第七章 STM32单片机串口编程及其应用
- 格式:pdf
- 大小:287.38 KB
- 文档页数:14
stm32串口数据读取函数STM32是一款广泛应用于嵌入式系统的微控制器,具有强大的性能和丰富的外设资源。
其中,串口是一种常用的通信接口,用于与其他设备进行数据交换。
本文将介绍如何使用STM32串口数据读取函数进行数据接收。
一、STM32串口简介在嵌入式系统中,串口是一种基本的通信方式,通过串口可以实现与其他设备的数据交换。
STM32提供了多个串口接口,如USART、UART等,可以满足不同应用的需求。
二、串口数据读取函数在STM32中,串口数据读取函数主要通过读取串口接收缓冲区来获取数据。
根据不同的串口接口,使用不同的函数进行数据读取。
1. USART串口数据读取函数USART串口是一种全双工的串口接口,可以同时进行数据的发送和接收。
在STM32中,可以使用HAL库提供的函数来实现USART串口数据的读取。
需要初始化串口并开启接收中断。
接着,在中断回调函数中,使用HAL_UART_Receive函数进行数据的读取。
该函数需要传入串口句柄、数据缓冲区和数据长度作为参数,可以实现指定长度的数据读取。
2. UART串口数据读取函数UART串口是一种半双工的串口接口,只能进行数据的发送或接收。
与USART串口相比,UART串口的读取函数较为简单。
在STM32中,可以使用HAL库提供的函数来实现UART串口数据的读取。
使用HAL_UART_Receive函数进行数据的读取,该函数需要传入串口句柄、数据缓冲区和数据长度作为参数,可以实现指定长度的数据读取。
三、应用实例以下是一个使用USART串口读取数据的示例:```c#include "stm32f4xx.h"#include "stm32f4xx_hal.h"#define BUFFER_SIZE 10UART_HandleTypeDef huart;uint8_t rx_buffer[BUFFER_SIZE];void USART1_IRQHandler(void){HAL_UART_IRQHandler(&huart);}void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) {if (huart->Instance == USART1){// 数据读取完成后的处理操作}}int main(void){HAL_Init();SystemClock_Config();huart.Instance = USART1;huart.Init.BaudRate = 115200;huart.Init.WordLength = UART_WORDLENGTH_8B;huart.Init.StopBits = UART_STOPBITS_1;huart.Init.Parity = UART_PARITY_NONE;huart.Init.Mode = UART_MODE_RX;huart.Init.HwFlowCtl = UART_HWCONTROL_NONE;huart.Init.OverSampling = UART_OVERSAMPLING_16;if (HAL_UART_Init(&huart) != HAL_OK){// 串口初始化失败}HAL_UART_Receive_IT(&huart, rx_buffer, BUFFER_SIZE);while (1){// 主程序其他操作}}```在上述示例中,首先进行了串口的初始化配置,然后开启了串口的接收中断。
stm32串口通信实验原理STM32是一款由STMicroelectronics公司推出的基于ARM Cortex-M 内核的32位微控制器。
在STM32系列中,串口通信是一种常见的外设模块,可以实现与其他设备之间的数据传输。
本文将介绍STM32串口通信的原理及实验方法。
一、串口通信的原理串口通信是一种通过串行方式传输数据的通信方式。
在串口通信中,数据是一位一位地依次发送或接收的。
与并行通信相比,串口通信只需要两根信号线即可实现数据的传输,因此在资源有限的嵌入式系统中被广泛应用。
STM32的串口通信模块包括多个寄存器,其中包括控制寄存器、状态寄存器、数据寄存器等。
通过配置这些寄存器,可以实现串口通信的参数设置和数据的发送接收。
二、STM32串口通信的实验步骤以下是一种基本的STM32串口通信实验步骤:1. 硬件连接:将STM32开发板的串口引脚与其他设备的串口引脚通过串口线连接起来。
一般来说,串口通信需要连接的引脚包括TX (发送引脚)、RX(接收引脚)、GND(地线)。
2. 引脚配置:通过STM32的引脚复用功能,将相应的GPIO引脚配置为串口功能。
具体的引脚配置方法可以参考STM32的开发板手册或者相关的资料。
3. 时钟配置:配置STM32的时钟源,使得串口通信模块能够正常工作。
一般来说,串口通信模块使用的时钟源可以选择系统时钟或者外部时钟。
4. 串口配置:配置串口通信模块的参数,包括波特率、数据位、停止位、校验位等。
这些参数的配置需要根据实际的通信需求来确定。
5. 数据发送:通过向数据寄存器写入数据,向其他设备发送数据。
在发送数据之前,需要通过状态寄存器的标志位判断串口是否空闲,以确保数据能够正常发送。
6. 数据接收:通过读取数据寄存器的数据,从其他设备接收数据。
在接收数据之前,需要通过状态寄存器的标志位判断是否有数据到达,以确保数据能够正确接收。
7. 中断处理:在串口通信过程中,可以使用中断来实现数据的异步传输。
STM32HAL库之串⼝详细篇(基于HAL库)⼀、基础认识(⼀) 并⾏通信原理:数据的各个位同时传输优点:速度快缺点:占⽤引脚资源多,通常⼯作时有多条数据线进⾏数据传输8bit数据传输典型连接图:传输的数据是⼆进制:11101010,则通信使⽤8条线同时进⾏数据传输,发送端⼀次性发送8位数据,接收端⼀次性接收8位数据。
(⼆) 串⾏通信原理:数据按位顺序传输优点:占⽤引脚资源少缺点:速度相对较慢,通常⼯作时只有⼀条数据线进⾏数据传输8bit数据传输典型连接图:传输的数据是⼆进制:11101010,则通信使⽤8条线同时进⾏数据传输,发送端⼀次性发送8位数据,接收端⼀次性接收8位数据。
8bit数据传输典型连接图:传输的数据是⼆进制:11101010,则通信使⽤1条线进⾏数据传输,发送端⼀次性发送1位数据,接收端⼀次性接收1位数据。
串⾏通信的分类:1.单⼯:数据只能在⼀个⽅向上传输,通信双⽅数据只能由⼀⽅传输到另⼀⽅2.半双⼯:数据可以错时双向传输,通信双⽅数据可以⽀持两个⽅向传输,但是同⼀时间只能由⼀⽅传输到另外⼀⽅。
3.全双⼯:数据可以同时双向传输,通信双⽅数据可以同时进⾏双向传输,对于其中⼀个设备来说,设备需要⽀持发送数据时可以进⾏数据接收。
串⾏通信的通讯⽅式:l 同步通信:带时钟同步信号的传输,如SPI、IIC、USART(同步)l 异步通信:不带时钟同步信号的传输,如UART、USART(异步)常见数据传输协议:(三) UART和USARTUART:通⽤异步收发器USART:通⽤同步/异步收发器,其可选使⽤异步⽅式,那将和UART⽆区别,如果是同步,则需要多⼀根时钟线(USART_CK)(四) STM32的USART注意:l 通常USART1接⼝的通信速率较快,其它USART接⼝较慢。
如STM32F103C8T6的USART1接⼝通信速率是4.5Mbps,其它USART接⼝的通信速率是2.25Mbps。
stm32串口烧写程序的原理STM32是一种由意法半导体(STMicroelectronics)开发的32位微控制器系列。
它提供了丰富的外设接口和强大的处理能力,广泛应用于嵌入式系统中。
其中,串口烧写是一种常用的方式,用于在开发过程中向STM32芯片加载程序。
本文将介绍STM32串口烧写的原理。
串口烧写是通过串行通信接口将程序文件传输到STM32芯片的过程。
在STM32中,常用的串口通信接口为USART(通用同步/异步收发器)或UART(通用异步收发器)。
这两种接口通过串口与计算机连接,可进行数据的收发。
为了进行程序烧写,首先需要在计算机上安装相应的烧写软件,如ST-Link Utility或者STM32CubeProgrammer。
这些软件提供了用于将程序文件上传到芯片的功能,它们通过USB端口与ST-Link或者JTAG进行连接。
烧写过程中,需要将STM32芯片连接到计算机。
一种常见的连接方法是通过SWD(串行线路调试)接口连接,该接口位于STM32芯片上,并由4条线组成,包括SWDIO(串行数据线)、SWCLK(串行时钟线)、GND(地线)和VCC(供电线)。
在连接完毕后,烧写软件将打开与STM32芯片的通信通道。
软件首先对STM32芯片进行复位操作,然后通过串口发送烧写指令和数据。
烧写指令包含了一系列指示芯片进行烧写操作的命令,如擦除芯片、写入数据等。
STM32芯片接收到烧写指令后,会执行相应的操作。
首先,芯片会根据指令对内部存储器进行擦除操作,将原有的程序数据清空。
接下来,芯片会按照指令中的地址顺序,逐个写入新的程序数据。
写入完成后,芯片会进行校验操作,以确保写入的数据与发送的数据一致。
完成校验后,芯片将发送烧写结束的响应信号给烧写软件,表示完成烧写操作。
此时,软件会关闭与STM32芯片的通信通道,烧写过程结束。
总的来说,STM32串口烧写的过程是通过将程序文件通过串口发送给芯片,芯片按照指令进行擦除和写入操作,最后进行校验,完成烧写过程。
基于stm32的串口通信设计报告基于STM32的串口通信设计报告一、引言STM32微控制器因其高性能、低功耗和丰富的外设接口而广泛应用于各种嵌入式系统。
其中,串口通信(UART)是STM32中非常常用的一种通信方式,它允许微控制器与其他设备或计算机进行数据交换。
本报告将详细介绍基于STM32的串口通信设计。
二、STM32串口通信概述STM32的UART通信主要通过其通用同步/异步接收器发送器(USART)实现。
USART是一个全双工的串行通信接口,支持同步和异步两种模式。
它提供了一种可靠的通信方式,适用于低速和高速数据传输。
三、串口通信硬件设计1. 引脚配置:根据具体的STM32型号,选择适当的TXD(发送数据)、RXD(接收数据)、RTS(请求发送)和CTS(清除发送)等引脚。
2. 电源与地:为UART模块提供稳定的电源和地线。
3. 电平转换:如果微控制器与外部设备之间的电平不匹配,需要进行电平转换。
四、串口通信软件设计1. 初始化UART:在开始通信之前,需要配置UART的各种参数,如波特率、数据位、停止位和奇偶校验等。
这通常在STM32的初始化代码中完成。
2. 数据发送:通过使用HAL库或标准外设库函数,可以方便地发送数据。
一般来说,发送函数会将数据放入一个缓冲区,然后启动发送过程。
3. 数据接收:与发送类似,接收数据时,数据首先被读取到一个缓冲区中,然后可以通过中断或轮询方式进行处理。
4. 中断处理:为了提高效率,可以启用UART的中断功能。
当中断被触发时,相应的中断处理程序会被执行,用于处理接收或发送的数据。
五、示例代码与测试以下是一个简单的示例代码,展示了如何在STM32上使用HAL库进行UART通信:include "stm32f4xx_"UART_HandleTypeDef huart1;void SystemClock_Config(void);static void MX_GPIO_Init(void);static void MX_USART1_UART_Init(void);int main(void){HAL_Init();SystemClock_Config();MX_GPIO_Init();MX_USART1_UART_Init();uint8_t txBuffer[] = "Hello, UART!";HAL_UART_Transmit(&huart1, txBuffer, sizeof(txBuffer), HAL_MAX_DELAY);while (1)// 循环等待,直到收到中断或手动终止程序}}```六、结论通过本报告,我们详细介绍了基于STM32的串口通信设计。
stm32串⼝实验:stm32通过usart1进⾏串⼝收发,PA9(TX)和PA10(RX)这是stm32开发中⽐较简单的实验,原理是通过串⼝助⼿发送信息,stm32接收到信息以后在串⼝助⼿中打印相同的内容。
这⾥直接分享keil5⼯程代码,是在⼯程模板的基础上移植和修改了正点原⼦的串⼝代码(如果失效的话可以在下⽅评论留下邮箱,我看到会给你发⼀份)顺便把usart.c和usart.h还有mian.c中的代码复制到下⾯,⼩伙伴可以直接移植到⾃⼰的⼯程中实现的效果也在下⾯放上串⼝助⼿中显⽰的图⽚usart.c1 #include "sys.h"2 #include "usart.h"345//STM32F103核⼼板例程6//库函数版本例程7/********** 出品 ********/8910//////////////////////////////////////////////////////////////////////////////////11//如果使⽤ucos,则包括下⾯的头⽂件即可.12#if SYSTEM_SUPPORT_UCOS13 #include "includes.h"//ucos 使⽤14#endif15//////////////////////////////////////////////////////////////////////////////////16//STM32开发板17//串⼝1初始化1819//////////////////////////////////////////////////////////////////////////////////202122//////////////////////////////////////////////////////////////////23//加⼊以下代码,⽀持printf函数,⽽不需要选择use MicroLIB24#if 125#pragma import(__use_no_semihosting)26//标准库需要的⽀持函数27struct __FILE28 {29int handle;3031 };3233 FILE __stdout;34//定义_sys_exit()以避免使⽤半主机模式35void _sys_exit(int x)36 {37 x = x;38 }39//重定义fputc函数40int fputc(int ch, FILE *f)41 {42while((USART1->SR&0X40)==0);//循环发送,直到发送完毕43 USART1->DR = (u8) ch;44return ch;45 }46#endif4748/*使⽤microLib的⽅法*/49/*50int fputc(int ch, FILE *f)51{52 USART_SendData(USART1, (uint8_t) ch);5354 while (USART_GetFlagStatus(USART1, USART_FLAG_TC) == RESET) {}5556 return ch;57}58int GetKey (void) {5960 while (!(USART1->SR & USART_FLAG_RXNE));6162 return ((int)(USART1->DR & 0x1FF));63}64*/6566#if EN_USART1_RX //如果使能了接收67//串⼝1中断服务程序68//注意,读取USARTx->SR能避免莫名其妙的错误69 u8 USART_RX_BUF[USART_REC_LEN]; //接收缓冲,最⼤USART_REC_LEN个字节.70//接收状态71//bit15,接收完成标志72//bit14,接收到0x0d73//bit13~0,接收到的有效字节数⽬74 u16 USART_RX_STA=0; //接收状态标记7576void uart_init(u32 bound){77//GPIO端⼝设置78 GPIO_InitTypeDef GPIO_InitStructure;79 USART_InitTypeDef USART_InitStructure;80 NVIC_InitTypeDef NVIC_InitStructure;8182 RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA, ENABLE); //使能USART1,GPIOA时钟 83//USART1_TX PA.984 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.985 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;86 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复⽤推挽输出87 GPIO_Init(GPIOA, &GPIO_InitStructure);8889//USART1_RX PA.1090 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;91 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输⼊92 GPIO_Init(GPIOA, &GPIO_InitStructure);9394//Usart1 NVIC 配置9596 NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;97 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3 ;//抢占优先级398 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //⼦优先级399 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能100 NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器101102//USART 初始化设置103104 USART_ART_BaudRate = bound;//⼀般设置为9600;105 USART_ART_WordLength = USART_WordLength_8b;//字长为8位数据格式106 USART_ART_StopBits = USART_StopBits_1;//⼀个停⽌位107 USART_ART_Parity = USART_Parity_No;//⽆奇偶校验位108 USART_ART_HardwareFlowControl = USART_HardwareFlowControl_None;//⽆硬件数据流控制109 USART_ART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式110111 USART_Init(USART1, &USART_InitStructure); //初始化串⼝112 USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//开启中断113 USART_Cmd(USART1, ENABLE); //使能串⼝114115 }116117118119void USART1_IRQHandler(void) //串⼝1中断服务程序120 {121 u8 Res;122 #ifdef OS_TICKS_PER_SEC //如果时钟节拍数定义了,说明要使⽤ucosII了.123 OSIntEnter();124#endif125if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //接收中断(接收到的数据必须是0x0d 0x0a结尾)126 {127 Res =USART_ReceiveData(USART1);//(USART1->DR); //读取接收到的数据128129if((USART_RX_STA&0x8000)==0)//接收未完成130 {131if(USART_RX_STA&0x4000)//接收到了0x0d132 {133if(Res!=0x0a)USART_RX_STA=0;//接收错误,重新开始134else USART_RX_STA|=0x8000; //接收完成了135 }136else//还没收到0X0D137 {138if(Res==0x0d)USART_RX_STA|=0x4000;139else140 {141 USART_RX_BUF[USART_RX_STA&0X3FFF]=Res ;142 USART_RX_STA++;143if(USART_RX_STA>(USART_REC_LEN-1))USART_RX_STA=0;//接收数据错误,重新开始接收144 }145 }146 }147 }148 #ifdef OS_TICKS_PER_SEC //如果时钟节拍数定义了,说明要使⽤ucosII了.149 OSIntExit();150#endif151 }152#endifusart.h1 #ifndef __USART_H2#define __USART_H3 #include "stdio.h"4 #include "sys.h"56//STM32F103核⼼板例程7//库函数版本例程8/********** 出品 ********/910//////////////////////////////////////////////////////////////////////////////////11//STM32开发板12//串⼝1初始化1314#define USART_REC_LEN 200 //定义最⼤接收字节数 20015#define EN_USART1_RX 1 //使能(1)/禁⽌(0)串⼝1接收1617extern u8 USART_RX_BUF[USART_REC_LEN]; //接收缓冲,最⼤USART_REC_LEN个字节.末字节为换⾏符18extern u16 USART_RX_STA; //接收状态标记19//如果想串⼝中断接收,请不要注释以下宏定义20void uart_init(u32 bound);21#endifmain.c1 #include "sys.h"2 #include "delay.h"3 #include "usart.h"45 uint8_t t;6 uint8_t len;7 uint16_t times=0;89int main(void)10 {11 delay_init(); //延时函数初始化12 uart_init(115200); //串⼝初始化为1152001314while(1)15 {16if(USART_RX_STA&0x8000) //USART_RX_STA第⼗六位为1则括号内为1,表⽰接收完数据17 {18 len=USART_RX_STA&0x3fff;//得到此次接收到的数据长度19 printf("\r\n您发送的消息为:\r\n\r\n");20for(t=0;t<len;t++)21 {22 USART_SendData(USART1, USART_RX_BUF[t]);//向串⼝1发送数据23while(USART_GetFlagStatus(USART1,USART_FLAG_TC)!=SET);//等待发送结束24 }25 printf("\r\n\r\n");//插⼊换⾏26 USART_RX_STA=0;27 }else28 {29 times++;30if(times%500==0)printf("请输⼊数据,以回车键结束\n");31 delay_ms(10);32 }33 }34 }串⼝实验效果图:未发送时发送数据时:祝⼩伙伴们2020加油!。
stm32f103串口发送函数例程1.简介本文档旨在介绍如何使用s tm32f103单片机开发板进行串口数据发送。
通过详细的步骤和示例代码,帮助读者理解并掌握串口发送函数的使用方法。
2.准备工作在开始使用s tm32f103进行串口数据发送之前,需要进行一些准备工作。
以下是所需的材料和环境:-s tm32f103开发板-串口线-串口调试助手软件-电脑-开发环境(如K eil等)3.步骤3.1连接硬件首先,将st m32f103开发板与电脑通过串口线连接好。
确保连接的端口和引脚与程序中定义的一致。
3.2配置串口在开发环境中,找到串口配置文件,并进行相应的设置。
设置包括波特率、数据位、停止位和校验等参数,根据需求设置。
3.3初始化串口在主函数中,使用相应的代码初始化串口。
初始化包括开启时钟、配置G PI O引脚和配置串口寄存器等操作。
3.4编写发送函数编写串口发送函数,用于向外部设备发送数据。
发送函数应包含以下步骤:-判断是否可以发送数据(如发送缓冲区是否为空)-将数据写入发送缓冲区-等待数据发送完成以下是一个简单的串口发送函数例程:v o id UA RT_S en dD ata(ui nt8_td at a){//判断发送缓冲区是否为空w h il e(!(US AR T1->S R&U SA RT_S R_TX E));//将数据写入发送缓冲区U S AR T1->DR=(da ta&0xF F);//等待数据发送完成w h il e(!(US AR T1->S R&U SA RT_S R_TC));}3.5调用发送函数在主函数中,调用编写的发送函数,向外部设备发送数据。
4.示例代码下面是完整的示例代码,供参考:#i nc lu de"s tm32f10x.h"v o id UA RT_I ni t(){//开启US AR T1时钟R C C->A PB2E NR|=RCC_AP B2EN R_US AR T1E N;//配置GP IO引脚R C C->A PB2E NR|=RCC_AP B2EN R_IO PA EN;G P IO A->C RH&=~(GPI O_C RH_C NF9|GP IO_C RH_M OD E9);//清除原有配置G P IO A->C RH|=GP IO_C RH_C NF9_1|GP IO_C RH_M OD E9_1;//设置为复用推挽输出//配置US AR T1寄存器U S AR T1->BR R=0x1D4C;//波特率设置为9600U S AR T1->CR1|=U SAR T_C R1_T E;//使能发送//使能US AR T1U S AR T1->CR1|=U SAR T_C R1_U E;}v o id UA RT_S en dD ata(ui nt8_td at a){//判断发送缓冲区是否为空w h il e(!(US AR T1->S R&U SA RT_S R_TX E));//将数据写入发送缓冲区U S AR T1->DR=(da ta&0xF F);//等待数据发送完成w h il e(!(US AR T1->S R&U SA RT_S R_TC));}i n tm ai n(){U A RT_I ni t();w h il e(1){U A RT_S en dD at a('H');U A RT_S en dD at a('e');U A RT_S en dD at a('l');U A RT_S en dD at a('l');U A RT_S en dD at a('o');}}5.运行与调试将编写的代码烧录到s tm32f103开发板上,然后接上电源。
标题:深入探究STM32F051C8T6的串口函数使用方法近年来,嵌入式系统在各个领域中得到了广泛应用,而STM32F051C8T6作为一款强大的嵌入式微控制器,其串口功能更是应用广泛。
在本文中,我将深入探究STM32F051C8T6的串口函数使用方法,从简到繁、由浅入深地为大家详细介绍。
1. STM32F051C8T6的串口功能简介我们需要了解STM32F051C8T6的串口功能。
串口通信被广泛应用于各种嵌入式系统中,用于实现设备之间的数据传输。
而在STM32F051C8T6中,它支持多种串口通信方式,包括USART、UART等。
这些串口通信方式拥有不同的特点和应用场景,我们需要根据具体的需求选择合适的串口通信方式。
2. STM32F051C8T6的串口函数基本用法在使用STM32F051C8T6的串口功能时,我们需要熟悉其相应的串口函数。
其中,包括初始化串口、发送数据、接收数据等基本操作。
在实际应用中,我们可以通过调用相应的串口函数,轻松实现串口通信的功能,从而实现设备之间的数据传输。
3. STM32F051C8T6的串口函数高级应用除了基本的串口功能外,STM32F051C8T6还支持一些高级的串口功能。
DMA传输、中断处理等。
通过合理地利用这些高级功能,我们可以提高串口通信的效率和稳定性,从而更好地满足实际应用的需求。
4. 我对STM32F051C8T6的串口函数的个人观点和理解在我看来,STM32F051C8T6的串口功能非常强大,可以满足不同场景下的串口通信需求。
通过对串口函数的深入了解和灵活运用,我们可以更好地实现设备之间的数据传输,从而提升整个嵌入式系统的性能和稳定性。
在总结本文内容时,我们可以看到STM32F051C8T6的串口功能在嵌入式系统中具有重要的地位,其丰富的功能和灵活的使用方式,为我们实现设备之间的数据传输提供了便利。
通过本文的介绍,相信大家对于STM32F051C8T6的串口函数使用方法有了更深入的了解。
STM32串口通信学习总结STM32是STMicroelectronics推出的一款32位单片机系列,具有高性能、低功耗、丰富的外设等特点,广泛应用于工业控制、消费电子、汽车电子等领域。
其中,串口通信是单片机中常用的通信方式之一,本文将对STM32串口通信学习进行总结。
1.串口通信原理及基础知识在STM32中,USART(通用同步/异步收发器)是负责串口通信的外设。
USART提供了多种模式的串口通信,包括异步模式(Asynchronous)、同步模式(Synchronous)以及单线模式(Single-wire)等。
2.STM32串口通信配置步骤(1)GPIO配置:首先需要配置串口通信所涉及的GPIO引脚,通常需要配置为复用功能,使其具备USART功能。
(2)USART配置:根据需要选择USART1、USART2、USART3等串口进行配置,设置通信模式、波特率等参数。
在配置时需要注意与外部设备的通信标准和参数保持一致。
(3)中断配置(可选):可以选择中断方式来实现串口数据的收发。
通过配置中断,当接收到数据时会触发中断,从而实现接收数据的功能。
(4)发送数据:通过USART的发送寄存器将数据发送出去,可以通过查询方式或者中断方式进行发送。
(5)接收数据:通过读取USART的接收寄存器,获取接收到的数据。
同样可以通过查询方式或者中断方式进行接收。
3.常见问题及解决方法(1)波特率设置错误:在进行串口通信时,波特率设置错误可能会导致通信失败。
需要根据外设的要求,选择适当的波特率设置,并在STM32中进行配置。
(2)数据丢失:在高速通信或大量数据传输时,由于接收速度跟不上发送速度,可能会导致数据丢失。
可以通过增加接收缓冲区大小、优化接收中断处理等方式来解决该问题。
(3)数据帧错误:在数据传输过程中,可能发生数据位错误、校验错误等问题。
可以通过对USART的配置进行检查,包括校验位、停止位、数据位等的设置是否正确。