多晶硅提纯塔解析
- 格式:ppt
- 大小:4.06 MB
- 文档页数:39
2流化床法——硅烷法——硅烷热分解法硅烷(SiH4)是以四氯化硅氢化法、硅合金分解法、氢化物还原法、硅的直接氢化法等方法制取。
然后将制得的硅烷气提纯后在热分解炉生产纯度较高的棒状多晶硅。
以前只有日本小松掌握此技术,由于发生过严重的爆炸事故后,没有继续扩大生产。
但美国Asimi和SGS 公司仍采用硅烷气热分解生产纯度较高的电子级多晶硅产品。
以四氯化硅、氢气、氯化氢和工业硅为原料在流化床内(沸腾床)高温高压下生成三氯氢硅,将三氯氢硅再进一步歧化加氢反应生成二氯二氢硅,继而生成硅烷气。
制得的硅烷气通入加有小颗粒硅粉的流化床反应炉内进行连续热分解反应,生成粒状多晶硅产品。
因为在流化床反应炉内参与反应的硅表面积大,生产效率高,电耗低与成本低,适用于大规模生产太阳能级多晶硅。
唯一的缺点是安全性差,危险性大。
其次是产品纯度不高,但基本能满足太阳能电池生产的使用。
此法是美国联合碳化合物公司早年研究的工艺技术。
目前世界上只有美国MEMC公司采用此法生产粒状多晶硅。
此法比较适合生产价廉的太阳能级多晶硅。
3冶金法——物理法——等离子体法据资料报导,日本川崎制铁公司采用冶金法制得的多晶硅已在世界上最大的太阳能电池厂(SHARP公司)应用,现已形成800吨/年的生产能力,全量供给SHARP公司。
主要工艺是:选择纯度较好的工业硅(即冶金硅)进行水平区熔单向凝固成硅锭,去除硅锭中金属杂质聚集的部分和外表部分后,进行粗粉碎与清洗,在等离子体融解炉中去除硼杂质,再进行第二次水平区熔单向凝固成硅锭,去除第二次区熔硅锭中金属杂质聚集的部分和外表部分,经粗粉碎与清洗后,在电子束融解炉中去除磷和碳杂质,直接生成太阳能级多晶硅。
现在,只有BSI和ELKEM能够批量生产,DOW CONNING,5N的多晶硅,13.3%的光电转换效率。
物理法的目标是做到6N,也就是杂质要做到1个ppm以下,但那一个ppm的杂质,是硼,是磷,还是铁,或者是哪几种杂质混合的,每种杂质的比例又是多少,这种种不同的组合,所得到的硅材料的性能是大不一样的。
多晶硅粗分塔
多晶硅的粗分塔是一种用于生产多晶硅的设备。
多晶硅是用来制造太阳能电池和半导体器件的关键材料。
粗分塔是多晶硅生产过程中的一个重要环节。
它主要用于将硅熔体中的杂质分离出来,使多晶硅达到高纯度要求。
在多晶硅生产过程中,首先将硅矿石经过冶炼处理得到硅熔体,然后将硅熔体注入粗分塔中。
粗分塔中,硅熔体经过长时间的冷却结晶过程,杂质和多晶硅分离。
硅熔体中的杂质主要是铁、铝、钙等碳化物和氧化物,它们在冷却结晶过程中会形成固体颗粒,与多晶硅分离出来。
而多晶硅则会以晶粒的形式在塔中沉积并逐渐增长。
经过粗分塔的处理,多晶硅逐渐达到高纯度要求,可以进行后续的加工和制造。
粗分塔的设计和操作对于多晶硅的质量和产量具有重要影响,需要控制好温度、压力和流速等参数,以确保多晶硅的纯度和结晶质量。
多晶硅提纯技术目录摘要 (1)1引言 (1)2 多晶硅的提纯技术 (2)2.1 改良西门子法——闭环式三氯氢硅氢还原法 .........................2.2 流化床法——硅烷法——硅烷热分解法............................2.3冶金法——物理法——等离子体法 ................................ 3多晶硅提纯后的副产物的综合利用. (6)3.1 四氯化硅的性质 (6)3.2 四氯化硅的综合利用 .......................................... 4技术比较及发展趋势...................................................4.1国外多晶硅生产技术发展的特点.......................................4.2国内多晶硅生产技术发展趋势 (12)5 结束语 (14)6致谢 (15)7参考文献 (16)多晶硅的提纯技术及副产物的利用摘要:高纯多晶硅是电子工业和太阳能光伏产业的基础原料,在未来的50年里,还不可能有其他材料能够替代硅材料而成为电子和光伏产业主要原材料。
随着信息技术和太阳能产业的飞速发展,全球对多晶硅的需求增长迅猛,多晶硅价格也随之暴涨。
自2006年以来,受市场虚高价格与短期暴利诱惑,我国掀起了一波多晶硅项目的建设高潮,规模与投资堪称世界之最。
我国多晶硅产量2005年时仅有60吨,2006年也只有287吨,2007年为1156吨,但2008年狂飙到4000吨以上,2009年,中国多晶硅产量达1.5万吨。
2008年在金融危机影响下,多晶硅价格暴跌,从最高时的四五百美元/公斤,跌至最低至每公斤五六十美元。
2010年随着海外市场复苏,多晶硅进入新一轮投产热,乐电天威、鄂尔多斯子公司等多晶硅生产企业纷纷发布投产消息。
多晶硅生产中精馏工序工艺优化浅析摘要:多晶硅材料在市场上有较大的需求量,可以通过化工模拟软件PRO,在模拟集成的过程中,集成能量、优化过程,使设备成本得到控制,提升企业生产过程中的工业化程度。
在全球气温变化、能耗量较大的大形势下,产业转型已成为必然趋势。
光伏产能在我国的发展速度较快,逐渐跃居世界先进水平,随着多晶硅材料生产量的不断增大,促使光伏产业呈良性发展。
本文主要分析了传统多晶硅生产精馏工艺的类别、优化精馏工艺的措施展开分析,希望能够为后期的生产发展提供借鉴。
关键词:多晶硅生产;精馏工序;工艺技术多晶硅材料的生产,主要以三氯氢硅为主要的中间产品,且多晶硅与精致三氯氢硅之间在质量上有很大关联。
制作精致三氯氢硅的整个过程,基本上同于精馏工序,利用精馏塔分离、归类原料,整个过程需要大量的蒸汽和循环水,生产质量直接影响着多晶硅的生产质量,需要从精馏工艺方面着手,不断优化。
1传统多晶硅生产精馏工艺的类别1.1合成工艺三氯氢硅是生产多晶硅材料的主要构成部分。
多晶硅精馏的生产过程是制造出精致三氯氢硅的过程。
为了合成三氯氢硅,需要将主要原料氯硅烷在经过粗馏系统、合成精馏系统的处理后,大大提纯的目的。
合成工艺流程具体表现为:第一步,添加氯硅烷入粗馏系统,两个反应塔组成的粗馏系统,填充原料、添加催化剂,在反应装置中完成了氯硅烷的分解。
第二步,在粗馏系统中去除原料杂质,并从混合物中析出三氯氢硅,提高三氯氢硅的纯度。
第三步,对粗提纯三氯氢硅进行处理,在合成精馏系统中重复性的除轻、除重后,确定每一次精馏处理后三氯氢硅的实际纯,直到在精制上满足客观需求。
度1.2还原工艺纯度较高的三氯氢硅仍需要经过精馏塔再次提纯,以析出三氯氢硅、四氯氢硅两种物质,使多晶硅的生产原料纯度达到标准要求。
具体的工艺流程为:首先是在精馏塔在加入精致三氯氢硅后,利用三氯氢硅、四氯氢硅的稳定性,达到分离效果,同时去除了三氯氢硅混合物中含有的杂质成分,提升纯度。
辽宁工业大学科技成果——多晶硅定向凝固提纯新技术
成果简介
在多晶硅制备工艺中,定向凝固主要是用于晶体生长,获得大尺寸柱状晶。
在冶金法多晶硅制备过程中,利用定向凝固提纯去除硅中金属杂质,提高产品性能。
多晶硅铸锭炉结构直接决定多晶硅的质量。
优质的炉膛材质和高气密封性炉腔、实现温度梯度合理分布,为多晶硅的生长提供优良条件。
该新型多晶硅铸锭炉定向凝固技术减少材料使用量,提高了生产效率,减少能源消耗,降低成本。
优质的炉膛材质和高气密封性炉腔,为多晶硅的生长提供条件。
炉内温度梯度分布合理,使晶体能够快速生长,更易获得大尺寸柱状晶。
炉内加热器采用高纯度石墨,加热温度高,无污染,能长期使用。
多晶硅铸锭炉采用节能技术,减少能源消耗,降低成本。
该炉采用先进的计算机控制技术,实现定向凝固的稳定性。
多晶硅铸锭炉是生产多晶硅铸锭的必需设备,在太阳能工业中应用及其广泛。
目前该炉在工厂中应用效果良好。
合作方式技术转让。
三氯氢硅精馏提纯工艺配置分析单位:陕西天宏硅材料有限责任公司演讲人:刘松林一、引言在制取高纯度多晶硅的工艺方法中,精馏因其分离效率显著,设备、操作简便,成为高纯硅生产的首选工艺。
为了生产满足电子级多晶硅质量要求的三氯氢硅,科技工作者从理论与实践中,对精馏塔的传质效果、塔板结构以及操作条件进行了多方面的探索和研究,在分离效率、节能设计上取得了显著的成果。
本文则从工艺流程的布置上对多晶硅精馏工艺进行探讨,比较各种流程的优势特点,进一步为多晶关键工艺的选择和优化提供帮助。
二、多晶硅精馏工艺的原则配置方式原生氯硅烷是以三氯氢硅(TCS)为主要成分的多组分液态体系中物质种类多达60余种,其中对半导体器件制备工艺有严重影响的电活性杂质如硼(B)、磷(P)、碳(C)、氧(O)和金属杂质多以氯化物或络合物的形态存在。
此体系可以TCS(沸点31.5℃)为基准,分为高沸点组成(或称重组分),关键组分,低沸点组成(或称轻组分)的三元体系。
因此,对于TCS的精馏体系而言,满足基本的分离要求,则塔的配置数为3-1=2个,这就是所谓的“二塔基元”,成为TCS分离提纯的原则配置方式。
三、原生氯硅烷的基本质量状态杂质厂家B P Fe Al Ca Cr Ni Cu Zn Mg除杂工艺方式No.119.78 2.7138.5516.20 6.94固定床、干法除尘+粗馏No.244.16 2.7281.8022.4072.84固定床、干法除尘+粗馏No.358.12 1.8660.00 5.6010.21固定床、干法除尘+粗馏No.418.56 2.8738.5717.20 3.04固定床、干法除尘+粗馏No.513.10 2.5918.28 5.99 2.76 1.920.19 1.280.67流化床+湿法除尘+吸附柱No.6190.99.80194.48.427.90 5.200.180.180.33流化床+湿法除尘No.7250.0 4.5036.5712008.96 6.60298.5固定床、干法除尘表1 氯硅烷中的杂质由于原生氯硅烷生产方法及后续处理工艺不同,TCS中的目标杂质含量差别较大,表1给出了当前已知的原生氯硅烷中的杂质水平。
多晶硅工艺流程及产污分析 1 、氢气制备与净化工序在电解槽内经电解脱盐水制得氢气。
电解制得的氢气经过冷却、分离液体后,进入除氧器,在催化剂的作用下,氢气中的微量氧气与氢气反应生成水而被除去。
除氧后的氢气通过一组吸附干燥器而被干燥。
净化干燥后的氢气送入氢气贮罐,然后送往氯化氢合成、三氯氢硅氢还原、四氯化硅氢化工序。
电解制得的氧气经冷却、分离液体后,送入氧气贮罐。
出氧气贮罐的氧气送去装瓶。
气液分离器排放废吸附剂、氢气脱氧器有废脱氧催化剂排放、干燥器有废吸附剂排放,均供货商回收再利用。
2、氯化氢合成工序从氢气制备与净化工序来的氢气和从合成气干法分离工序返回的循环氢气分别进入本工序氢气缓冲罐并在罐内混合。
出氢气缓冲罐的氢气引入氯化氢合成炉底部的燃烧枪。
从液氯汽化工序来的氯气经氯气缓冲罐,也引入氯化氢合成炉的底部的燃烧枪。
氢气与氯气的混合气体在燃烧枪出口被点燃,经燃烧反应生成氯化氢气体。
出合成炉的氯化氢气体流经空气冷却器、水冷却器、深冷却器、雾沫分离器后,被送往三氯氢硅合成工序。
为保证安全,本装置设置有一套主要由两台氯化氢降膜吸收器和两套盐酸循环槽、盐酸循环泵组成的氯化氢气体吸收系统,可用水吸收因装置负荷调整或紧急泄放而排出的氯化氢气体。
该系统保持连续运转,可随时接收并吸收装置排出的氯化氢气体。
为保证安全,本工序设置一套主要由废气处理塔、碱液循环槽、碱液循环泵和碱液循环冷却器组成的含氯废气处理系统。
必要时,氯气缓冲罐及管道内的氯气可以送入废气处理塔内,用氢氧化钠水溶液洗涤除去。
该废气处理系统保持连续运转,以保证可以随时接收并处理含氯气体。
3、三氯氢硅合成工序原料硅粉经吊运,通过硅粉下料斗而被卸入硅粉接收料斗。
硅粉从接收料斗放入下方的中间料斗,经用热氯化氢气置换料斗内的气体并升压至与下方料斗压力平衡后,硅粉被放入下方的硅粉供应料斗。
供应料斗内的硅粉用安装于料斗底部的星型供料机送入三氯氢硅合成炉进料管。
从氯化氢合成工序来的氯化氢气,与从循环氯化氢缓冲罐送来的循环氯化氢气混合后,引入三氯氢硅合成炉进料管,将从硅粉供应料斗供入管内的硅粉挟带并输送,从底部进入三氯氢硅合成炉。
多晶硅精馏的原理和应用1. 原理多晶硅精馏是一种将多晶硅材料进行分离和提纯的技术方法。
其原理主要基于多晶硅的熔点和挥发性差异。
通过加热多晶硅材料,将其中的杂质分子和低熔点组分挥发出来,实现对多晶硅的纯化。
多晶硅精馏的原理可以分为以下几个步骤:1.1 加热和汽化多晶硅材料首先被加热至其汽化温度,此时杂质分子和低熔点组分开始挥发。
加热过程中,控制多晶硅的温度,使其保持在稳定的汽化温度范围内。
1.2 分馏和冷凝挥发出来的杂质分子和低熔点组分进入分馏塔,通过分馏的方式将其与多晶硅分离。
分馏塔顶部设置冷凝器,将挥发出来的组分进行冷凝,并收集。
1.3 回流和再次挥发将冷凝后的液体回流至分馏塔,再次加热并进行挥发。
通过多次加热和挥发,不断提高多晶硅的纯度。
1.4 收集和冷却通过冷凝器收集纯化后的多晶硅,通过冷却使其凝固成为固体。
2. 应用多晶硅精馏技术在半导体材料和太阳能电池领域有广泛的应用。
以下是多晶硅精馏的几个常见应用场景:2.1 半导体材料生产多晶硅纯度对半导体材料的性能具有重要影响。
采用多晶硅精馏技术可以有效提高多晶硅的纯度,使其满足半导体材料的要求。
纯化后的多晶硅可以作为半导体材料的基础材料,用于制备各种电子元件和集成电路。
2.2 太阳能电池制造多晶硅是太阳能电池制造的核心材料之一。
通过多晶硅精馏技术可以获得高纯度的多晶硅,用于制备太阳能电池的硅片。
高纯度的多晶硅可以提高太阳能电池的效率和稳定性。
2.3 光伏材料研究多晶硅精馏技术也被广泛应用于光伏材料研究领域。
通过精馏技术可以实现对多晶硅材料的纯化和提纯,为研究光伏材料的性能和特性提供高纯度的多晶硅样品。
2.4 材料科学研究多晶硅精馏技术在其他材料科学研究中也有应用。
如研究多晶硅的物理性质、热学性质等方面,需要高纯度的多晶硅样品进行实验和测试。
3. 总结多晶硅精馏技术是一种将多晶硅进行分离和提纯的技术方法。
通过加热和挥发的过程,可以将多晶硅中的杂质分子和低熔点组分分离出来,实现对多晶硅的纯化。