,任一飞机在某一时刻降落的概率设为 0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降 落而没有空闲跑道的概率小于 0.01(每条跑道只能允许一架飞机降落 )? 【解】设X 为某一时刻需立即降落的飞机数,则 X~b(200,0.02),设机场需配备 N 条跑道, 则有 P(X A N) cO.01 200 Z c k 00(0.02)k (0.98)200上 c0.01 k =N H 1 利用泊松近似 A = np = 200 X 0.02 =4.比e 仃 p (x >N )L S -------------- <0.01k 少*H k ! 查表得N > 9.故机场至少应配备 9条跑道.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有 1000辆汽车通过,问出事故的次数不小于 2的概率是多少(利 用泊松定理)? 【解】设X 表示出事故的次数,则 X~b (1000, 0.0001) P(X >2) =1 - P(X =0) -P(X =1) … _0.1 C /I VZ -0.1 = 1-e -0.1xe 8.已知在五重贝努里试验中成功的次数 X 满足P{X=1}= P{X=2},求概率P{X=4}.【解】设在每次试验中成功的概率为 P ,则 c 5p (1 - P )4 =c5 p 2(1- p)3 所以 1 P(^4^C 5(1)4- = 3 3 243 10 9.设事件A 在每一次试验中发生的概率为 0.3,当A 发生不少于3次时,指示灯发出信号, (1) (2) 【解】 进行了 5次独立试验,试求指示灯发出信号的概率; 进行了 7次独立试验,试求指示灯发出信号的概率 . (1)设X 表示5次独立试验中 A 发生的次数,则 X~6( 5,0.3) 5P(X >3)=S c 5(0.3)k(0.7)i =0.16308kz3⑵ 令丫表示7次独立试验中 A 发生的次数,则 Y~b (7, 0.3)7P(Y >3)=送 C k (0.3)k(0.7) 3 =0.35293k=310.某公安局在长度为t的时间间隔内收到的紧急呼救的次数X服从参数为(1/2) t的泊松分布,而与时间间隔起点无关(时间以小时计) .(1)求某一天中午12时至下午(2)求某一天中午12时至下午3【解】(1) P(X =0)=訐3时没收到呼救的概率;5时至少收到1次呼救的概率.5 ⑵ P(X >1)=1- P(X =0)k k 2 _k11.设P{X=k}= C2P (1 - p) , k=0,1,2E、z 1 m m.. \4_mP{ Y=m}= C4 p (1 一p)m=0,1,2,3,45分别为随机变量X, Y的概率分布,如果已知P{X> 1}=-,试求P{Y> 1}.95 4【解】因为P(X>1)=故P(Xc1)=—.9 9P(X c1) = P(X =0)=(1 -p)2故得(1-P)24 "9,"3.从而P (Y>1)=1-p(Y=0) =1-(1-P)465止0.80247810.001,试求在这2000册书中12.某教科书出版了2000册,因装订等原因造成错误的概率为恰有5册错误的概率.【解】令X为2000册书中错误的册数,则X~b(2000,0.001).利用泊松近似计算,A = np = 2000 X 0.001 =2P(X=5“虫=0.00185!3 113.进行某种试验,成功的概率为一,失败的概率为一.以X表示试验首次成功所需试验的次4 4数,试写出X的分布律,并计算X取偶数的概率.【解】X =1,2J||,k,|||P(X =2)+P(X =4)+)H+P (X =2k )+111+4)3 3 +…+ (丄)22 3+…4 4 4 4 4 414.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002 ,每个参加保险的人在 1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1) (2) 【解】以 (1) 设1年中死亡人数为 X ,则X~b(2500,0.002),则所求概率为P(2000 X >30000) = P(X >15) =1 - P(X <14)由于n 很大,p 很小,^=np=5,故用泊松近似,有14 e-55kP( X A 15) " -S ------------ 止 0.000069k 竺k!⑵P(保险公司获利不少于 10000)=P(30000 -2000X >10000) = P(X <10)10e ^5k止送巳上-止0.986305 krn k!141—(4)2_1=5即保险公司获利不少于 10000元的概率在98%以上P (保险公司获利不少于 20000) = P(30000 - 2000 X > 20000) = P( X < 5) 5 e 55k 上 S ----- 止 0.615961kzs k! 即保险公司获利不少于 15.已知随机变量 X 的密度函数为 lx|f(x)=Ae , 亠 <x<+ g , 求:(1) A 值;(2) P{0< X<1}; (3) F(x). 由 J f (x)dx =1 得 20000元的概率约为62% 【解】(1) 处 _L X 处 jAe 叫x=2.0 Ae 和x=2A A 」.21 1 1 1 , p(0<X <1)=2 J 0rdx 二(1-ejx 1 1当 x<0 时,F (X )= f - e xd^ =- e x*2 2保险公司亏本的概率;保险公司获利分别不少于 10000元、20000元的概率.“年”为单位来考虑.在1月1日,保险公司总收入为 2500 X 12=30000元.x<017. 在区间[0, a ]上任意投掷一个质点,以 中任意小区间内的概率与这小区间长度成正比例,试求【解】 由题意知X~ U [0,a ],密度函数为故当x<0时F (X )=0当 0< x w a 时 F(x)=X11 X 1当 X >0 时,F(x)=f-e Xdx+f-e 」dx'远2 ■^-oc 2』0 2=1—b 2 F (X ^!I1 Xc-e , X c0 2 1 」-丄e 」x>0 2 16.设某种仪器内装有三只同样的电子管,电子管使用寿命 [100 f(x)= {= L 0,求:(1)(2)(3) 【解】2 , X>100,X X c100. 在开始150小时内没有电子管损坏的概率;在这段时间内有一只电子管损坏的概率; F ( X ).150100132 3 8 P 1=[ P( X A 150)]3=(2)3=27(2)P 2 乂33(1)2= 9⑶当 x<100 时 F (X )=0X当 x > 100 时 F(x)=[ f(t)dtJ-O C100 X¥dt 十100 t 2•100X 的密度函数为X 表示这质点的坐标,设这质点落在[X 的分布函数.0, a :f (X )= < a'10,其他当 x>a 时,F (X )=1 即分布函数「0,XF(x)才—, l ai 1,18. 设随机变量X 在[2 , 5]上服从均匀分布.现对 值大于3的概率. 【解】X~U [2,5],即故所求概率为p 七(l4+c 3(|4|719.设顾客在某银行的窗口等待服务的时间 X(以分钟计)服从指数分布E(-).某顾客在窗口55次,以丫表示一个月内他未等 P {Y > 1}.该顾客未等到服务而离开的概率为Y ~b(5,e'),即其分布律为P (Y =k) =c 5(ed k(1-er 5二k =0,123,4,5P(Y >1)=1 -P(Y = 0) =1 -(l-e ,)5=0.516720. 某人乘汽车去火车站乘火车,有两条路可走从N (40, 102);第二条路程较长,但阻塞少,所需时间(1) 若动身时离火车开车只有 (2)又若离火车开车时间只有【解】(1)若走第一条路,X~N (40, 102),则f(X^H ,10,2<x<5其他x>aX 进行三次独立观测,求至少有两次的观测等待服务,若超过10分钟他就离开.他一个月要到银行 到服务而离开窗口的次数,试写出丫的分布律,并求【解】依题意知X ~ E(1),即其密度函数为1 f(x)=<E e【0,X -5X >0 x<0X5dx =e-2.第一条路程较短但交通拥挤,所需时间X 服从 N (50,42).1小时,问应走哪条路能乘上火车的把握大些? 45分钟,问应走哪条路赶上火车把握大些?<x -4° 60 -40]=①⑵=0.97727 10丿若走第二条路,X~N ( 50,42),则< 60-50 L ①(2.5) = 0.9938 ++4丿故走第二条路乘上火车的把握大些 (2)若 X~N (40, 102),则P(X <45) =P「X-50W 45~50L Q (_1.25)I 4 4丿 = 1—0(1.25)=0.1056故走第一条路乘上火车的把握大些221•设 X~N (3,22),(1) 求 P{2<X <5}, P{*<X <10}, (2)确定 c 使 P{X >c}= P{X < c}.P(|X |A 2) = P(X >2) + P(X <—2)V 2 q 卩】+1—①但〕 l 2丿l 2丿= 0.6915 +1 -0.9938 =0.6977P(X<60) = P (帀P(X c60) = p (X-50I 4'X -40 ,10若 X~N ( 50 , 42),贝UP(X <45)= P<〒U (0.5)=0.6915 P{ I X I > 2}, P{X > 3};了2 -3 I 解】(1)P(2<x^= P bX -3 < ------- 2(1〕 = 0.8413-1 +0.6915 =0.5328 = Q (1)_1 +①(1〕 f _4_3 P(—4 <X <10) =I 2 X —3< -------2=0亿L ① 12丿 0.9996I 2丿=P g — V 2 2 h —① f-1 1V 2丿+ P 3 二丿I 2 2a I 2丿P(X >3)= P(弓)=1-①(0)=0.5⑵c=322.由某机器生产的螺栓长度(cm ) X~N (10.05,0.062),规定长度在10.05± 0.12内为合格品, 求一螺栓为不合格品的概率.=1 -①(2) + ①(-2) = 2[1 -①(2)] = 0.045623.一工厂生产的电子管寿命 X (小时)服从正态分布 N (160, I),若要求P{120 < X W 200 => 0.8,允许I 最大不超过多少? 【解】P(120cX <200) = p f 20"16024.设随机变量X 分布函数为(2) P(X <2) =F (2) =1 —e "P(X >3) =1-F(3) =1-([-©少)=e ;人「- —)x ⑶ f (x)=F '(x)=f 0, x <025.设随机变量X 的概率密度为|x,f (x )=<2 —X,I I 0,求X 的分布函数F (X ),并画出f ( X )及 F ( X ).【解】p (|X -10.05^0.12) = Pd x -10.050.12)0.06> -----0.06丿X -160 200-160 < ----------- <c1.29= 31.25F (x )屮十Be ,I 0,x" x<0.仏 >0),求常数A , B ;求 P{X W 2} , P{X > 3}; 求分布密度f (x ).i xi mF (x H 1(1) (2) (3)【解】(1)由 < 片得严1x>00 <x <1, 1<x C 2,其他.【解】当x<0时F (X )=0X 0 X f f(t)dt = J f(t)dt+.0 f(t)dt._oC・ _oC7XX珥 tdt=—当 x < 0 时 F (X )= J f (x)dx = J-当 1 <x<2 时 F(x)=Xu f(t)dt0 1;_^f(t)d^ J 0f(t)dt + L f(t)dt1X珂tdt + [ (2-t)dt 1 X 23 =-+2x-— 一一 2 2 22X+2X-1 2X当 x >2 时 F(x M.c f(t)d ^10, X 2X c0F(x) ={2 22x-1,I 2I 1,1<xc2 x>226.设随机变量X 的密度函数为(1) f(x)=ae —凶,入 >0; bx, 12,X .0,a,b ,并求其分布函数 F (X ).J f(x)dx=1 知 1 ⑵ f(x)= f —试确定常数 【解】(1)由 即密度函数为0 v x €1, 1 <x <2, 其他. □c 5 叫X = 2a f>dxf (X )才2 l 2e2ax<0当 0<x<1 时 F(x)=X 0 i r x X i r x当 x>0 时 F (X )= (x)dx = ‘尹冰 + J o 专Eclx故其分布函数27.求标准正态分布的上 a 分位点,(1) a =0.01,求 Z j ; (2) a =0.003,求 Z x ,Z 陀. 【解】(1) P(X A z J =0.01F(x)2 1 >X -e , .2X A O X <01(2)由 1 = f^f(x)d^ bxdx + f — dx oC得即X 的密度函数为山 2 勺Xb=1b=一 +2 2当 X < 0 时 F (X )=0|x, II 1 f(x)十,X 0,1 <x c2 其他当 0<x<1 时 F(x) = J f(x)dx= J f(x)dx + J f (x)dx*■ -CC*■ -CC *"0X=4xdx当 1 < X<2 时 F (X )= J f (x)dx 斗 0dx3 1=———2 X当 X > 2 时 F (X )=1 故其分布函数为F(x)P0, 2Xx<0 2 3 21,0 <x c 1 1 <xc2 x>22i q (z 』=0.01①(Za )=0.09Z —33(2)由 P(X >Z a )=0.003得1-①(Za )= 0.003①(去)=0.997% =2.75由 P(X A Za /2)=0.0015 得1-①(Z^/2)=0.0015①(Za /2)=0.9985Zo /2 = 2.9628.设随机变量X 的分布律为求Y=X 2的分布律.【解】丫可取的值为0, 1 , 4, 9P(Y =0) =P(X =0) J5P(Y = 1) = P (X = -1) + P( X =1)」+丄6 15 301P (Y =4) =P (X = —2)=-5 11P(Y =9) =P( X =3)=30故丫的分布律为0 1 4 1/57/301/51 k29•设 P{X=k}=( —) , k=1,2,…,令I 1,当X 取偶数时 Y = 5[-1,当X 取奇数时.X P k-21/5 一1 0 1/6 1/51 1/153 11/30查表得查表得Y P k9 11/30⑶ p (Y >0)=1当 y w 0 时 FY (y) = P(Y <y) =0求随机变量X 的函数丫的分布律.【解】P(Y =1) = P( X =2) +P(X =4) +)||+P (X =2k)+H|= G )2+([)4 +川+ (1)2k+川 2 2 2 1 1 14 4 3P (丫 =_1) = 1- P (丫 =1) = 230•设 X~N (0, 1).(1) 求Y=e X 的概率密度;(2) 求Y=2X 2+1的概率密度; (3)求丫= I X I 的概率密度•【解】(1)当 y w 0 时,F Y (y) = P(Y <y)=0x当 y>0 时,FY (y) =P(Y <y)= P(e <y) =P(X <ln y)In y=Lc f x (x )dxdF Y (y)1 1 1 Jn2y/2f Y (y^^=7f x (Iny ^7;72n e ,y >0(2) P(Y = 2X 2 +1 >1) = 1当 y w 1 时 F Y (y) =P(Y <y) =0Q当 y>1 时 F Y (y) =P(Y <y)= P(2X +1<y)=P W 詈卜P卜呼卡:Ji (y 4)/2「L E f X (x )dx故 f Y (y )=;^F Y (y)二1』一2dy4 V4"f = + 、ff x4y 4)/4—e , y A 1当 y>0 时 F Y (y) = P(|X Uy) = P(-y <X <y)y=J 」f x(x)dx故 TR —n2』2/2K ,y >031. 设随机变量X~U (0,1),试求:(1) Y=e X 的分布函数及密度函数; (2)Z=/lnX 的分布函数及密度函数.【解】(1) P(0 cX <1)=1y W1 时 F Y (y) = P(Y <y) =01<y<e 时 F Y (y) = P(e X < y) = p(x <ln y)rj^ X当 y 》e 时 F Y (y)= P(e < y) =1 即分布函数,p-0,F Y (y) = <ln II 1,y, y <11 c y cey 工e 故丫的密度函数为1f Y (y) i y ,0, 其他(2)由 P ( 0<X<1) =1知P(Z A0) =1当 Z W 0 时,F Z (z) = P(Z <z)=0当 z>0 时,F Z (z) = P(Z <z) = P(-2ln X <z)=P(lnX <-彳)=P(X Ke"/2)1当y w 0时, F Y (y)= P(Y <y)=0 当0<y<1时,F Y (y) = P(Y <y) = P(sinx <y)=P(0 <X <arcsin y) + P( n — arcs in y 兰 X < narcsin y2x n-y dx + 7C=1( arcs iny) n 2 .=—arcsiny n2x^, —dx‘ n_arcsin y丘+1- 4( n - arcsiny )2nF Y (y) 9故Y 的密度函数为10,其他33.设随机变量X 的分布函数如下:F(x)F1+x 2'i (2),< (1)试求Y=sinX 的密度函数. 【解】P(0 c Y <1)=1试填上(1),(2),(3)项.即分布函数故Z 的密度函数为32. 设随机变量X 的密度函数为Udx-1-/2F z (Z 」0, .z/2U -eI 1 j/2f z (z 」尹L 0,f(x)=l 学L 0,0< Xz<0 z 》0Z A O z<0其他.【解】由lim F (x ) =1知②填1。
概率论与数理统计 B二.填空题〔每题 3 分,共15 分〕1.设A、B是彼此独立的随机事件,P( A)=0.5, P( B)=0.7, 那么P( A B) = .~ B (n, p), E( ) 3, D()2.设随机变量,那么n=______.E( 2) =_______.( ) 2,那么3.随机变量ξ的期望为E( ) 5 ,尺度差为4.甲、乙两射手射击一个目标,他们射中目标的概率别离是和0.8. 先由甲射击,假设甲未射中再由乙射击。
设两人的射击是彼此独立的,那么目标被射中的概率为_________. a5.设持续型随机变量ξ的概率分布密度为 f (x) ,a为常数,那么P( ξ≥0)=_______.x2 2x 2三.( 此题10 分) 将4 个球随机地放在 5 个盒子里,求以下事件的概率(1) 4 个球全在一个盒子里;(2) 恰有一个盒子有 2 个球.四.( 此题10 分) 设随机变量ξ的分布密度为A, 当0≤x≤3f (x) 1 x0, 当x<0或x>3(1) 求常数A; (2) 求P( ξ<1) ;(3) 求ξ的数学期望.五.( 此题10 分) 设二维随机变量( ξ, η) 的联合分布是η=1 η=2 η=4 η=5ξ=0ξ=1ξ=2E( )(1) ξ与η是否彼此独立? (2) 求的分布及;六.( 此题10 分) 有10 盒种子,此中 1 盒抽芽率为90%,其他9 盒为20%. 随机拔取此中 1 盒,从中取出1 粒种子,该种子能抽芽的概率为多少?假设该种子能抽芽,那么它来自抽芽率高的 1 盒的概率是多少?七.( 此题12 分) 某射手参加一种游戏,他有 4 次时机射击一个目标. 每射击一次须付费10 元. 假设他射中目标,那么得奖金100 元,且游戏遏制. 假设4 次都未射中目标,那么游戏遏制且他要付罚款100 元. 假设他每次击中目标的概率为0.3, 求他在此游戏中的收益的期望.八.( 此题12 分) 某工厂出产的零件废品率为2000 个合格品. 问他至少应购置多少零件?5%,某人要采购一批零件,他但愿以95%的概率包管此中有(1.28) (1.65))( 注:,九.( 此题 6 分) 设事件A、B、C彼此独立,试证明 A B 与C彼此独立.某班有50 名学生,此中17 岁5 人,18 岁15 人,19 岁22 人,20 岁8 人,那么该班学生春秋的样本均值为________.十.测量某冶炼炉内的温度,重复测量 5 次,数据如下〔单元:℃〕:1820,1834,1831,1816,1824~ N( , 2 ) . 估计假定重复测量所得温度10 ,求总体温度真值μ的的置信区间. (注:(1.96) , (1.65) )答案一.1.〔D 〕、2. 〔D 〕、3. 〔A 〕、4. 〔C 〕、5. 〔C 〕E( 2 )二.1. 、2. n =5、3.、 =29、5. 3/4三.把 4 个球随机放入 5 个盒子中共有 54=625 种等可能成果 --------------3 〔1〕A={4 个球全在一个盒子里 } 共有 5 种等可能成果 , 故分P ( A )=5/625=1/125------------------------------------------------------5分分(2) 5 个盒子中选一个放两个球,再选两个各放一球有1 52 4C C30 种方法 ----------------------------------------------------74 个球中取 2 个放在一个盒子里,其他2 个各放在一个盒子里有 12 种方法因此, B={ 恰有一个盒子有 2 个球} 共有 4×3=360 种等可能成果 . 故36072P( B)--------------------------------------------------10 分625 1253A 1f (x)dxdx Aln 4, A四.解:〔1〕---------------------3 分1 xln 4 0 10 A 1P(1) dx Aln 2 〔2〕 -------------------------------6 分1 x2 3Ax3 〔3〕E ( )xf ( x)dx(3 ln 4)dx A[ x ln(1 x)] 01 x0 13 1------------------------------------10分ln 4ln 4五. 解:〔1〕 ξ的边缘分布为0 1 2--------------------------------2 分0. 39η的边缘分布为1 2 4 5---------------------------4 分P(0, 1) 0 .05 P( 0)P( 1), 故ξ 与η 不彼此独立 -------5分因 〔2〕 的分布列为0 1 245810P因此,E( ) 0 1 2 0 .17 45 8 10 3 .16-------10分另解 :假设 ξ与η彼此独立 , 那么应有P(ξ=0, η=1) =P(ξ=0)P( η=1); P( ξ=0, η=2) =P(ξ=0)P( η=2); P(ξ=1, η=1) =P(ξ=1)P( η=1); P( ξ=1, η=2) =P(ξ=1)P( η=2); 因此,P( P(0, 1,1) P( 1)P(0, 1,2) P( 2)P(0) 1)0 .05但,故 ξ 与η 不彼此独立。
第一章《随机事件及概率》练习题一、单项选择题1、设事件A 与B 互不相容,且P (A )>0,P (B )>0,则一定有( )(A )()1()P A P B =-; (B )(|)()P A B P A =;(C )(|)1P A B =; (D )(|)1P A B =。
2、设事件A 与B 相互独立,且P (A )>0,P (B )>0,则( )一定成立 (A )(|)1()P A B P A =-; (B )(|)0P A B =;(C )()1()P A P B =-; (D )(|)()P A B P B =。
3、设事件A 与B 满足P (A )>0,P (B )>0,下面条件( )成立时,事件A 与B 一定独立(A )()()()P AB P A P B =; (B )()()()P A B P A P B =U ;(C )(|)()P A B P B =; (D )(|)()P A B P A =。
4、设事件A 和B 有关系B A ⊂,则下列等式中正确的是( )(A )()()P AB P A =; (B )()()P A B P A =U ;(C )(|)()P B A P B =; (D )()()()P B A P B P A -=-。
5、设A 与B 是两个概率不为0的互不相容的事件,则下列结论中肯定正确的是( ) (A )A 与B 互不相容; (B )A 与B 相容;(C )()()()P AB P A P B =; (D )()()P A B P A -=。
6、设A 、B 为两个对立事件,且P (A )≠0,P (B ) ≠0,则下面关系成立的是( ) (A )()()()P A B P A P B =+U ; (B )()()()P A B P A P B ≠+U ;(C )()()()P AB P A P B =; (D )()()()P AB P A P B =。
概率论与数理统计试题及答案一、选择题(每题2分,共10分)1. 设随机变量X服从参数为λ的泊松分布,那么P(X=2)等于:A. λ^2B. e^(-λ)λ^2C. λ^2/2D. e^(-λ)λ^2/2答案:D2. 某工厂生产的零件长度服从正态分布N(50, 25),那么长度在45到55之间的零件所占的百分比是:A. 68.27%B. 95.45%C. 99.74%D. 50%答案:B3. 一袋中有10个红球和5个蓝球,随机抽取3个球,那么抽到至少2个红球的概率是:A. 0.4375B. 0.5625C. 0.8125D. 0.9375答案:C4. 设随机变量Y服从二项分布B(n, p),那么E(Y)等于:A. npB. n/2C. p/nD. n^2p答案:A5. 以下哪个事件是不可能事件:A. 抛硬币正面朝上B. 抛骰子得到1点C. 一天有25小时D. 随机变量X取负无穷答案:C二、填空题(每题3分,共15分)6. 设随机变量X服从均匀分布U(0, 4),那么P(X>2)等于______。
答案:1/27. 随机变量Z服从标准正态分布,那么P(Z ≤ -1.5)等于______(结果保留两位小数)。
答案:0.06688. 设随机变量W服从指数分布Exp(μ),那么W的期望E(W)等于______。
答案:1/μ9. 从一副不含大小王的扑克牌中随机抽取一张,抽到黑桃A的概率是______。
答案:1/5210. 设随机变量V服从二项分布B(15, 0.4),那么P(V=5)等于______(结果保留三位小数)。
答案:0.120三、解答题(共75分)11. (15分)设随机变量ξ服从二项分布B(n, p),已知P(ξ=1) = 0.4,P(ξ=2) = 0.3,求n和p的值。
答案:根据二项分布的性质,我们有:P(ξ=1) = C(n, 1)p^1(1-p)^(n-1) = 0.4P(ξ=2) = C(n, 2)p^2(1-p)^(n-2) = 0.3通过解这两个方程,我们可以得到n=5,p=0.4。
一、填空题(每小题3分,共30分)
1、
3个事件,则这三个事件中不多于两个发生可表示为 . 2
? . 3
4、若离散型
5
互独立
25 .
6
7
8
,其概率密度分别为
=
. 9
,
n-1
的
X^2 分布.
10
16的样本,则
0.95的置信区间为
([解答]:1
2 3
4
5、-6,25
6、0.5
7、0.875 8
9
10
二、(本题12分)两台机床加工同类型的零件,第一台出现废品的概率为0.03,第
二台出现废品的概率为
0.02,加工出来的零件放在一起,且各占一半.求 (1)从中任意取一件零件为合格品的概率;
(2)若取出的零件已知为废品,它是第二台机床加工的概率.
三、(本题12分)
[解答]
二、设(本题12分
)两台机床加工同类型的零件,第一台出现废品的概率为0.03,
第二台出现废品的概率为0.02,加工出来的零件放在一起,且各占一半.求 (1)
从中任意取一件零件为合格品的概率;
(2)若取出的零件已知为废品,它是第二台机床加工的概率.
解
,则
由已知有
2分(1)由全概率公式得
分故任意取出的一件零件为合格品的概率为
7分
(2)由贝叶斯公式得
12分
三、(本题12分)
.
解
2分
其反函数
4分
8分
12分
四、(本题12分)
(1)
(2)
,为什么? (3) [解答]
(1)由密度函数的性质有
3分
(2)
则
则
5分
则
则
7分
..
9分
12分
五、(本题12分)
解
.......................... 3分
6分
9分
12分
六、(本题12分)
观察值,.
解 似然函数
4分
取对数
6分
10分
12分
七、(本题10分)
的参数,现在观测
25个样本,
小时)?
附表
解总体方差未知,2000.
(1) 提出待检假设1分
(2) 2分
(3) 查表确定临界值
5分
(4) :故
8分
(5)判断: 故接受H0,即这种电子元件的平均使用寿命为
. 10分一、填空题(每小题3分,共30分)
123
4
5、-6,25
6、0.5
7、0.875
8
9
10
二、设(本题12分)两台机床加工同类型的零件,第一台出现废品的概率为0.03,第二台出现废
品的概率为0.02,加工出来的零件放在一起,且各占一半.求
(1)从中任意取一件零件为合格品的概率;
.
解,则由已知有
2分
5分
7分
12分
解............................... 2分
4分
8分
12分四、(
(1)
(2) ,为什么? (3)
3分
5分 7分
9分
12分
3分 6分 9分
12分六、(
,
.
解似然函数
..................................................... 4分
取对数
6分
10分
.......................................................... 12分七、
,现
附表
解
1分
2分
5分
8分
(5)判断: 故接受H0,即这种电子元件的平均使用寿命为
. ................................................................................................... 10分。