(完整)新浙教版七年级数学上期末综合练习附答案
- 格式:docx
- 大小:152.83 KB
- 文档页数:20
浙教版七年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,如图,则的大小为()A.80°B.100°C.120°D.不能确定2、下列各数的立方根是﹣2的数是()A.4B.﹣4C.8D.﹣83、﹣2是2的()A.绝对值B.相反数C.倒数D.算术平方根4、某市为节约用水,制定了如下标准:用水不超过20吨,按每吨1.2元收费;超过20吨,则超出部分按每吨1.5元收费.小明家六月份的水费是平均每吨1.25元,那么小明家六月份应交水费( )A.20元B.24元C.30元D.36元5、线段,点C在线段上,且有,M是的中点,则等于( )A. B. C. D.6、下列式子正确的是()A. B. C. D.7、已知整数a1, a2, a3, a4…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…依此类推,则a2017的值为()A.﹣1009B.﹣1008C.﹣2017D.﹣20168、两个有理数a,b在数轴上的位置如图所示,则下列各式正确的是()A.a>bB.a<bC.-a<-bD.|a|<|b|9、如图,数轴上A、B两点所表示的两数的()A.和为正数B.和为负数C.积为正数D.积为负数10、28 cm接近于( )A.珠穆朗玛峰距海平面的高度B.三层楼的高度C.姚明的身高 D.一张纸的厚度11、下列说法正确的是()A.球的截面可能是椭圆B.组成长方体的各个面中不能有正方形C.五棱柱一共有15条棱D.正方体的截面可能是七边形12、如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A.c>a>0>bB.a>b>0>cC.b>0>a>cD.b>0>c>a13、若a,b,c为三角形的三条边长,则−(a+b+c)+|a−b−c|−|b−c−a|+|c−b −a|=( )A.2(b−a−c)B.2(a−b−c)C.2(c−a−b)D.2(a+b−c)14、下列解方程的步骤中正确的是()A.由13﹣x=﹣5,得13﹣5=xB.由﹣7x+3=﹣13x﹣2,得13x+7x=﹣3﹣2 C.由﹣7x=1,得x=﹣7 D.由=2,得x=615、已知多项式x2+3x=3,可求得另一个多项式3x2+9x-4的值为()A.3B.4C.5D.6二、填空题(共10题,共计30分)16、根据世卫组织最新实时统计数据,截至北京时间月日时分,全球累计新冠肺炎确诊病例约万例,用科学记数法表示万例为________例.17、如果a与b互为倒数,c与d互为相反数,那么﹣﹣1的值是________.18、已知实数m,n满足m﹣n2=1,则代数式-2m2+n2+3m+2的最大值等于________.19、据人民网麻城5月4日电:麻城杜鹃花开,游客蜂拥而至.今年“五一”小长假3天,麻城龟峰山风景区共迎来国内外游客21万人次,景区游人如织,呈现井喷之势,将21万这一数据用科学记数法表示为________ 人.20、写出的一个同类项:________.21、三峡工程是具有防洪、发电、航运、养殖、供水等巨大综合利用效益的特大水利水电工程,其防洪库容量约为22150000000m3,这个数用科学记数法可表示为________.22、已知,,且,则的值为________.23、有理数a,b,c在数轴上的对应点如图所示,化简________.24、如图,O是直线AB上一点,OC⊥AB,∠BOD=35°36′.则∠1=________ 度.25、垣曲县以建立地域标志性产品为目标,,“一县一业”核桃栽出致富蓝图,发展核桃30万亩.这个数据用科学记数法表示为________亩.三、解答题(共5题,共计25分)26、计算:27、已知,在数轴上,点A到原点的距离为3,点B到原点的距离为5.(1)求点A表示的数;(2)求点B表示的数;(3)利用数轴求A、B两点间的距离为多少?画数轴说明.28、计算:(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2(2)a•a3•(﹣a2)3.29、如图,上面一行是一些具体的实物图形,下面一行是一些立体图形,试用线连接立体图形和类似的实物图形.30、有理数a,b在数轴上的位置如图所示,则化简|a|﹣|a﹣b|+|b﹣a|参考答案一、单选题(共15题,共计45分)1、B2、D3、B4、C5、B6、D7、B8、B9、D11、12、C13、A14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、29、。
浙教版七年级上册数学期末考试试题一、单选题1.在-5,0,-2,4这四个数中,最小的数是()A .-2B .0C .-5D .42.数据1412000000用科学记数法表示为()A .814.1210⨯B .100.141210⨯C .91.41210⨯D .81.41210⨯3.32的意义是()A .2×3B .2+3C .2+2+2D .2×2×24.已知2a =b +5,则下列等式中不一定...成立的是()A .2a -5=bB .2a +1=b +6C .a =522b +D .6a =3b +55.如图,射线OA 表示北偏东30°方向,射线OB 表示北偏西50°方向,则∠AOB 的度数是()A .60°B .80°C .90°D .100°6.实数x 满足371x =,则下列整数中与x 最接近的是()A .3B .4C .5D .67.若313mn x y -与3-x y 是同类项,则m -2n 的值为()A .1B .0C .-1D .-38.学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人,现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍,设应调往甲处x 人,则可列方程为()A .()2231720x x +=+-B .()2321720x x +=+-C .()23217x x +=+D .()2320217x x +-=+9.长方形ABCD 可以分割成如图所示的七个正方形.若AB =10,则AD 的长为()A .13B .11C .403D .100910.如图,将一副三角板叠在一起使直角顶点重合于点O ,(两块三角板可以在同一平面内自由转动,且BOD ∠,AOC ∠均小于180°),下列结论一定成立的是()A .BOD AOC ∠>∠B .90BOD AOC ∠-∠= C .180BOD AOC ∠+∠= D .BOD AOC∠≠∠二、填空题11.2022的相反数为_________.12.请写出一个无理数____.13.定义运算法则:2a b a ab ⊕=+,例如23233215⊕=⨯=+.若2⊕x =10,则x的值为____.14.如图,P 是线段MN 上一点,Q 是线段PN 的中点.若MN=10,MP=6,则MQ 的长是____.15.请在运算式“6□3□5□9”中的□内,分别填入+,-,×,÷中的一个符号(不重复使用),使计算所得的结果最大,则这个最大的结果为____.16.某数学兴趣小组在观察等式3232()ax bx cx d x +++=-时发现:当x =1时,3(11)2a b c d +++=-=-;请你解决下列问题:(1)-a +b -c +d =____;(2)8a +4b +2c =____.三、解答题17.计算:(1)4+(-5)×2()2133⎛⎫-⨯- ⎪⎝⎭18.解下列方程(1)3x+1=-2(2)13132y y-+=-19.先化简,再求值:()()2224132mn m m mn----,其中m=1,n=-2.20.如图,已知点A、B、C,按下列要求画出图形.(1)作射线BA,直线AC;(2)过点B画直线AC的垂线段BH.21.一辆出租车从A站出发,在一条东西走向的道路上行驶,记向东行驶的路程为正,行驶的路程依次为(单位:km):+12,-8,+4,-13,-6,-7.(1)通过计算说明出租车是否回到A站;(2)若出租车行驶的平均速度为50km/h,则出租车共行驶了多少时间?22.如图,直线AE与CD相交于点B,BF⊥AE.(1)若∠DBE=60°,求∠FBD的度数;(2)猜想∠CBE与∠DBF的数量关系,并说明理由.23.数学活动课上,小聪同学利用列表法探索一次式2x+1、-2x+1的值随着x取值的变化情况.x…-3-2-10123…2x+1…-5-3-11…-2x+1…1-1-3-5…(1)通过计算,完成表格的填写;(2)结合表中的数据,当x的值增大时,一次式2x+1,-2x+1的值分别有什么变化?(3)请你用类似的方法列表探索二次式2+1x的值随着x取值不断增大的变化情况.24.如图,是由A、B、E、F四个正方形和C、D两个长方形拼成的大长方形.已知正方形F的边长为8,求拼成的大长方形周长.25.如图,已知数轴上点A表示的数为10,点B位于点A左侧,AB=15.动点P从点A出发,以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)当点P在A、B两点之间运动时,①用含t的代数式表示PB的长度;②若PB=2PA,求点P所表示的数;(2)动点Q从点B出发,以每秒5个单位长度的速度沿数轴向右匀速运动,当点Q到达点A 后立即原速返回.若P,Q两点同时出发,其中一点运动到点B时,两点停止运动.求在这个运动过程中,P,Q两点相遇时t的值.参考答案1.C【分析】直接比较负数比较大小,绝对值大的反而小,即可得出答案.【详解】因为52->-,所以52-<-,所以5204-<-<<,所以最小的数为-5.故选:C【点睛】本题考查有理数的大小比较,属于基础题目,理解负数比较大小的方法是解题的关键.2.C【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,据此判断即可.【详解】解:91412000000=1.41210⨯.故选:C .【点睛】本题主要考查了科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,确定a 与n 的值是解题的关键.3.D【分析】根据幂的意义即可得出答案.【详解】解:,32222=⨯⨯故选:D .【点睛】本题考查了有理数的乘方,掌握n a 表示n 个a 相乘是解题的关键.4.D【分析】根据等式的基本性质,逐项分析判定即可求解.【详解】解:A .等式两边同时减去5即可得到,故A 正确,不符合题意;B .等式两边同时加上1即可得到,故B 正确,不符合题意;C .等式两边同时除以2即可得到,故C 正确,不符合题意;D .等式两边同时乘以3即得到6315a b =+,故D 错误,符合题意;故选:D .【点睛】本题考查等式的基本性质:等式两边同时加上或减去同一个数或式子,等号不变;等式两边同时乘以或除以(非0)的同一个数或式子,等号不变.5.B【分析】根据题意可得∠AOB=30°+50°,进而得出答案.【详解】解:如图所示:∵射线OA 表示北偏东30°方向,射线OB 表示北偏西50°方向,∴∠AOB=30°+50°=80°.故选:B【点睛】此题主要考查了方向角问题,根据题意借助互余两角的关系求出是解题关键.6.B【分析】先估算x 介于哪两个相邻的整数之间,再进一步地估算x 最接近哪一个整数即可.【详解】解:∵3464=,35125=,且6471125<<,∴45x <<,又∵34.591.125=,且647191.125<<,∴4 4.5x <<,∴与x 最接近的整数是4,故选:B .【点睛】本题考查了无理数的估算,关键是要准确找到与无理数相邻的两个整数中更接近的一个.7.D【分析】根据同类项的定义:含有相同字母,并且相同字母的指数也相同的项叫做同类项.可得得出m 、n 的值,代入m -2n 即可求解.【详解】解:因为313mn xy -与3-x y 是同类项,所以3311m n =-=,,所以12m n ==,.所以m -2n=1223-⨯=-.故选:D【点睛】本题考查同类项的定义,代数式的求值,理解同类项的定义,根据相同字母的指数相同求出m 、n 的值是解题的关键.8.B【分析】先求出调往乙处()20x -人,再根据甲处植树的人数是乙处植树人数的2倍列出方程即可.【详解】解:由题意得:调往乙处()20x -人,则可列方程为()2321720x x +=+-,故选:B .【点睛】本题考查了列一元一次方程,找准等量关系是解题关键.9.A【分析】根据题意,设最小正方形的边长为x ,则第二大的正方形的边长为3x ,解方程即可得到答案.【详解】解:设最小正方形的边长为x ,则第二大的正方形的边长为3x ,根据题意得,3×3x+x=10,解得:1x =,∴103113AD =+⨯=;故选:A .【点睛】本题考查了一元一次方程的应用,解题的关键是根据图形找出等量关系列一元一次方程求解.10.C【分析】根据角的和差关系以及余角和补角的定义、结合图形计算即可.【详解】解:因为是直角三角板,所以∠AOB=∠COD=90°,所以9090180BOD AOC COD BOC AOC COD AOB ∠+∠=∠+∠+∠=∠+∠=︒+︒= ,故选:C .【点睛】本题考查的是余角和补角的概念、角的计算,掌握余角和补角的概念、正确根据图形进行角的计算是解题的关键.11.-2022【分析】直接利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【详解】解:2022的相反数是:-2022.故答案为:-2022.【点睛】此题主要考查了相反数,正确掌握相反数的定义是解题关键.12(答案不唯一)13.3【分析】利用题中的新定义化简,列出一元一次方程,解方程求出x 的值即可求解.【详解】解:∵2a b a ab ⊕=+,∴2222x x ⊕=+,由2⊕x =10,得22210x +=,解得3x =,故答案为:3.【点睛】本题考查了新定义运算,解一元一次方程,根据新定义列出方程是解题的关键.14.8【分析】首先求得NP=4,根据点Q 为NP 中点得出PQ=2,据此即可得出MQ 的长.【详解】解:∵MN=10,MP=6,∴NP=MN-MP=4,∵点Q 为NP 中点,∴PQ=QN=12NP=2,∴MQ=MP+PQ=6+2=8,故答案为:8.【点睛】此题主要考查了两点之间的距离,根据中点的定义得出PQ=2是解题关键.15.48【分析】根据题意可得乘号填在5和9之间乘积最大,此时数字5前应填入加号,那么减号填在数字3前,即可求解.【详解】解:乘号填在5和9之间乘积最大,此时数字5前应填入加号,那么减号填在数字3前,则算式结果最大为6-3+5×9=6-3+45=48.故答案为:48【点睛】本题主要考查了有理数的混合运算,看清要求,分析题干,从最大、最小的数据入手,逐步确定运算符号的位置是解题的关键.16.-278【分析】(1)当1x =-时,代入3232()ax bx cx d x +++=-中,即可得出-a +b -c +d 的值;(2)当0x =时,可求出d 的值,当2x =时,代入3232()ax bx cx d x +++=-中,即可得出8a +4b +2c 的值.【详解】解:当1x =-时,32ax bx cx d a b c d=-+-++++()31227=--=-;当0x =时,3(02)8d =-=-;当2x =时,32842ax bx cx d a b c d=++++++3(2)20-==;∴8428a b c d =-=++.【点睛】本题考查代数式的求值,通过观察等式,找出符合题意的对应x 的值是解题的关键.17.(1)-6(2)0【分析】(1)原式先计算乘法,再计算誊即可;(2)原式先化简二次根式和乘方运算,再计算乘法,最后计算减法即可.(1)4+(-5)×2=4-10=-6(2)()2133⎛⎫+-⨯- ⎪⎝⎭=1393-⨯=3-3=0【点睛】本题主要考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.18.(1)x =-1(2)15y =-【分析】(1)移项,化系数为1,即可得出结果;(2)根据解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1,即可得出结果.(1)3x +1=-23x =-2-1,3x =-3,x =-1;(2)13132y y -+=-2(y -1)=6-3(y+3),2y -2=6-3y -9,2y +3y=6-9+2,5y=-1,15y =-.【点睛】本题考查解一元一次方程,属于基础题,熟练运用解一元一次方程的步骤是解题的关键.19.原式=21142m mn -+-;-21【分析】先去括号、合并同类项化简原式,再将m 与n 的值代入计算可得.【详解】原式=2228232mn m m mn ---+=21142m mn -+-当m=1,n=-2时,原式=()21114122-⨯+⨯⨯--21=-20.(1)见解析(2)见解析【分析】(1)根据射线、直线的概念作图即可;(2)根据垂线段的概念作图即可.(1)解:如下图,射线BA 、直线AC 即为所求.(2)解:如下图,线段BH 即为所求.【点睛】本题主要考查了作图的知识,理解并掌握射线、直线和垂线段的概念是解题关键.21.(1)出租车不能回到A站.(2)1小时【分析】(1)只需将所有数加起来,看其和是否为0即可;(2)将出租车6次行驶的路程(绝对值)相加,再根据时间=路程÷速度可得结论.(1)解∶+12+(-8)+4+(-13)+(-6)+(-7)=-18,∴出租车不能回到A站;(2)解:+12+-8++4+-13+-6+-7=12+8+4+13+6+7=50,÷(小时)5050=1答∶出租车共行驶了1小时.【点睛】本题主要考查正数和负数的意义,绝对值的意义,理解正数和负数表示的是相反意义的量是本题解题的关键.22.(1)30°.(2)∠CBE=90°+∠DBF,理由见解析【分析】(1)由垂线的定义可得∠DBF+∠DBE=90°,结合已知条件即可求解.(2)根据∠CBE=∠ABD,∠ABD=∠ABF+∠DBF,可得∠CBE=∠ABF+∠DBF.由BF⊥AE,得出∠ABF=90°,即∠CBE=90°+∠DBF.(1)解:∵BF⊥AE,∴∠DBF+∠DBE=90°,∵∠DBE=60°,∴∠DBF=90°-∠DBE=30°.(2)∠CBE=∠DBF+90°.理由如下:∵∠CBE=∠ABD,∠ABD=∠ABF+∠DBF,∴∠CBE=∠ABF+∠DBF.∵BF⊥AE,∴∠ABF=90°,∴∠CBE=90°+∠DBF.【点睛】本题考查了垂线的定义,几何图形中角度的计算,数形结合是解题的关键.23.(1)答案见解析(2)当x增大时,2x+1的值不断增大,-2x+1的值不断减少(3)x为非负数,当x增大时,2+1x的值不断增大;x为负数,当x增大时,2+1x的值不断减小.【分析】(1)分别将x=1,2,3代入2x+1中求值;将x=-3,-2,-1代入2x+1中求值即可填表;(2)由表即可直接得出结论;(3)由(1)同理列出表格,即可得出结论.(1)完成表格如下:x…-3-2-10123…2x+1…-5-3-11357…-2x+1…7531-1-3-5…(2)由表可知当x增大时,2x+1的值不断增大,-2x+1的值不断减少(3)列表如下:x…-3-2-10123…21x …105212510…x的值不断增大;x为非负数,当x增大时,2+1x的值不断减小.x为负数,当x增大时,2+1【点睛】本题考查代数式求值以及规律探索.正确计算并由表格总结规律是解题关键.24.64.【分析】直接表示出大长方形的周长进而计算得出答案.【详解】设A正方形边长为a,∵正方形F的边长为8,∴正方形E的边长为8-a,正方形B的边长为8+a,大长方形长为8+8+a=16+a,宽为8+8-a=16-a,则大长方形周长为2(16+a+16-a)=64.【点睛】本题考查了列代数式,整式的加减,正确合并同类项是解题关键.25.(1)①PB=15-2t;②5(2)15或5.7【分析】(1)根据两点间的距离公式进行计算即可;(2)利用相遇时两点所表示的数相同进行计算即可.(1)解:①PB=15-2t.②PB=15-2t,PA=2t,∵PB=2PA∴15-2t=4t,解得t=2.5,∴10-2t=5,∴点P表示的数为5.(2)(i)点Q由点B运动到点A的过程中,点Q表示的数为-5+5t,点P表示的数为10-2t,相遇即两点所表示的数相同,则-5+5t=10-2t,解得t=157.(ii)P到达点A返回B的过程中,点Q表示的数为:10-5(t-3),点P表示的数为10-2t,相遇即两点所表示的数相同,则10-5(t-3)=10-2t,解得t=5.综上所述,P、Q两点相遇时,t的值是157或5.。
七年级数学期末复习一.填空题(共4小题)1.若|a|+|b|=2,则满足条件的整数a、b的值有组.2.当x=时,|x|﹣8取得最小值,这个最小值是.3.若|x﹣1|+|y+2|+|z﹣3|=0,则(x﹣2)(y﹣3)(z﹣4)=.4.已知|2a+4|+|3﹣b|=0,则a+b=.二.解答题(共31小题)5.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.6.有理数x,y在数轴上对应点如图所示:(1)在数轴上表示﹣x,|y|;(2)试把x,y,0,﹣x,|y|这五个数从小到大用“<”号连接,(3)化简:|x+y|﹣|y﹣x|+|y|.7.已知有理数a,b,c在数轴上的位置如图所示,(1)用<,>,=填空:a+c0,c﹣b0,b+a0,abc0;(2)化简:|a+c|+|c﹣b|﹣|b+a|.8.式子|m﹣3|+6的值随着m的变化而变化,当m=时,|m﹣3|+6有最小值,最小值是.9.已知实数a,b满足|a|=b,|ab|+ab=0,化简|a|+|﹣2b|﹣|3b﹣2a|.10.若|x+y﹣3|与|2x﹣4y﹣144|互为相反数,计算的值.11.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.12.已知|a+3|+|b﹣5|=0,x,y互为相反数,c与d互为倒数.求:3(x+y)﹣a ﹣2b+(3cd)的值.(cd表示c乘d)13.已知a、b互为相反数,m、n互为倒数(m、n都不等于±1),x的绝对值为2,求的值.14.已知三个有理数a,b,c,其积是负数,其和是正数,当时,求代数式x2017﹣2x+2的值.15.已知a,b是有理数,且a,b异号,试比较|a+b|,|a﹣b|,|a|+|b|的大小关系.16.若|a+2|与(b﹣2017)2互为相反数,且c的绝对值为1,求a﹣abc+c b的值.17.我们规定运算符号⊗的意义是:当a>b时,a⊗b=a﹣b;当a≤b时,a⊗b =a+b,其他运算符号意义不变,按上述规定,请计算:﹣14+5×[(﹣)⊗(﹣)]﹣(34⊗43)÷(﹣68).18.已知2m﹣3与4m﹣5是一个正数的平方根,求这个正数.19.如果m+5的平方根是±3,n﹣2的平方根是±5,求m+n的值.20.已知a为的整数部分,b为的小数部分求:(1)a,b的值;(2)(a+b)2的算术平方根.21.回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣1的两点A和B的距离是,|AB|=2,x=;(3)当代数式|x+1|+|x﹣2|取最小值时,相应x的取值范围是.22.已知多项式(2ax2+3x﹣1)﹣(3x﹣2x2﹣3)的值与x无关,试求2a3﹣[a2﹣2(a+1)+a]﹣2的值.23.有这样一道题:计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中x=,y=﹣1.甲同学把“x=”错抄成了“x=﹣”.但他计算的结果也是正确的,请你通过计算说明原因.24.已知A=3a2﹣4ab,B=a2+2ab.(Ⅰ)求A﹣2B;(Ⅱ)若|3a+1|+(2﹣3b)2=0,求A﹣2B的值.25.先化简,后求值,(1)化简:2(a2b+ab2)﹣(2ab2﹣1+a2b)﹣2,其中a=﹣2,b=1;(2)若(2b﹣1)2+|a+2|=0时,求2ab﹣2b的值.26.元旦期间,某商场打出促销广告(如下表)小明妈妈第一次购物用了134元,第二次购物用了490元.(1)小明妈妈第一次所购物品的原价是元;(2)小明妈妈第二次所购物品的原价是多少元?(写出解答过程)(3)若小明妈妈将两次购买的物品一次性买清,可比两次购买节省多少元?27.期末考试快到了,小天同学需要复印一些复习资料.某誊印社的报价是:复印不超过20时,每页收费0.12元;复印页数超过20时,超过部分每页收费降为0.09元.某图书馆复印同样大小文件,不论复印多少页,每页收费0.1元.请问小天应该选择到哪里复印复习资料?28.襄阳市某校七年级有5名教师带学生去公园秋游,公园的门票为每人30元,现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都按7.5折收费.(1)若有x名学生,则用式子表示两种优惠方案各需要多少元?(2)当学生人数是多少时,两种方案费用一样多?(3)当学生人数分别是40人,100人,你打算采用哪种方案优惠?为什么?29.已知当x=﹣1时,代数式2mx3﹣3mx+6的值为7.(1)若关于y的方程2my+n=11﹣ny﹣m的解为y=2,求n的值;(2)若规定[a]表示不超过a的最大整数,例如[4.3]=4,请在此规定下求[m﹣n]的值.(n为(1)中求出的数值)30.如图,直线AB、CD相交于点O,∠DOE=∠BOD,OF平分∠AOE.(1)判断OF与OD的位置关系,并说明理由;(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.31.如图,直线AB、CD相交于点O,OE把∠BOD分成两部分.(1)直接写出图中∠AOC的对顶角:,∠EOB的邻补角:(2)若∠AOC=70°且∠BOE:∠EOD=2:3,求∠AOE的度数.32.如图所示,AB:BC=3:4,M是AB的中点,BC=2CD,N是BD的中点,如果AB=6cm,求线段MN的长度.33.已知:如图1,点M是线段AB上一定点,AB=12cm,C、D两点分别从M、B出发以1cm/s、2cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C 在线段AM上,D在线段BM上)(1)若AM=4cm,当点C、D运动了2s,此时AC=,DM=;(2)当点C、D运动了2s,求AC+MD的值.(3)若点C、D运动时,总有MD=2AC,则AM=(填空)(4)在(3)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.34.如图,AB、CD交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.35.如图,将两块直角三角尺的直角顶点C叠放在一起.①若∠DCE=35°,求∠ACE、∠DCB、∠ACB的度数;②若∠ACB=140°,求∠DCE的度数;③猜想:∠ACB与∠DCE有怎样的数量关系,并说明理由.一.填空题(共4小题)1.若|a|+|b|=2,则满足条件的整数a、b的值有8组.【解答】解:∵|a|+|b|=2,∴|a|=0,|b|=2或|a|=1|b|=1,或|a|=2,|b|=0,∴a=0,b=2;a=0,b=﹣2;a=1,b=1;a=1,b=﹣1;a=﹣1,b=1;a =﹣1,b=﹣1;a=﹣2,b=0;a=2,b=0,2.当x=0时,|x|﹣8取得最小值,这个最小值是﹣8.解∵|x|≥0,∴当x=0时,|x|取最小值是0,∴当x=0时,|x|﹣8取最小值是﹣8,3.若|x﹣1|+|y+2|+|z﹣3|=0,则(x﹣2)(y﹣3)(z﹣4)=﹣5.解:∵|x﹣1|+|y+2|+|z﹣3|=0,∴x﹣1=0,y+2=0,z﹣3=0,解得,x=1,y=﹣2,z=3,则(x﹣2)(y﹣3)(z﹣4)=(1﹣2)(﹣2﹣3)(3﹣4)=﹣5,4.已知|2a+4|+|3﹣b|=0,则a+b=1.【解答】解:由题意得:2a+4=0,3﹣b=0,解得:a=﹣2,b=3,则a+b=1,二.解答题(共31小题)5.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是﹣4;(2)点B以每秒2个单位长度的速度沿数轴向右运动2秒后点B表示数0;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.【解答】解:(1)点B表示的数是﹣4;(2)2秒后点B表示的数是﹣4+2×2=0;(3)①当点O是线段AB的中点时,OB=OA,4﹣3t=2+t,解得t=0.5;②当点B是线段OA的中点时,OA=2OB,2+t=2(3t﹣4),解得t=2;③当点A是线段OB的中点时,OB=2 OA,3t﹣4=2(2+t),解得t=8.综上所述,符合条件的t的值是0.5,2或8.6.有理数x,y在数轴上对应点如图所示:(1)在数轴上表示﹣x,|y|;(2)试把x,y,0,﹣x,|y|这五个数从小到大用“<”号连接,(3)化简:|x+y|﹣|y﹣x|+|y|.解:(1)如图,(2)根据图象,﹣x<y<0<|y|<x;(3)根据图象,x>0,y<0,且|x|>|y|,∴x+y>0,y﹣x<0,∴|x+y|﹣|y﹣x|+|y|=x+y+y﹣x﹣y=y.7.已知有理数a,b,c在数轴上的位置如图所示,(1)用<,>,=填空:a+c<0,c﹣b>0,b+a<0,abc>0;(2)化简:|a+c|+|c﹣b|﹣|b+a|.【解答】解:(1)根据数轴可知:a<b<0<c,且|c|<|b|<|a|,∴a+c<0,c﹣b>0,b+a<0,abc>0,(2)原式=﹣(a+c)+(c﹣b)+(b+a)=﹣a﹣c+c﹣b+b+a=0.8.式子|m﹣3|+6的值随着m的变化而变化,当m=3时,|m﹣3|+6有最小值,最小值是6.解:式子|m﹣3|+6的值随着m的变化而变化,当m=3时,|m﹣3|+6有最小值,最小值是:6.9.已知实数a,b满足|a|=b,|ab|+ab=0,化简|a|+|﹣2b|﹣|3b﹣2a|.【解答】解:∵|a|=b,|a|≥0,∴b≥0,又∵|ab|+ab=0,∴|ab|=﹣ab,∵|ab|≥0,∴﹣ab≥0,∴ab≤0,即a≤0,∴a与b互为相反数,即b=﹣a.∴﹣2b≤0,3b﹣2a≥0,∴|a|+|﹣2b|﹣|3b﹣2a|=﹣a+2b﹣(3b﹣2a)=a﹣b=﹣2b或2a.10.若|x+y﹣3|与|2x﹣4y﹣144|互为相反数,计算的值.【解答】解:∵|x+y﹣3|与|2x﹣4y﹣144|互为相反数,∴|x+y﹣3|+|2x﹣4y﹣144|=0,∴x+y﹣3=0,2x﹣4y﹣144=0,解得x=,y=﹣,∴==.11.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.解:原式=(﹣+)×(﹣2﹣1.5+1.5﹣6)=(﹣)×(﹣8)=.12.已知|a+3|+|b﹣5|=0,x,y互为相反数,c与d互为倒数.求:3(x+y)﹣a ﹣2b+(3cd)的值.(cd表示c乘d)解:∵|a+3|+|b﹣5|=0,x,y互为相反数,c与d互为倒数,∴a=﹣3,b=5,x+y=0,cd=1,则原式=0+3﹣10+3=﹣4.13.已知a、b互为相反数,m、n互为倒数(m、n都不等于±1),x的绝对值为2,求的值.解:根据题意得:a+b=0,mn=1,x=2或﹣2,则原式=﹣2+0﹣4=﹣6.14.已知三个有理数a,b,c,其积是负数,其和是正数,当时,求代数式x2017﹣2x+2的值.解:∵三个有理数a、b、c,其积是负数,∴a,b,c均≠0,且a,b,c全为负数或一负两正,∵其和是正数,∴a,b,c一负两正,∴=1+1﹣1=1时,代数式x2017﹣2x+2=12017﹣2×1+2=1.15.已知a,b是有理数,且a,b异号,试比较|a+b|,|a﹣b|,|a|+|b|的大小关系.解:∵有理数a,b异号,如图,假设a>0>b,∴当BO<AO时,|a+b|<AO;当BO≥AO时,|a+b|<BO,而|a﹣b|=AB>AO或BO,∴|a+b|<|a﹣b|,又∵|a|+|b|=AO+BO=AB,∴|a﹣b|=|a|+|b|,∴|a+b|<|a﹣b|=|a|+|b|.当a<0<b时,同理可得|a+b|<|a﹣b|=|a|+|b|.16.若|a+2|与(b﹣2017)2互为相反数,且c的绝对值为1,求a﹣abc+c b的值.解:∵|a+2|与(b﹣2017)2互为相反数,且c的绝对值为1,∴a+2=0,b﹣2017=0,c=±1,∴a=﹣2,b=2017,当c=1时,a﹣abc+c b=(﹣2)﹣(﹣2)×2017×1+12017=(﹣2)+4034+1=4033,当c=﹣1时,a﹣abc+c b=(﹣2)﹣(﹣2)×2017×(﹣1)+(﹣1)2017=(﹣2)﹣4034+(﹣1)=﹣4037.17.我们规定运算符号⊗的意义是:当a>b时,a⊗b=a﹣b;当a≤b时,a⊗b =a+b,其他运算符号意义不变,按上述规定,请计算:﹣14+5×[(﹣)⊗(﹣)]﹣(34⊗43)÷(﹣68).解:根据题中的新定义得:原式=﹣1+5×(﹣﹣)﹣(81﹣64)÷(﹣68)=﹣1﹣+=﹣5.18.已知2m﹣3与4m﹣5是一个正数的平方根,求这个正数.解:∵2m﹣3与4m﹣5是一个正数的平方根,∴2m﹣3=﹣(4m﹣5),m=∴这个正数为(2m﹣3)2=(2×﹣3)2=,或2m﹣3=4m﹣5,解得m=1,故这个正数是或1.19.如果m+5的平方根是±3,n﹣2的平方根是±5,求m+n的值.解:根据题意知m+5=9、n﹣2=25,则m=4、n=27,所以m+n=31.20.已知a为的整数部分,b为的小数部分求:(1)a,b的值;(2)(a+b)2的算术平方根.【解答】解:(1)∵9<11<16,∴3<<4,∴a=3;∵9<13<16,∴3<<4,∴b=﹣3;(2)∵当a=3,b=﹣3时,(a+b)2=(3+﹣3)2=13,∴(a+b)的算术平方根是.21.回答下列问题:(1)数轴上表示2和5的两点之间的距离是3,数轴上表示﹣2和﹣5的两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4;(2)数轴上表示x和﹣1的两点A和B之间的距离是|x﹣(﹣1)|,如果|AB|=2,那么x=1或﹣3;(3)当代数式|x+1|+|x﹣2|取最小值时,相应x的取值范围是﹣1≤x≤2.【解答】解:(1)|2﹣5|=|﹣3|=3;|﹣2﹣(﹣5)|=|﹣2+5|=3;|1﹣(﹣3)|=|4|=4;(2)|x﹣(﹣1)|=|x+1|,由|x+1|=2,得x+1=2或x+1=﹣2,所以x=1或x=﹣3;(3)若|x+1|+|x﹣2|取最小值,那么表示x的点在﹣1和2之间的线段上,所以﹣1≤x≤2.22.已知多项式(2ax2+3x﹣1)﹣(3x﹣2x2﹣3)的值与x无关,试求2a3﹣[a2﹣2(a+1)+a]﹣2的值.解:(2ax2+3x﹣1)﹣(3x﹣2x2﹣3)=2ax2+3x﹣1﹣3x+2x2+3=(2a+2)x2+2,由结果与x无关,得到2a+2=0,即a=﹣1,∴原式=2a3﹣a2+2a+2﹣a﹣2=2a3﹣a2+a=﹣2﹣1﹣1=﹣4.23.有这样一道题:计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中x=,y=﹣1.甲同学把“x=”错抄成了“x=﹣”.但他计算的结果也是正确的,请你通过计算说明原因.解:原式=2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3=﹣2y3,24.已知A=3a2﹣4ab,B=a2+2ab.(Ⅰ)求A﹣2B;(Ⅱ)若|3a+1|+(2﹣3b)2=0,求A﹣2B的值.解:(Ⅰ)A﹣2B=3a2﹣4ab﹣2(a2+2ab)=3a2﹣4ab﹣2a2﹣4ab=a2﹣8ab.(Ⅱ)∵|3a+1|+(2﹣3b)2=0,又|3a+1|≥0,(2﹣3b)2≥0,∴a=﹣,b=,∴原式=+=25.先化简,后求值,(1)化简:2(a2b+ab2)﹣(2ab2﹣1+a2b)﹣2,其中a=﹣2,b=1;(2)若(2b﹣1)2+|a+2|=0时,求2ab﹣2b的值.解:(1)2a2b+2ab2﹣2ab2+1﹣a2b﹣2=a2b﹣1,当a=﹣2,b=1时,原式=4﹣1=3;(2)∵(2b﹣1)2+|a+2|=0,∴2b﹣1=0,a+2=0,即a=﹣2,b=,则2ab﹣2b=﹣2﹣1=﹣3.26.元旦期间,某商场打出促销广告(如下表)小明妈妈第一次购物用了134元,第二次购物用了490元.(1)小明妈妈第一次所购物品的原价是134元;(2)小明妈妈第二次所购物品的原价是多少元?(写出解答过程)(3)若小明妈妈将两次购买的物品一次性买清,可比两次购买节省多少元?解:(1)∵第一次付了134元<200×90%=180元,∴第一次购物不享受优惠,即所购物品的原价为134元;故答案为134.(2)∵第二次付了490元>500×90%=450元,∴第二次购物享受了500元按9折优惠,超过部分8折优惠.设小明妈妈第二次所购物品的原价为x元,根据题意得:90%×500+(x﹣500)×80%=490,得x=550.答:小明妈妈第二次所购物品的原价分别为550元.(3)500×90%+(550+134﹣500)×80%=597.2(元),又134+490=624(元),624﹣597.2=26.8(元)她将这两次购物合为一次购买节省26.8元.27.期末考试快到了,小天同学需要复印一些复习资料.某誊印社的报价是:复印不超过20时,每页收费0.12元;复印页数超过20时,超过部分每页收费降为0.09元.某图书馆复印同样大小文件,不论复印多少页,每页收费0.1元.请问小天应该选择到哪里复印复习资料?【解答】解:设当复印x(x>20)页时,两处收费一样,根据题意,得:20×0.12+0.09×(x﹣20)=0.1x,解得:x=60.①当复印少于20页时,图书馆合算;②当20<x<60时,取x=30,则誊印社收费20×0.12+0.09×10=3.3元,图书馆收费0.1×30=3元,所以图书馆合算;③当x>60时,取x=100,则誊印社收费20×0.12+0.09×80=9.6元,图书馆收费0.1×100=10元,所以誊印社合算.综上所述,当复印页数少于60页时,去图书馆合算;当复印页数等于60页时,两处一样合算;当复印页数多于60页时,去誊印社合算.28.襄阳市某校七年级有5名教师带学生去公园秋游,公园的门票为每人30元,现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都按7.5折收费.(1)若有x名学生,则用式子表示两种优惠方案各需要多少元?(2)当学生人数是多少时,两种方案费用一样多?(3)当学生人数分别是40人,100人,你打算采用哪种方案优惠?为什么?【解答】解:(1)甲:0.8•30x=24x(元);乙:(x+5)•0.75×30=22.5x+112.5(2)依题意得:24x=22.5x+112.5,解得x=75.答:当学生人数是75人时,两种方案费用一样多;(3)m=40时,甲方案付费为24×40=960元,乙方案付费22.5×45=1012.5元,所以采用甲方案优惠;m=100时,甲方案付费为24×100=2400元,乙方案付费22.5×105=2362.5元,所以采用乙方案优惠.29.已知当x=﹣1时,代数式2mx3﹣3mx+6的值为7.(1)若关于y的方程2my+n=11﹣ny﹣m的解为y=2,求n的值;(2)若规定[a]表示不超过a的最大整数,例如[4.3]=4,请在此规定下求[m﹣n]的值.(n为(1)中求出的数值)解:(1)把x=﹣1代入得:﹣2m+3m+6=7,解得:m=1,把m=1,y=2代入得:4+n=11﹣n×2﹣1,解得:n=2;(2)把m=1,n=2代入得:m﹣n=1﹣×2=1﹣3.5=﹣2.5,则[m﹣n]=[﹣2.5]=﹣3.30.如图,直线AB、CD相交于点O,∠DOE=∠BOD,OF平分∠AOE.(1)判断OF与OD的位置关系,并说明理由;(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.【解答】解:(1)OF与OD的位置关系:互相垂直,理由:∵OF平分∠AOE,∴∠AOF=∠FOE,∵∠DOE=∠BOD,∴∠AOF+∠BOD=∠FOE+∠DOE=×180°=90°,∴OF与OD的位置关系:互相垂直;(2)∵∠AOC:∠AOD=1:5,∴∠AOC=×180°=30°,∴∠BOD=∠EOD=30°,∴∠AOE=120°,∴∠EOF=∠AOE=60°.31.如图,直线AB、CD相交于点O,OE把∠BOD分成两部分.(1)直接写出图中∠AOC的对顶角:∠BOD,∠EOB的邻补角:∠AOE (2)若∠AOC=70°且∠BOE:∠EOD=2:3,求∠AOE的度数.【解答】解:(1)∠AOC的对顶角是∠BOD,∠EOB的邻补角是∠AOE,故答案为:∠BOD,∠AOE;(2)∵∠AOC=70°,∴∠BOD=∠AOC=70°,∵∠BOE:∠EOD=2:3,∴∠BOE=×70°=28°,∴∠AOE=180°﹣28°=152°.∴∠AOE的度数为152°.32.如图所示,AB:BC=3:4,M是AB的中点,BC=2CD,N是BD的中点,如果AB=6cm,求线段MN的长度.【解答】解:∵AB:BC=3:4、AB=6cm,∴BC=8cm,∵BC=2CD、M是AB的中点,∴CD=BC=4cm,BM=AB=3cm,∴BD=BC+CD=12cm,∵N是BD的中点,∴BN=BD=6cm,则MN=BM+BN=9cm.33.已知:如图1,点M是线段AB上一定点,AB=12cm,C、D两点分别从M、B出发以1cm/s、2cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C 在线段AM上,D在线段BM上)(1)若AM=4cm,当点C、D运动了2s,此时AC=2,DM=4;(2)当点C、D运动了2s,求AC+MD的值.(3)若点C、D运动时,总有MD=2AC,则AM=4(填空)(4)在(3)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.【解答】解:(1)根据题意知,CM=2cm,BD=4cm,∵AB=12cm,AM=4cm,∴BM=8cm,∴AC=AM﹣CM=2cm,DM=BM﹣BD=4cm,故答案为:2,4;(2)当点C、D运动了2 s时,CM=2 cm,BD=4 cm∵AB=12 cm,CM=2 cm,BD=4 cm∴AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD=12﹣2﹣4=6 cm;(3)根据C、D的运动速度知:BD=2MC,∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM,∵AM+BM=AB,∴AM+2AM=AB,∴AM=AB=4,故答案为:4;(4)①当点N在线段AB上时,如图1,∵AN﹣BN=MN,又∵AN﹣AM=MN∴BN=AM=4∴MN=AB﹣AM﹣BN=12﹣4﹣4=4∴==;②当点N在线段AB的延长线上时,如图2,∵AN﹣BN=MN,又∵AN﹣BN=AB∴MN=AB=12∴==1;综上所述=或1.34.如图,AB、CD交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.【解答】解:∵OE平分∠BOD,∴∠1=∠2,∵∠3:∠1=8:1,∴∠3=8∠1.∵∠1+∠2+∠3=180°,∴∠1+∠1+8∠1=180°,解得∠1=18°,∴∠4=∠1+∠2=36°.35.如图,将两块直角三角尺的直角顶点C叠放在一起.①若∠DCE=35°,求∠ACE、∠DCB、∠ACB的度数;②若∠ACB=140°,求∠DCE的度数;③猜想:∠ACB与∠DCE有怎样的数量关系,并说明理由.【解答】解:①∵∠ACD=90°,∠BCE=90°,∠DCE=35°,∴∠ACE=55°,∠DCE=55°,∠ACB=125°;②∵∠ACB=140°,∠ACD=90°∴∠DCB=140°﹣90°=50°∵∠ECB=90°∴∠DCE=90°﹣50°=40°.③猜想得∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)理由:∵∠ECB=90°,∠ACD=90°∴∠ACB=∠ACD+∠DCB=90°+∠DCB ∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB∴∠ACB+∠DCE=180°.。
浙教版七年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知a、b互为相反数,e的绝对值为2,m与n互为倒数,则+e2-4mn的值为()A.1B.C.0D.无法确定2、已知二次函数自变量x与函数值y之间满足下列数量关系:x 2 4 5y 0.37 0.37 4那么的值为()A.24B.20C.10D.43、下面的说法错误的个数有( )个。
①单项式-πmn的次数是3次;②-a表示负数;③1是单项式;④是多项式。
A.1B.2C.3D.44、在1,-0.1,0,-2这四个数中,最小的数是()A.0B.-0.1C.-2D.15、若x=a是关于x的方程3x-4a=2的解,则a的值是()A.2B.-2C.D.-6、﹣2的相反数是()A.2B.﹣2C.-D.7、16的算术平方根是A.4B.-4C.±4D.88、在(-2)2, (-2),+(−) , -|-2|这四个数中,负数的个数是()A.1个B.2个C.3个D.4个9、下列各组数中,互为相反数的是A. 与B. 与C. 与D. 与10、a、b两数在数轴上对应点的位置如图所示,则下列结论正确的是()A.a-2>b-2B.b-a>0C.ab <0D.2 a<2b11、下列各数:,,,其中负数有( )个A.1B.2C.3D.412、下面四个图形中,与是对顶角的是()A. B. C.D.13、两个有理数的商是正数,那么这两个数一定()A.都是负数B.都是正数C.至少一个是正数D.两数同号14、下列四组数中,不相等的是( )A.-(+2)与+(-2)B.+(-7)与-7C.+(-1)与-(-1)D.|-3|与-(-3)15、下列说法中正确的有( )①负数没有平方根,但负数有立方根;②一个数的立方根等于它本身,则这个数是0或1;③无理数与数轴上的点一一对应;④的平方根是±2;⑤- 一定是负数A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3,若图3中∠CFE=120°,则图1中的∠DEF 的度数是________.17、某微商平台有一商品,标价为a元,按标价的6折再降价20元销售,则该商品售价用代数式表示为________元.18、“x的2倍与5的和”用代数式表示为________.19、若m,n为实数,且|m+3|+ =0,则()2018的值为________.20、将下列各数填在相应的集合里.-45%, 3.14,∣—6∣,, 0,-2016 , —(+).整数集合:{ ________ … };分数集合:{________ … };负数集合:{________ … }.在以上已知的数据中,最大的有理数是________,最小的有理数是________.21、规定a*b=5a+2b﹣1,则(﹣3)*7的值为________22、下列各数中:,,,0,,,负分数有________.23、若,则的补角为________.24、若与互为相反数,则=________.25、计算:|﹣3|﹣2=________.三、解答题(共5题,共计25分)26、计算:﹣.27、实践与探索:木工师傅为了充分利用材料,把两块等宽的长方形木板锯成图①和图②的形状,准备拼接成一块较长的无缝的长方形木板使用,他量得,,那么他应把和分别锯成多大的角才能拼成一块的无缝的长方形木板?为什么?28、如图,已知直线AB与CD交于点O,OM⊥CD,OA平分∠MOE,且∠BOD=28°,求∠AOM,∠COE的度数.29、若a=3+ ,b=3- ,求a2b-ab2的值30、某车间每天能生产甲种零件120个,或者乙种零件100个.甲、乙两种零件分别取3个、2个才能配成一套,要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?参考答案一、单选题(共15题,共计45分)1、C2、A3、C4、C6、A7、8、C9、A10、A11、A12、C13、D14、C15、B二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
浙教版七年级上册数学期末考试试题一、单选题1.2022-的相反数是()A .2022B .2022-C .12022D .12022-2.数604800用科学记数法表示为()A .60.48×104B .6.048×106C .6.048×105D .0.6048×1053.与25°角互余的角的度数是()A .55°B .65°C .75°D .155°4)A .4和5B .5和6C .6和7D .7和85.在下列生活、生产现象中,不可以用基本事实“两点确定一条直线”来解释的有()A .用两颗钉子就可以把木条固定在墙上;B .当木工师傅锯木板时,他会用墨盒在木板上弹出墨线,这样会使木板沿直线锯下;C .把弯曲的公路改直,就能缩短路程;D .在正常情况下,射击时只要保证瞄准的一只眼在两个准星确定的直线上,就能射中目标.6.下列各式中,正确的是()A 2=-B .(29=C .3=-D .3=±7.如图,三条直线l 1,l 2,l 3相交于一点,则∠1+∠2+∠3=()A .90°B .120°C .180°D .360°8.若122m a b --与5n ab 与是同类项,则m+n 的值是()A .1B .2C .3D .49.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是()A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x10.如图,点A 表示的实数是a ,则下列判断正确的是()A .10a ->B .10a +<C .10a -<D .||1a >二、填空题11.单项式234xy -的系数是______.12.9的算术平方根是.13.x 与﹣30%x 的和是_____.14.定义一种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则()13-⊕=____.15.如图,是用棋子摆成的图案,摆第1个图案需要1枚棋子,摆第2个图案需要7枚棋子,摆第3个图案需要19枚棋子,摆第4个图案需要37枚棋子,按照这样的方式摆下去,则摆第5个图案需要______枚棋子,摆第n 个图案需要______枚棋子.16.若407'1A ∠= ,则A ∠的补角的度数为__________.17.当x =1时,ax+b+1=﹣3,则(a+b ﹣1)(1﹣a ﹣b )的值为_____.三、解答题18.计算:(1)342-+(2)1115135⎛⎫ ⎪⎝⨯-⎭-19.计算:()42÷-(2)2022213-+20.解方程:(1)5476x x -=+(2)122136x x -+=-21.如图,已知线段a ,b ,用直尺圆规作图.(温馨提醒请保留作图痕迹,相应字母标注到位,不要求写出作法.)(1)作线段AB a b =-;(2)作线段2CD b =.22.已知x ,y 满足()2210x y -++=.(1)求x ,y 的值.(2)先化简,再求值:()()22232x xy x xy ---.23.如图,直线AB 与直线CD 相交于点O ,OE ⊥OF ,且OA 平分∠COE .(1)若∠DOE =50°,求∠AOE ,∠BOF 的度数.(2)设∠DOE=α,∠BOF=β,请探究α与β的数量关系(要求写出过程).24.定义:在一个已知角内部,一条线分已知角成两个新角,其中一个角度数为另个角度数的两倍,我们把这条线叫做这个已知角的三等分线.(1)如图,已知∠AOB =120°,若OC 是∠AOB 三等分线,求∠AOC 的度数.(2)点O 在线段AB 上(不含端点A ,B ),在直线AB 同侧作射线OC ,OD .设∠AOC =3t ,∠BOD =5t .①当OC是∠AOD的三等分线时,求t的值.②当OC是∠BOD的三等分线时,求∠BOD的度数.25.如图,数轴上点A,B分别表示数-6,12,C为AB中点.(1)求点C表示的数.(2)若点P为线段AB上一点,PC=2,求点P表示的数.(3)若点D为线段AB上一点,在线段AB上有两个动点M,N,分别同时从点A,D出发,沿数轴正方向运动,点M的速度为4个单位每秒,点N的速度为3个单位每秒,当MN=1,NC=2时,求点D表示的数.26.如图,已知射线OB平分∠AOC,∠AOC的余角比∠BOC小42°.(1)求∠AOB的度数:(2)过点O作射线OD,使得∠AOC=4∠AOD,请你求出∠COD的度数(3)在(2)的条件下,画∠AOD的角平分线OE,则∠BOE=.参考答案1.A2.C3.B4.C5.C6.D7.C8.D 9.C 10.C11.3 4-12.313.0.7x14.1515.613n2-3n+1 16.13943'︒17.-25.18.(1)1;(2)7【解析】(1)解:342-+=3+2-4=1;(2)解:11 15135⎛⎫⎝⨯-⎭-11151151535=⨯-⨯-⨯1553=--=7.【点睛】本题考查了有理数的四则混合运算,有理数混合运算顺序:先算乘除,最后算加减.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.19.(1)1(2)35【分析】(1)原式先化简立方根,再计算除法,最后计算减法即可得到答案;(2)原式先计算乘方和化简算术平方根,再计算乘法,最后计算加法即可得到答案.(1)()42+÷-=32-=1(2)2022213-+=194-+⨯=136-+=35【点睛】本题主要考查了实数的混合运算,熟练掌握运算法则是解答本题的关键.20.(1)x=-5;(2)x=23-.【分析】(1)方程移项,合并同类项,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解.(1)解:移项得:5x-7x=6+4,合并得:-2x=10,系数化为1得:x=-5;(2)解:去分母得:2(1-2x )=6-(x+2),去括号得:2-4x=6-x-2,移项得:-4x+x=6-2-2,合并得:-3x=2,系数化为1得:x=23-.21.(1)见解析(2)见解析【分析】(1)直接作射线AM ,进而截取AC=a ,BC=b ,进而得出AB a b =-,即可得出答案(2)作射线CN ,进而截取CE=b ,ED=b ,进而得出2CD b =,即可得出答案(1)如图,AB 即为所作.(2)如图,CD 即为所作22.(1)2x =,1y =-(2)24x xy -+,-12【分析】(1)根据非负数的性质可求出x ,y 的值;(2)原式先去括号,再合并后把x ,y 的值代入计算即可(1)∵()2210x y -++=∴20,10x y -=+=∴2x =,1y =-(2)()()22232x xy x xy---=222236x xy x xy--+=24x xy-+当2x =,1y =-时,原式=2242(1)4812-+⨯⨯-=--=-23.(1)∠AOE=65°,∠BOF=25°;(2)α=2β.【分析】(1)先根据平角的定义得:∠COE=130°,由角平分线的定义和垂线的定义可得∠BOF 的度数;(2)根据(1)中的过程可得结论.(1)解:∵∠DOE=50°,∴∠COE=180°-∠DOE=180°-50°=130°,∵OA平分∠COE,∴∠AOE=12∠COE=12×130°=65°,∵OE⊥OF,∴∠EOF=90°,∴∠BOF=180°-∠AOE-∠EOF=180°-65°-90°=25°;(2)解:∵∠DOE=α,∴∠COE=180°-∠DOE=180°-α,∵OA平分∠COE,∴∠AOE=12∠COE=12(180°-α)=90°-12α,∵OE⊥OF,∴∠EOF=90°,∴∠BOF=β=180°-∠AOE-∠EOF=180°-(90°-12α)-90°=12α,即α=2β.【点睛】本题考查了角平分线的定义,以及邻补角的定义,垂线的定义,理解角平分线的定义是关键.24.(1)∠AOC的度数为40°或80°;(2)①:t=907或36019;②∠BOD=270019度【分析】(1)分两种情况讨论,列式计算即可;(2)①分两种情况讨论,列式计算即可;②计算得到∠COD=8t-180°,分两种情况讨论,列式计算即可.(1)解:OC是∠AOB的三等分线,当∠AOC=23∠AOB时,如图:∵∠AOB=120°,∴∠AOC=23∠AOB=80°;当∠AOC=13∠AOB时,如图:∵∠AOB=120°,∴∠AOC=13∠AOB=40°;综上,∠AOC的度数为40°或80°;(2)解:①∵OC是∠AOD的三等分线,∴OC在∠AOD内,依题意得:(180°-5t)÷3=3t或(180°-5t)÷3×2=3t,解得:t=907或36019;②∵OC是∠BOD的三等分线,∴OC在∠BOD内,∵∠BOD+∠AOC=180°-∠COD,∠AOC=3t,∠BOD=5t,∴∠COD=8t-180°,依题意得:(8t-180°)×3=5t 或(8t-180°)×32=5t ,解得:t=54019或54014;∴∠BOD=270019度或270014度(舍去).【点睛】本题考查了角的计算,解决问题的关键是掌握角的三等分线的定义,解题时注意分类思想的运用,分类时不能重复,也不能遗漏.25.(1)3(2)5或1(3)-3.5或-2.5【分析】(1)设点C 表示的数为x ,根据点C 为AB 中点,列出方程求解即可;(2)设点P 表示的数为m ,根据两点间距离公式可列方程求解即可;(3)分点N 在点C 的左侧和右侧两种情况讨论求解即可.(1)设点C 表示的数为x ,∵点A 表示的数为-6,点B 表示的数为12,且点C 为AB 的中点∴(6)12x x --=-解得,3x =所以,点C 表示的数为:3;(2)设点P 表示的数为m ,∵点C 表示的数为3,且PC=2∴|3|2m -=解得,5m =或1m =∴点P 表示的数为:5或1;(3)分两种情况:①当点N在点C左侧时,如图,NC=,且点C表示的数为3∵2∴此时点N表示的数为:3-2=1又MN=1∴M表示的数为:1-1=0AM=--=∴0(6)6÷=秒,∴点M运动的时间为64 1.5∴点N的运动时间也为1.5秒DN=⨯=个单位,∴3 1.5 4.5∴点D表示的数为:1-4.5=-3.5;②当点N在点C的右侧时,如图,NC=,且点C表示的数为3∵2∴此时点N表示的数为:3+2=5又MN=1∴M表示的数为:5-1=4AM=--=∴4(6)10÷=秒,∴点M运动的时间为104 2.5∴点N的运动时间也为2.5秒DN=⨯=个单位,∴3 2.57.5∴点D表示的数为:5-7.5=-2.5;综上,点D表示的数为:-3.5或-2.5【点睛】本题考查一次方程应用及数轴上点表示的数,解题的关键是找准等量关系,正确列出一元一次方程.26.(1)44°;(2)66°或110°;(3)33°或55°【分析】(1)设∠BOC=x,则∠AOC=2x,根据∠AOC的余角比∠BOC小42°列方程求解即可;(2)分两种情况:①当射线OD在∠AOC内部,②当射线OD在∠AOC外部,分别求出∠COD的度数即可;(3)根据(2)的结论以及角平分线的定义解答即可.【详解】解:(1)由射线OB平分∠AOC可得∠AOC=2∠BOC,∠AOB=∠BOC,设∠BOC=x,则∠AOC=2x,依题意列方程90°﹣2x=x﹣42°,解得:x=44°,即∠AOB=44°.(2)由(1)得,∠AOC=88°,①当射线OD在∠AOC内部时,如图,∵∠AOC=4∠AOD,∴∠AOD=22°,∴∠COD=∠AOC﹣∠AOD=66°;②当射线OD在∠AOC外部时,如图,由①可知∠AOD=22°,则∠COD=∠AOC+∠AOD=110°;故∠COD的度数为66°或110°;(3)∵OE平分∠AOD,∴∠AOE=1112AOD∠=︒,当射线OD在∠AOC内部时,如图,∴∠BOE=∠AOB﹣∠AOE=44°﹣11°=33°;当射线OD在∠AOC外部时,如图,∴∠BOE=∠AOB+∠AOE=44°+11°=55°.综上所述,∠BOE度数为33°或55°.故答案为:33°或55°。
浙教版七年级上册数学期末考试试题一、单选题1.-2的绝对值是()A .2B .12C .12-D .2-2.把54300这个数据可以用科学记数法表示为()A .55.4310⨯B .45.4310⨯C .354.310⨯D .50.54310⨯3.下列图形旋转一周,能得到如图几何体的是()A .B .C .D .4.在1-,13,0这四个实数中,属于无理数的是()A .1-B C .13D .05.在一个峡谷中,测得A 地的海拔为-11米,B 地比A 地高15米,则B 地的海拔为()A .4米B .-4米C .26米D .-26米6.如图,点A 在点O 的南偏东20︒方向上,且射线OA 与OB 的夹角是110︒,则射线OB 的方向是()A .北偏东70︒B .北偏东60︒C .北偏东50︒D .北偏东40︒7.若20x y +-=,则代数式8x y --+的值是()A .10B .8C .6D .48.如图,点B 是线段AD 的中点,点C 在线段BD 上,且AB a =,CD b =,则下列结论中错.误.的是()A .2AD a =B .BC a b =-C .2AC a b=-D .13BC b=9.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x 公顷旱地改为林地,则可列方程为()A .5420%108x -=⨯B .5420%(108)x x -=⨯+C .10820%(54)x x +=⨯-D .5420%(108)x x +=⨯-10.把五张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个大长方形(长为m ,宽为n )内(如图②),大长方形未被卡片覆盖的部分用阴影表示.当m 不变,n 变长时,阴影部分的面积差总保持不变,则a ,b 应满足的关系为()A .a =5bB .a =3bC .a =2bD .32a b=二、填空题11.﹣1的相反数是_____.12.已知50A ∠=︒,则A ∠的余角等于______°.13.比较大小:1-________(填“<”,“>”或“=”)14.已知关于x 的方程(1)332a x a x -+=-的解为2x =,则=a ________.15.若实数a ,b 满足2=a ,41b a -=-||,则a b +=________.16.数轴上A ,B 两点表示的数分别为4-,2,C 是射线BA 上的一个动点,以C 为折点,将数轴向左对折,点B 的对应点落在数轴上的B '处.(1)当点C 是线段AB 的中点时,线段AC =________.(2)若3B C AC '=,则点C 表示的数是________.17.已知代数式x ﹣2y 的值是5,则代数式﹣3x+6y+1的值是_____.18.关于x 的一元一次方程224a x m +﹣=的解为x =1,则a+m 的值为_____.19.如图,把一张长方形的纸片沿着EF 折叠,点C 、D 分别落在M 、N 的位置,且∠AEF =23∠DEF ,则∠NEA =_____.三、解答题20.计算(1)3(2)(3)+---;(2)3124⨯.21.解方程(1)5236x x -=+.(2)3252x x x --=.22.先化简,再求值:222(2)(23)1a a a a ---+,其中3a =-.23.如图,将1,2,3,…,40这40个数按照下表进行排列,现用一个Z 字框(图中阴影部分)框住表中的4个数,移动该框,设框中最小的数为x .(1)请用含x 的代数式表示框中4个数的和.(2)框中4个数的和可能是132吗?若能,请求出最小的数.24.如图,44⨯方格中每个小正方形的边长都为1.(1)求图①中正方形ABCD 的面积.(2)25.如图,已知直线AB ,CD 相交于点O ,OE ,OF 为射线,OE 平分AOC ∠,且25AOE ∠=︒.(1)求BOD ∠的度数.(2)若90DOF AOE ∠-∠=︒,试说明OF OE ⊥.26.甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍,定价相同,乒乓球拍60元/副,乒乓球20元/盒,两家商店的优惠方案如下表所示:商店优惠方案甲商店每买一副球拍赠一盒乒乓球乙商店全部按定价的8折优惠某班现需买球拍5副,乒乓球若干盒(不少于5盒).(1)当购买乒乓球8盒时,请通过计算说明去哪家商店购买更合算?(2)当购买乒乓球多少盒时,在甲、乙两店所需支付的费用相同?(3)若该班有500元的购买经费,请你帮忙设计出最佳的购买方案,使购买到的乒乓球的盒数最多.27.如图,20cm AB =,点O 在AB 上,点P 在以O 为圆心,OA 长为半径的圆上,且60AOP ∠=︒.点O 从点A 出发沿直线AB 向点B 运动,速度为1cm/s ,同时线段OP 绕点O 以30/s ︒的速度按顺时针旋转,点Q 也同时从点B 出发沿折线B O P --运动,设运动时间为()t s .(1)若点Q 的运动速度为2cm/s ,当2t =时,求OQ 的长.(2)在线段OP 旋转一周的过程中,当30POB ∠=︒时.①求运动时间t .②若此时点Q 恰好在OB 中点处,求点Q 的运动速度.(3)若点Q 在BO 上运动时,速度是2cm/s ,在OP 上运动时,速度是5cm/s ,当点Q 到达点P 时,所有运动同时停止,求运动停止时AOP ∠的度数.参考答案1.A【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义进行求解即可.【详解】解:在数轴上,点-2到原点的距离是2,所以-2的绝对值是2,故选:A .2.B【分析】根据科学记数法的定义即可得.【详解】解:454300 5.4310=⨯,故选:B .【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.3.A【分析】根据面动成体,判断出各个选项旋转得到的立体图,即可得出结论.【详解】A .旋转一周可得本题的几何体,故选项正确,符合题意;B .旋转一周为两个圆锥结合体,故选项错误,不符合题意;C .旋转一周为圆锥和圆柱的结合体,故选项错误,不符合题意;D .旋转一周为两个圆锥和一个圆柱的结合体,故选项错误,不符合题意;故选:A .【点睛】此题考查了面动成体,解题的关键是要有空间想象能力,熟悉并判断出旋转后的立体图形.4.B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:﹣1、013是分数,属于有理数.故选:B .【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.A【分析】根据有理数的加法运算法则直接列式进行计算即可得出答案.【详解】解:∵A地的海拔为-11米,B地比A地高15米,∴B地的海拔是:-11+15=4(米),故答案为:A.【点睛】本题主要考查了有理数的加法的应用,熟练掌握有理数的加法运算法则是解题的关键.6.C【分析】利用平角180°减去20°与110°的和进行计算即可解答.【详解】解:由题意得:180°-(20°+110°)=180°-130°=50°,∴射线OB的方向是北偏东50°,故选:C.【点睛】本题考查了方向角,根据题目的已知条件并结合图形分析是解题的关键.7.C【分析】由题意得x+y=2,将代数式﹣x﹣y+8变形为﹣(x+y)+8,再将x+y=2整体代入进行计算即可.【详解】解:∵x+y﹣2=0,∴x+y=2,∴﹣x﹣y+8=﹣(x+y)+8=﹣2+8=6,故选:C.【点睛】本题考查了运用整体思想求代数式的值的能力,关键是能通过观察、变形,运用整体思想进行代入求值.8.D【分析】根据线段中点的定义与线段的和差逐项分析可得答案.【详解】解:∵点B是线段AD的中点,AB=a,∴AD =2AB =2a ,故A 正确,不符合题意;∵BD =AB =a ,∴BC =BD ﹣CD =a ﹣b ,故B 正确,不符合题意;∵AC =2AB =2a ,CD =b ,∴AC =AD ﹣CD =2a ﹣b ,故C 正确,不符合题意;∵点C 不是CD 的四等分点,∴BC≠13b ,故D 错误,符合题意.故选:D .【点睛】本题考查线段中点的定义与线段的和与差,熟练掌握线段中点的定义与线段的和差是解题关键.9.B【分析】设把x 公顷旱地改为林地,根据旱地面积占林地面积的20%列出方程即可.【详解】解:设把x 公顷旱地改为林地,根据题意可得方程:54-x=20%(108+x ).故选:B .【点睛】本题考查一元一次方程的应用,关键是设出未知数以以改造后的旱地与林地的关系为等量关系列出方程.10.B【分析】先用字母a 、b 、m 、n 表示出阴影部分的面积差,再由阴影部分面积不随n 的变化而变化可知n 的系数为0,即可求解.【详解】解:阴影部分的面积差为:(3)(2)()()m b n b m a n a -----22236()mn bm bn b mn na ma a =--+---+22236mn bm bn b mn na ma a =--+-++-22(2)(3)6a b m a b n b a =-+-+-,∵阴影部分面积差不随n 的变化而变化∴n 的系数为0,即30a b -=,即3a b =,故选:B .【点睛】本题考查了整式的混合运算,正确列出代数式是解答本题的关键.11.1【分析】根据相反数的定义可得出答案.【详解】根据相反数的定义,得﹣1的相反数是1.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.12.40【分析】利用90°减去∠A 即可直接求解.【详解】解:∠A 的余角为:90°-50°=40°.故答案是:40.【点睛】本题考查了余角的定义,如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角,理解定义是关键.13.>【分析】首先求出两数的绝对值,进而利用实数比较大小的方法得出答案.【详解】解:∵|﹣1|=1,=1,∴﹣1>故答案为:>.【点睛】本题主要考查了实数比较大小,正确掌握实数比较大小的法则是解题关键.14.5【分析】把x=2代入原方程得到关于a 的方程,解得即可.【详解】把x=2代入方程(1)332a x a x -+=-得:2(a-1)+3=3a-4,解得a=5,故答案为:5.【点睛】本题考查了解一元一次方程,能得到关于a 的一元一次方程是解题的关键.15.−1或5【分析】根据绝对值的定义求出a 、b 的值,再代入计算即可.【详解】解:∵|a|=2,∴a =±2,当a =2时,|4−b|=1−2=−1,此时b 不存在;当a =−2时,|4−b|=3,∴4−b =3或4−b =−3,即b =1或b =7,当a =−2,b =1时,a +b =−1;当a =−2,b =7时,a +b =5.故答案为:−1或5.【点睛】本题考查绝对值的意义,理解绝对值的意义是正确解答的前提,求出a 、b 的值是正确解答的关键.16.32.5-或7-【分析】(1)先根据数轴的性质求出点C 所表示的有理数,再计算有理数的减法即可得;(2)设点C 表示的数是x ,则2,4BC x AC x =-=--,再根据折叠的性质可得2B C BC x '==-,然后根据3B C AC '=建立方程,解方程即可得.【详解】解:(1)当点C 是线段AB 的中点时,则点C 所表示的有理数为4212-+=-,所以线段1(4)3AC =---=,故答案为:3.(2)设点C 表示的数是x ,点C 是射线BA 上的一个动点,2x ∴≤,则2,4BC x AC x =-=--,由折叠的性质得:2B C BC x '==-,3B C AC '= ,234x x ∴-=--,即23(4)x x -=+或23(4)x x -=+,解得 2.5x =-或7x =-,均符合题意,则点C 表示的数是 2.5-或7-,故答案为: 2.5-或7-.【点睛】本题考查了数轴、一元一次方程的应用、有理数加减法的应用、折叠,熟练掌握数轴的性质是解题关键.17.-14.【分析】将x ﹣2y =5整体代入﹣3x+6y+1=﹣3(x ﹣2y )+1可得答案.【详解】∵x ﹣2y =5,∴﹣3x+6y+1=﹣3(x ﹣2y )+1=﹣3×5+1=﹣14.故答案为:﹣14.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.18.5.【分析】先根据一元一次方程的定义得出a ﹣2=1,求出a ,再把x =1代入方程2x+m =4得出2+m =4,求出方程的解即可.【详解】∵方程224a x m ﹣=是关于x 的一元一次方程,∴a ﹣2=1,解得:a =3,把x =1代入一元一次方程2x+m =4得:2+m =4,解得:m =2,∴a+m =3+2=5,故答案为:5.【点睛】本题考查了一元一次方程的定义,解一元一次方程和一元一次方程的解,能求出a 、m 的值是解此题的关键.19.36°.【分析】由于∠AEF =23∠DEF ,根据平角的定义,可求∠DEF ,由折叠的性质可得∠FEN =∠DEF ,再根据角的和差,即可求得答案.【详解】∵∠AEF =23∠DEF ,∠AEF+∠DEF =180°,∴∠DEF =108°,由折叠可得∠FEN =∠DEF =108°,∴∠NEA =108°+108°﹣180°=36°.故答案为:36°.【点睛】此题考查了折叠的性质、矩形的性质及平角的定义,解题的关键是注意数形结合思想的应用,难度一般.20.(1)4(2)-1【分析】(1)根据有理数加减混合运算法则进行计算即可;(2)先根据算术平方根的定义和乘方的运算法则进行计算,然后根据实数混合运算法则进行计算即可.(1)解:3(2)(3)+---323=-+13=+4=(2)解:3124⨯1834=⨯-23=-1=-【点睛】本题主要考查了实数混合运算和有理数的加减混合运算,熟练掌握有理数加减混合运算法则、算术平方根的定义和乘方的运算法则是解题的关键.21.(1)4x =;(2)152x =【分析】(1)按照移项、合并同类项、系数化为1的步骤解一元一次方程即可得;(2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次方程即可得.【详解】解:(1)5236x x -=+,移项,得5326x x -=+,合并同类项,得28x =,系数化为1,得4x =;(2)3252x x x --=,方程两边同乘以10去分母,得25(32)10x x x --=,去括号,得2151010x x x -+=,移项,得2101015x x x +-=,合并同类项,得215x =,系数化为1,得152x =.【点睛】本题考查了解一元一次方程,熟练掌握方程的解法是解题关键.22.1a -+;4【分析】直接去括号,进而合并同类项,再把已知数据代入求出答案.【详解】解:原式=2a 2﹣4a ﹣2a 2+3a+1=﹣a+1,当a =﹣3时,原式=﹣a+1=﹣(﹣3)+1=4.【点睛】本题主要考查了整式的加减——化简求值,注意括号前是“﹣”时,去括号后括号内各项要变号是解题关键.23.(1)4x+24(2)能,最小的数为27【分析】(1)若框中最小的一个数为x ,则其它四个数分别是x+1、x+11、x+12.然后求和即可;(2)根据所给的数的和列方程计算,如果结果不是整数,则应舍去.(1)解:设框中最小的数为x ,则x+x+1+x+11+x+12=4x+24;∴框中4个数的和为x+24.(2)解:根据题意,得4x+24=132.解得x=27.观察表格中的数据知,x=27符合题意.答:能,最小的数是27.【点睛】此题考查了一元一次方程的应用,列代数式和数字的变化规律,关键是根据所给的数的和列方程计算解答.24.(1)10(2)图见解析【分析】(1)利用勾股定理求出2BC 的值,再根据正方形的面积公式即可得;(2=(1)解:2221310BC =+= ,∴图①中正方形ABCD 的面积210BC =.(2)解:如图②,正方形EFGH 即为所求.【点睛】本题考查了勾股定理与网格问题,熟练掌握勾股定理是解题关键.25.(1)50︒(2)见解析【分析】(1)先根据角平分线的定义可得50AOC ∠=︒,再根据对顶角相等即可得;(2)先根据角平分线的定义可得25COE AOE ∠=∠=︒,再根据邻补角的定义可得65COF ∠=︒,从而可得90COE COF ∠+∠=︒,由此即可得.(1)解:OE 平分AOC ∠,且25AOE ∠=︒,250AOC AOE ∴∠=∠=︒,由对顶角相等得:50BOD AOC ∠=∠=︒.(2)解:OE 平分AOC ∠,且25AOE ∠=︒,25COE AOE ∴∠=∠=︒,90DOF AOE -∠=︒∠ ,90115∴∠︒,=︒+∠=DOF AOE-∠︒,∴∠=︒=18065OF OC D F∴∠+∠=︒,90COE COF∴⊥.OF OE26.(1)去甲商店购买更合算(2)10盒(3)在甲商店购买5副球拍获赠5盒乒乓球,再在乙商店购买12盒乒乓球.【分析】(1)利用总价=单价×数量,结合两家商店给出的优惠方案,即可分别求出去甲、乙两商店购买所需费用,比较后即可得出结论;(2)设当购买乒乓球x盒时,在甲、乙两店所需支付的费用相同,利用总价=单价×数量,结合两家商店给出的优惠方案及在两家商店购买所需费用相同,即可得出关于x的一元一次方程,解之即可得出结论;(3)由甲、乙两家商店的优惠方案可得出最佳的购买方案为:在甲商店购买5副球拍获赠5盒乒乓球,再在乙商店购买12盒乒乓球.(1)解:去甲商店购买所需费用为60×5+20×(8-5)=360(元);去乙商店购买所需费用为(60×5+20×8)×80%=368(元).∵360<368,∴去甲商店购买更合算.(2)解:设当购买乒乓球x盒时,在甲、乙两店所需支付的费用相同,依题意得:60×5+20(x-5)=(60×5+20x)×80%,解得:x=10.(3)解:甲店购买5副球拍时赠送5盒乒乓球,再次购买乒乓球需要按原价购买,而乙商店所有商品均按定价的8折优惠,∴在甲商店购买5副球拍,赠送5盒乒乓球,剩余的钱再取乙商店购买乒乓球.(500-60×5)÷(20×80%)=200÷16=12.5(盒).∴最佳的购买方案为:在甲商店购买5副球拍获赠5盒乒乓球,再在乙商店购买12盒乒乓球.【点睛】本题考查了一元一次方程的应用以及有理数的混合运算,解题的关键是:(1)利用总价=单价×数量,结合两家商店给出的优惠方案,分别求出在甲、乙两家商店购买所需费用;(2)找准等量关系,正确列出一元一次方程;(3)根据两家商店给出的优惠方案,找出最佳的购买方案.27.(1)14cm(2)①3或5;②17cm/s 6或3cm/s 2(3)50︒【分析】(1)分别表示出,OA BQ ,再根据线段和差即可得;(2)①分点P 在AB 上方和点P 在AB 下方两种情况,分别求出OP 旋转的角度,由此即可得;②在①的两种情况的基础上,分别求出,OA OB 的长,再根据线段中点的定义求出BQ 的长,由此即可得;(3)先求出点Q 在BO 上的运动时间,再根据OP 的长度随OA 的变化建立方程,解方程可得点Q 在OP 上的运动时间,然后根据总运动时间求出旋转的角度数,由此即可得.(1)解:由题意,当2t =时,122(cm),224(cm)OA BQ =⨯==⨯=,20cm AB =Q ,14cm OQ AB OA BQ ∴=--=.(2)解:①由题意,分以下两种情况:当点P 在AB 上方时,OP 旋转的角度为180603090︒-︒-︒=︒,此时90303(s)t =︒÷︒=,当点P 在AB 下方时,OP 旋转的角度为1806030150︒-︒+︒=︒,此时150305(s)t =︒÷︒=,综上,运动时间t 的值为3或5;②当3t =时,133(cm)OA =⨯=,17cm OB AB OA ∴=-=, 点Q 恰好在OB 中点,117cm 22BQ OB ∴==,则此时点Q 的运动速度为17173(cm/s)26÷=,当5t =时,155(cm)OA =⨯=,15cm OB AB OA ∴=-=, 点Q 恰好在OB 中点,115cm 22BQ OB ∴==,则此时点Q 的运动速度为1535(cm/s)22÷=,综上,点Q 的运动速度为17cm/s 6或3cm/s 2.(3)解:当点O 与点Q 重合时,运动时间为2020(12)(s)3÷+=,此时20201(cm)33OP OA ==⨯=,设点Q 从点O 运动到点P 所用时间为s x ,则2053x x +=,解得53x =,所以整个运动过程所用时间为20525(s)333+=, 线段OP 绕点O 以30/s ︒的速度按顺时针旋转,∴旋转的度数为25302503︒⨯=︒, 运动开始时60AOP∠=︒,∴运动停止时3606025050 AOP∠=︒-︒-︒=︒.。
浙教版七年级上册数学期末考试试题一、单选题1.计算52-+的结果是()A.7-B.7C.3-D.32.数据393000用科学记数法表示为()A.393×103B.39.3×104C.3.93×105D.0.393×1063.数17,π,0,-0.3中,属于无理数的是()A.17B.πC.0D.-0.34.下列合并同类项正确的是()A.3x+2x=5x 2B.3x-2x=1C.-3x+2x=-x D.-3x-2x=5x5.解方程()221x x -+=,以下去括号正确的是()A.41x x -+=-B.42x x -+=-C.41x x --=D.42x x--=6.如图,已知∠AOB:∠BOC=2:3,∠AOC=75°,那么∠AOB=()A.20°B.30°C.35°D.45°7.我国古代数学问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x 辆,根据题意,可列出的方程是()A.3229x x -=+B.()3229x x -=+C.2932x x +=+D.()()3229x x -=+8.按照如图所示的计算程序,若x=2,则输出的结果是()A.16B.26C.﹣16D.﹣269.将连续正整数按如图所示的位置顺序排列:根据排列规律,则2021应在()A.A 处B.B 处C.C 处D.D 处10.如图,一个大正方形的四个角落分别放置了四张大小不同的正方形纸片,其中①,②两张正方形纸片既不重叠也无空隙.已知①号正方形边长为a,②号正方形边长为b,则阴影部分的周长是()A.22a b+B.42a b +C.24a b +D.33a b+二、填空题11.﹣3的相反数是__________.12.计算:()192-÷=_____.13.单项式25ab -的系数是_____.14.若x=2是关于x 的方程5x+a=3(x+3)的解,则a 的值是_____.15.一副三角板如图叠放,已知∠OAB=∠OCD=90°,∠AOB=45°,∠COD=60°,OB 平分∠COD,则∠AOC=_____度.16.纸片上有一数轴,折叠纸片,当表示-1的点与表示5的点重合时,表示3的点与表示数_____的点重合.17.一个五彩花圃的形状如图所示,其面积是18平方米,则图中a 的值是_____米.18.如图,点O 在直线DB 上.已知125∠=︒,=90AOC ∠︒,则2∠的度数是____________.三、解答题19.计算:(1)4×(-2)+|-8|327-(2)12×3142⎛⎫- ⎪⎝⎭+(-3)2.20.解方程:1143x x --=.21.先化简再求值:2(a 2-ab)-3(23a 2-ab),其中a=2,b=-5.22.一只蚂蚁从点P 出发,在一条水平直线上来回匀速爬行.记向右爬行的路程为正,向左爬行的路程为负,爬行的路程依次为(单位:厘米):7,6,5,6,13,3+---+-.(1)请通过计算说明蚂蚁最后是否回到了起点P.(2)若蚂蚁爬行的速度是0.5厘米/秒,问蚂蚁共爬行了多少时间?23.如图,线段AB=10,C 为AB 延长线上的一点,D 是线段AC 中点,且点D 不与点B 重合.(1)当BC=6时,求线段BD 的长.(2)若线段BD=4,求线段BC 的长.24.某城市平均每天产生垃圾700吨,由甲,乙两个垃圾处理厂处理.已知甲厂每小时可以处理垃圾55吨,每吨需费用10元;乙厂每小时可以处理垃圾45吨,每吨费用9元.(1)甲,乙两厂同时处理该城市的垃圾,每天需要多少时间完成?(2)如果该城市每天用于处理垃圾的费用为6700元,那么甲厂每天处理垃圾多少吨?25.已知,如图直线AB 与CD 相交于点O,OE AB ⊥,过点O 作射线OF ,30AOD ∠=︒,FOB EOC ∠=∠.(1)求EOC ∠度数;(2)求DOF ∠的度数;(3)直接写出图中所有与AOD ∠互补的角.26.如图,已知在数轴上A 点表示数3-,B 点表示数1,C 点表示数9.(1)若将数轴折叠,使得A 点与C 点重合,则点B 与表示数__________表示的点重合;(2)若点A,点B 和点C 分别以每秒2个单位长度,1个单位长度和4个单位长度的速度在数轴上同时向左运动,点A,点B 和点C 运动后的对应点分别是点1A ,点1B 和点1C .①假设t 秒钟过后,111,,A B C 三点中恰有一点为另外两点的中点,求t 的值;②当点1C 在1B 点右侧时,11113m B C A B ⋅+的值是个定值,求此时m 的值.参考答案1.C2.C3.B4.C5.D6.B7.B8.D9.D10.B11.312.-1813.5-14.515.1516.117.318.115°19.(1)-3(2)12【分析】(1)先利用立方根、绝对值的性质化简,再合并,即可求解;(2)先利用乘法分配律计算,再合并,即可求解.(1)解:()428⨯-+--883=-+-3=-(2)解:()23112342⎛⎫⨯-+- ⎪⎝⎭311212942=⨯-⨯+969=-+12=.【点睛】本题主要考查了有理数的混合运算,解题的关键是熟练掌握有理数的混合运算法则.20.15x =-【分析】方程去分母,去括号,移项合并同类项,把x 的系数化为1,即可求解.【详解】解:去分母,得()31124x x--=去括号,得33124x x --=,移项合并同类项,得15x -=系数化为1,得15x =-【点睛】本题主要考查了一元一次方程的解法,解题难点是在解方程的过程中,去分母时各项都要乘以各分母的最小公倍数.21.ab,-10【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【详解】原式222223a ab a ab ab=--+=当2a =,=5b -时,原式()2510=⨯-=-.【点睛】此题考查了整式的加减-化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.22.(1)蚂蚁最后是回到了起点P;(2)80秒.【分析】(1)根据正负数的运算法则进行计算,然后看最后结果的正负,即可判断.(2)根据蚂蚁爬行路线,先求蚂蚁爬行的路程,然后利用公式:时间=路程÷速度,求其时间.【详解】解:(1)7(6)(5)(6)(13)(3)++-+-+-+++-0=,∴蚂蚁最后是回到了起点P;(2)765613340++-+-+-+++-=,∴400.580÷=(秒).答:蚂蚁共爬行了80秒.【点睛】本题主要考查了正负数以及有理数的加减乘除混合运算,关键根据正负数加减法的运算法则计算.23.(1)2(2)线段BC的长为18或2【分析】(1)如图1,根据线段的和差得到AC=AB+BC=16,根据线段中点的定义即可得到结论;(2)当点D在B的右侧时,如图2,AD=AB+BD=10+4=14,当点D在B的左侧时,如图3,AD=AB-BD=10-4=6,根据线段中点的定义即可得到结论.(1)解:如图1,∵AB=10,BC=6,∴AC=AB+BC=16,∵D是线段AC中点,∴AD=12AC=8,∴BD=AB-AD=10-8=2;(2)解:当点D在B的右侧时,如图2,AD=AB+BD=10+4=14,∵D是线段AC中点,∴AD=CD=14,∴BC=BD+CD=4+14=18;当点D在B的左侧时,如图3,AD=AB-BD=10-4=6,∵D是线段AC中点,∴AD=CD=6,∴BC=CD-BD=6-4=2,综上所述,线段BC的长为18或2.【点睛】本题考查了两点间的距离,利用了线段的和差,线段中点的性质,解题的关键是掌握分类讨论的思想,以防遗漏.24.(1)7小时;(2)甲厂每天处理垃圾400吨.【分析】(1)设每天需要x 小时完成,根据甲乙两厂每小时处理垃圾的吨数列出方程,求出方程的解即可得到结果;(2)设甲厂每天处理y 吨垃圾,乙厂处理(700-y)吨,根据费用为6700元列出方程,求出方程的解即可得到结果.【详解】解:(1)设甲,乙两厂同时处理该城市的垃圾,每天需要x 小时完成,5545700x x +=,解得:7x =,答:甲,乙两厂同时处理该城市的垃圾,每天需要7小时完成;(2)设甲厂每天处理垃圾y 吨,109(700)6700y y +-=,解得:400y =,答:甲厂每天处理垃圾400吨.【点睛】本题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.25.(1)60°(2)90°(3)AOC ∠、BOD ∠、EOF∠【分析】(1)根据垂直的定义得到90BOE ∠=︒,由对顶角的性质得到30BOC AOD ∠=∠=︒,即可得出结论;(2)根据平角的定义即可得出结论;(3)根据补角的定义即可得出结论.【详解】解:(1)∵OE AB ⊥,∴90BOE ∠=︒,∵30BOC AOD ∠=∠=︒,∴EOC ∠=60°;(2)∵FOB EOC ∠=∠=60°,∴18090DOF AOD BOF ∠=︒-∠-∠=︒;(3)∵180AOD BOD ∠+∠=︒,180AOD AOC ∠+∠=︒,180AOD EOF ∠+∠=︒,∴与AOD ∠互补的角为:AOC ∠、BOD ∠、EOF ∠.【点睛】本题主要考查的是对顶角、邻补角以及角平分线的性质,熟练掌握对顶角、邻补角以及角平分线的性质是解答本题的关键.26.(1)5;(2)①t 的值为4或1或16;②1m =.【分析】(1)根据点A 与点C 重合,求出点A、C 关于点3对称,在求出点B 关于点3的对称点即可(2)①分别用含t 的式子表示出t 秒后点111,,A B C 三点所表示的数,当11A B 的中点为1C ;11A C 的中点为1B ;11B C 的中点为1A 时,根据中点公式列关于t 的一元一次方程,解方程即可;②根据11113m B C A B ⋅+是定值,可见他们之间的距离和与t 无关,即含t 的式子的系数和为0,即可求解.【详解】(1)点A 与点C 的中点对应的数为:3932-+=,点B 到3的距离为2,所以与点B 重合的数是:325+=.(2)①t 秒后,点111,,A B C 的表示的数分别为:32,1,94t t t ----,由中点公式得:111111,,A B AC B C 的中点分别为:2366105,,222t t t ----,由题意得:若11A B 的中点为1C ,则23942t t --=-,解得4t =,若11A C 的中点为1B ,则6612t t -=-,解得1t =,若11B C 的中点为1A ,则105322t t -=--,解得16t =,∴t 的值为4或1或16;②11113(941)3(132)m B C A B m t t t t ⋅+=--++-++3(1)812t m m =-++,∴当1m =时,11113m B C A B ⋅+为定值.。
浙教版七年级(上)期末数学试卷(含答案)浙教版七年级数学上册期末检测试题及答案第Ⅰ卷(选择题)一、选择题(共10小题,满分30分,每小题3分)1.1的倒数是1/1,即1÷1=1,所以选A。
2.对顶角是相互面对的两个角,即1和2是对顶角的。
所以选A。
3.2135亿元用科学记数法表示为2.135×10¹¹,所以选A。
4.-2ab的系数是-2,所以选A。
5.立方根等于它本身的实数只有0和1,所以选A。
6.将3x=2x-2化简得x=-2,不是解x=2,所以选D。
7.6和11/x是同类项,所以m+n=5,所以选B。
8.延长AB至C,使得BC=AB/3,延长BA至D,使得AD=AB,则BD=4AB/3,不等于AB,所以选C。
9.时针和分针在同一直线上的时间是整点和刻度线之间的时间,即30分,所以___做数学作业的时间是35-30=5分钟,所以选B。
10.金鱼不能用七巧板拼成,所以选D。
第Ⅱ卷(非选择题)二、填空题(共6小题,满分24分,每小题4分)11.-(-2)=2,所以填2.12.180-60-30=90,所以填90.13.2a+4b-2=2(a+2b)-2=2(1)-2=0,所以填0.14.设商品的进价为x元,则售价为1.2x元,根据题意可列出方程1.2x-20=x,解得x=100元,所以填100.15.第一个天平两边各放1个小球,第二个天平左边放2个小球,右边放1个小球,第三个天平左边放3个小球,右边应该放2个小球,所以“?”处应该放1个小球,填1.16.某校使用二维码对学生学号进行统一编排。
每个二维码由黑色和白色小正方形组成,其中黑色小正方形表示数字1,白色小正方形表示数字0.每一行数字从左到右依次记为a、b、c、d,利用公式a×23+b×22+c×21+d计算出每一行的数据。
第一行表示年级,第二行表示班级,第三行表示班级学号的十位数,___表示班级学号的个位数。
浙教版七年级上册数学期末考试试卷一、单选题1.2a a -=()A .3aB .aC .a -D .-22.将3350000000用科学记数法表示为()A .733510⨯B .833.510⨯C .93.3510⨯D .100.33510⨯3.下列运算,结果最小的是()A .1234-+-B .()1234⨯-+-C .()1234--⨯-D .()1234⨯-⨯-4.如图,直线AC 、DE 交于点B ,则下列结论中一定成立的是()A .180ABE DBC ∠+∠=︒B .ABE DBC ∠=∠C .ABD ABE ∠=∠D .2ABD DBC∠=∠5.4的平方根是()A .±2B .2C .﹣2D .166.已知等式143ax a =,则下列等式中不一定成立的是()A .1403ax a -=B .143ax b a b -=-C .12ax a=D .143x =7.已知,当2x =时,3ax bx c ++的值是2022;当2x =-时,3ax bx c +-的值是()A .-2022B .-2018C .2018D .20228.古代数学问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁,意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分一个,正好分完.试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得()A .()31001003xx --=B .()31001003xx +-=C .10031003xx --=D .10031003xx -+=9.如图,∠AOB ,以OA 为边作∠AOC ,使∠BOC=12∠AOB ,则下列结论成立的是()A .AOC BOC∠=∠B .AOC AOB∠<∠C .AOC BOC ∠=∠或2AOC BOC∠=∠D .AOC BOC ∠=∠或3AOC BOC∠=∠10.图中的长方形ABCD 由1号、2号、3号、4号四个正方形和5号长方形组成,若1号正方形的边长为a ,3号正方形的边长为b ,则长方形ABCD 的周长为()A .16aB .8bC .46a b +D .84a b+二、填空题11.单项式23x y -的次数是____.12.如果一个角的补角是120︒,那么这个角的度数是________.13.请用符号“<”将下面实数23-3-连接起来_______.14.已知6x =,=2y -,且x y x y -=-,则x y -=_______.15.定义一种新运算:222a ba ab b ⊕=-+,如2212121221⊕=-⨯⨯+=,若()13x x ⊕-=⊕,则x =____.16.如图,点A ,B 是直线l 上的两点,点C ,D 在直线l 上且点C 在点D 的左侧,点D 在点B 的右侧,:2:1AC CB =,:3:2BD AB =.若11CD =,则AB =____.17.若单项式12m a b -与212na b 是同类项,则n m 的值是______.18.如图,已知直线AB 、CD 、EF 相交于点O ,∠1=95°,∠2=32°,则∠BOE=_______.三、解答题19.计算:(1)()()12182011--+--(2)3156823⎛⎫-⨯-+-⎪⎝⎭20.解方程:(1)738x x -=+(2)23211105x x -+=+21.已知()21482M ab a ab =--,124N a a b ⎛⎫=- ⎪⎝⎭,求M N +的值,其中1a =-,13b =.22.如图,直线CD ,AB 相交于点O ,BOD ∠和AON ∠互余,AON COM ∠=∠.(1)求MOB ∠的度数;(2)若15COM BOC ∠=∠,求BOD ∠的度数.23.甲、乙两人分别从A ,B 两地出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.出发后经4小时两人在C 地相遇,相遇后经1小时乙到达A 地.(1)乙的行驶速度是甲的几倍?(2)若已知相遇时乙比甲多行驶了120公里,求甲、乙行驶的速度分别是多少?24.在数学课上,老师给出了一道题目:“先化简再求值:()22113243x x x x ⎛⎫+---+ ⎪⎝⎭□,其中=1x -”,W 中的数据被污染,无法解答,只记得W 中是一个实数,于是老师即兴出题,请同学们回答.(1)化简后的代数式中常数项是多少?(2)若点点同学把“=1x -”看成了“1x =”,化简求值的结果仍不变,求此时W 中数的值;(3)若圆圆同学把“=1x -”看成了“1x =”,化简求值的结果为-3,求当=1x -时,正确的代数式的值.25.阅读材料:材料1:如果一个四位数为abcd (表示千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d 的四位数,其中a 为1~9的自然数,b 、c 、d 为0~9的自然数),我们可以将其表示为:100010010abcd a b c d =+++;材料2:把一个自然数(个位不为0)各位数字从个位到最高位倒序排列,得到一个新的数,我们称该数为原数的兄弟数,如数“123”的兄弟数为“321”.(1)四位数53x y =__________;(用含x ,y 的代数式表示)(2)设有一个两位数xy ,它的兄弟数与原数的差是45,请求出所有可能的数xy ;(3)设有一个四位数abcd 存在兄弟数,且a d b c +=+,记该四位数与它的兄弟数的和为S ,问S 能否被1111整除?试说明理由.26.如图,已知直线l 和直线外三点A ,B ,C ,按下列要求画图:(1)画射线CA ,画直线BC ;(2)画点A 到直线l 的垂线段,垂足为D ;(3)在直线l 上确定点E ,使得AE BE +最小,并说明理由.27.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.参考答案1.C2.C3.D4.B5.A6.D7.A8.D9.D10.B11.312.60°13.23-<3-<14.815.116.6或22【分析】根据两点间的距离,分情况讨论C点的位置即可求解.AC CB=,【详解】解:∵:2:1∴点C不可能在A的左侧,如图1,当C 点在A 、B 之间时,设BC=k ,∵AC :CB=2:1,BD :AB=3:2,则AC=2k ,AB=3k ,BD=92k ,∴CD=k+92k=112k ,∵CD=11,∴112k=11,∴k=2,∴AB=6;如图2,当C 点在点B 的右侧时,设BC=k ,∵AC :CB=2:1,BD :AB=3:2,则AC=2k ,AB=k ,BD=32k ,∴CD=32k-k=12k ,∵CD=11,∴12k=11,∴k=22,∴AB=22;∴综上所述,AB=6或22.17.9【分析】由同类项的含义可得:122m n -=⎧⎨=⎩,从而可得答案.【详解】解: 单项式12m a b -与212na b 是同类项,122m n -=⎧∴⎨=⎩解得:32m n =⎧⎨=⎩,239.n m ∴==故答案为:9.18.53°【分析】先求出∠COE 的度数,再根据∠1+∠COE+∠BOE=180°即可求出∠BOE 的度数.【详解】解:∵∠COE 与∠2是对顶角,∴∠COE=∠2=32°,又∵∠AOB 是平角,∴∠1+∠COE+∠BOE=180°,∵∠1=95°,∴∠BOE=180°-95°-32°=53°;故答案为:53°.19.(1)1-(2)5【分析】(1)利用有理数的加减运算法则计算得出答案;(2)利用乘法分配律结合立方根的性质分别化简,进而利用有理数的加减运算法则计算得出答案.(1)()()12182011--+--,12182011=+--,1=-;(2)15623⎛⎫-⨯-+ ⎪⎝⎭,1566223⎛⎫=-⨯-⨯-- ⎪⎝⎭,3102=-+-,5=.【点睛】本题考查乘法分配律、立方根的性质、有理数的加减运算,正确化简各数是解题关键.20.(1)14x =-(2)152x =-【解析】(1)解:738x x -=+,移项,得,-x-3x=8-7,合并同类项,得,-4x=1,系数化为1,得14x =-;(2)解:23211105x x -+=+,去分母,得,2x-3=10+2(2x+1),去括号,得,2x-3=10+4x+2,移项,得,2x-4x=10+2+3,合并同类项,得,-2x=15,系数化为1,得152x =-.【点睛】本题主要考查了解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.21.83【分析】先化简M+N ,然后把1a =-,13b =代入计算.【详解】解:∵()21482M ab a ab =--,124N a a b ⎛⎫=- ⎪⎝⎭,∴M+N=()21482ab a ab --+124a a b ⎛⎫- ⎪⎝⎭=21282ab a ab --+2122a ab -=-8ab ,当1a =-,13b =时,M+N =()188133-⨯-⨯=.【点睛】本题考查了整式的加减-化简求值,一般先把所给整式去括号合并同类项,再把所给字母的值或代数式的值代入计算.22.(1)90°(2)67.5°【分析】(1)根据余角的定义可得∠BOD+∠COM=90°,再根据平角的定义可求解;(2)设∠OM=x ,则∠BOC=5x ,∠BOM=4x ,结合∠BOM=90°可求解x 值,进而可求解∠BOD 的度数.(1)解:∵∠BOD 和∠AON 互余,∴∠BOD+∠AON=90°,∵∠AON=∠COM ,∴∠BOD+∠COM=90°,∴∠MOB=180°-(∠BOD+∠COM )=90°;(2)解:设∠COM=x ,则∠BOC=5x ,∴∠BOM=4x ,∵∠BOM=90°,∴4x=90°,解得x=22.5°,∴∠BOD=90°-22.5°=67.5°.【点睛】本题考查了余角和补角,角的计算,关键是掌握余角定义,理清图形中角的关系.23.(1)4(2)甲的行驶速度是10公里/小时,乙的行驶速度是40公里/小时【分析】(1)设甲的行驶速度是x 公里/小时,乙的行驶的速度是y 公里/小时,根据甲4小时行驶的路程与乙1小时行驶的路程相同得y=4x,可知乙的行驶速度是甲的4倍;(2)设甲的行驶速度是n 公里/小时,则乙的行驶的速度是4n 公里/小时,根据相遇时乙比甲多行驶了120公里列方程求出n 的值即得到甲的行驶速度,再求出乙的行驶速度即可.(1)设甲的行驶速度是x 公里/小时,乙的行驶的速度是y 公里/小时,因为甲从A 地到C 地用4小时,乙从C 地到A 地用1小时,所以y=4x ,所以乙的行驶速度是甲的4倍.(2)设甲的行驶速度是n 公里/小时,则乙的行驶的速度是4n 公里/小时,根据题意得4(4n-n)=120,解得n=10,所以4n=4x10=40,答:甲的行驶速度是10公里/小时,乙的行驶速度是40公里/小时.24.(1)-13(2)-6(3)-23【分析】(1)设W 中的数据为a ,然后进行计算即可解答;(2)根据化简求值的结果仍不变,可得a+6=0,然后进行计算即可解答;(3)先把x=1代入进行计算求出a 的值,最后再把x=-1,a=4的值代入进行计算即可.【详解】(1)设W 中的数据为a ,()22113243xax x x ⎛⎫+---+ ⎪⎝⎭,=x 2+ax-1-x 2+6x-12,=(a+6)x-13,化简后的代数式中常数项是:-13;(2)∵化简求值的结果不变,∴整式的值与x 的值无关,∴a+6=0,∴a=-6,∴此时W 中数的值为:-6;(3)由题意得:当x=1时,(a+6)x-13=-3,∴a+6-13=-3,∴a=4,∴当x=-1时,(a+6)x-13,=-4-6-13=-23,∴当x=-1时,正确的代数式的值为:-23.【点睛】本题考查了整式的加减一化简求值,准确熟练地进行计算是解题的关键.25.(1)1000x+10y+503(2)16或27或38或49(3)能,理由见解析【分析】(1)直接合并同类项即可得出答案;(2)利用两位数的兄弟数与原数的差为45得出y-x=5,即可写出结果;(3)先写成四位数的兄弟数,再表示出S,最后用a+d=b+c代换,整理,即可得出结论.(1)解:53x y 1000x+5×100+10y+3=1000x+10y+503,故答案为1000x+10y+503;(2)解:由题意得,xy的兄弟数为yx,∵两位数xy的兄弟数与原数的差为45,∴yx-xy=45,∴10y+x-(10x-y)=45,∴y-x=5,∵x,y均为1~9的自然数,∴xy可能的数为16或27或38或49.(3)解:S能被1111整除,理由如下:∵abcd=1000a+100b+10c+d,∴它的兄弟数为dcba=1000d+100c+10b+a,∵a+d=b+c,∴S=abcd+dcba=1000a+100b+10c+d+1000d+100c+10b+a=1001a+110b+110c+1001a=10001a+110(b+c)+1001d=10001a+110(a+d)+1001d=1111a+1111d=1111(a+d),∵a,d为1~9的自然数,∴1111(a+d)能被1111整除,即S能被1111整除.【点睛】此题主要考查了新定义,二元一次方程的应用,以及因式分解得应用,理解新定义是解本题的关键.26.(1)详见解析;(2)详见解析;(3)图详见解析;两点之间,线段最短【分析】(1)根据直线和射线求解即可;(2)过点A作l的垂线即可;(3)根据两点之间线段最短即可;【详解】(1)以C为顶点做射线即可,连接BC,延长两点做直线即可,如图所示;,如图所示;(2)过A作AD l(3)连接AB,交l与点E即可;【点睛】本题主要考查了直线、射线、线段的性质及作图,准确画图是解题的关键.27.(1)甲超市实付款352元,乙超市实付款360元;(2)购物总额是625元时,甲、乙两家超市实付款相同;(3)该顾客选择不划算.【分析】(1)根据两超市的促销方案,即可分别求出:当一次性购物标价总额是400元时,甲、乙两超市实付款;(2)设当标价总额是x元时,甲、乙超市实付款一样.根据两超市的促销方案结合两超市实付款相等,即可得出关于x的一元一次方程,解之即可得出结论;(3)设购物总额是x元,根据题意列方程求出购物总额,然后计算若在甲超市购物应付款,比较即可得出结论.【详解】(1)甲超市实付款:400×0.88=352元,乙超市实付款:400×0.9=360元;(2)设购物总额是x元,由题意知x>500,列方程:0.88x=500×0.9+0.8(x-500)∴x=625∴购物总额是625元时,甲、乙两家超市实付款相同.(3)设购物总额是x元,购物总额刚好500元时,在乙超市应付款为:500×0.9=450(元),482>450,故购物总额超过500元.根据题意得:500×0.9+0.8(x-500)=482∴x=540∴0.88x=475.2<482∴该顾客选择不划算.。
浙教版七年级上册数学期末考试试题一、单选题1.2020-的倒数是()A .2020B .12020C .12020-D .2020-2.49的平方根为()A .7B .-7C .±7D .3.如图,数轴上的点,,,,A B C D E分别对应的数是1,2,3,4,51-的点应在()A .线段AB 上B .线段BC 上C .线段CD 上D .线段DE 上412,0,2-这四个数中,为无理数的是()A B .12C .0D .2-5.把45万吨用科学记数法表示为()A .0.45×106吨B .4.5×105吨C .45×104吨D .4.5×104吨6.若2x =是关于x 的方程320x kx -+=的解,则k 的值为()A .1-B .0C .4D .4-7.如果一个角是36°,那么()A .它的余角是64°B .它的补角是64°C .它的余角是144°D .它的补角是144°8.“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A .两点确定一条直线B .直线比曲线短C .两点之间直线最短D .两点之间线段最短9.如图,若180,1AOB ∠=︒∠是锐角,则1∠的余角是()A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .1(21)3∠+∠10.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为()A .赚了(25a+25b )元B .亏了(20a+30b )元C .赚了(5a-5b )元D .亏了(5a-5b )元二、填空题11.(7)|4|-+-=____.12=________.13.请写出一个含字母,x y 的四次单项式__.14.数轴上一个点到2的距离是3,那么这个点表示的数是_____________.15.在数轴上,点,,A O B 分别表示10,0,6-,点,P Q 分别从点,A B 同时开始沿数轴正方向运动,点P 的速度是每秒3个单位,点Q 的速度是每秒1个单位,运动时间为t 秒.若点,,P Q O 三点在运动过程中,其中两点为端点构成的线段被第三个点三等分,则运动时间为_____秒.16.计算:2221114(6)91322⎛⎫⎛⎫-⨯+-⨯--÷- ⎪ ⎪⎝⎭⎝⎭17.如图,OA 的方向是北偏东15 ,OB 的方向是西北方向,若AOC AOB ∠=∠,则OC 的方向是__________.三、解答题18.点A ,B ,C ,D 的位置如图,按下列要求画出图形.(1)画直线AB ,线段AD ,射线BD ;(2)过点D 画BC 的垂线MN ;19.先化简再求值:()2222363x xy x xy ⎛⎫---+ ⎪⎝⎭,其中2,1x y =-=.20.解方程:(1)5(5)24x x -+=-(2)311126x x x -+-=-21.已知:2277A B a ab -=-,且2467B a ab =-++.(1)求A 等于多少?(2)若()2120a b ++-=,求A 的值.22.某中学在2021年元旦前夕,由校团委组织全校学生开展一次书法比赛,为表彰在书法比赛中的优秀学生,计划购买钢笔30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共70支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1574元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他算错了.(3)张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价不大于10元,且金额数为整数,请通过计算,直接写出签字笔的单价可能为_______元.23.先阅读材料,再解答问题:我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求54872的立方根.华罗庚脱口而出,给出了答案,众人十分惊讶,忙问计算的奥妙.你知道华罗庚怎样迅速而准确地计算出结果吗?请你按下面的步骤也试一试:(1)33101000,1001000000==,则54872的立方根是___位数,54872的个位数字是2,则54872的立方根的个位数字是_____.(2)如果划去54872后面的三位“872”得到数54,而33327,464==,由由此可确定54872的立方根的十位数字是_____,此54872的立方根是______.(3)现在换一个数185193,你能按这种方法得出它的立方根吗?请求出立方根,并说明理由.24.如图所示,O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图①,若28AOC ∠=︒,求DOE ∠的度数;(2)在图①,若AOC α∠=,直接写出DOE ∠的度数_________(用含a 的代数式表示);(3)将图①中的COD ∠绕顶点O 顺时针旋转至图②的位置.①探究AOC ∠和DOE ∠的度数之间的关系,写出你的结论,并说明理由;②在AOC ∠的内部有一条射线OF ,满足42AOC AOF BOE AOF ∠-∠=∠+∠,试确定AOF ∠与DOE ∠的度数之间的关系,说明理由.25.已知数轴上,点O 为原点,点A 对应的数为9,点B 对应的数为b ,点C 在点B 右侧,长度为2个单位的线段BC 在数轴上移动.(1)当线段BC 在O 、A 两点之间移动到某一位置时恰好满足AC OB =,求此时b 的值.(2)当线段BC 在射线AO 上沿AO 方向移动到某一位置时恰好满足12AC OB AB -=,求此时b 的值.参考答案1.C【分析】根据倒数的定义求解即可.【详解】解:∵()1202012020⎛⎫-⨯-= ⎪⎝⎭,∴2020-的倒数是12020-.故选:C .【点睛】本题考查倒数的定义(乘积是1的两个数互为倒数),熟练掌握该知识点是解题的关键.2.C【分析】根据平方根的定义进行求解即可.【详解】解:∵2(7)±=49,则49的平方根为±7.故选:C .3.B1的范围,进而即可求解.【详解】∵34<<,∴213<-<,∵数轴上的点,,,,A B C D E 分别对应的数是1,2,3,4,5,1的点应在线段BC 上,故选B .1的范围,是解题的关键.4.A【分析】根据无理数的定义(无理数是指无限不循环小数)选出即可.【详解】解:12,0,2-是有理数,故选A .【点睛】本题考查了无理数的定义的应用,注意:无理数包括三方面的数:①含π的,②一些有规律的数,③开方开不尽的根式.5.B【详解】45万吨=450000吨,所以45万吨用科学记数法表示为:4.5×105.故选B .【点睛】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.6.C【分析】把2x =代入320x kx -+=,进而即可求解.【详解】解:∵2x =是关于x 的方程320x kx -+=的解,∴32220k ⨯-+=,解得:k=4,故选C .【点睛】本题主要考查一元一次方程的解,掌握方程的解的定义,是解题的关键.7.D【分析】根据余角、补角的定义分别进行计算即可得答案.【详解】如果一个角是36°,那么它的余角是90°-36°=54°,补角为180°-36°=144°,故选D .【点睛】本题考查余角、补角的定义;α的余角为90°-α,补角为180°-α.8.D【详解】线段的性质:两点之间线段最短.两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选D9.C【分析】根据题意得出1(21)2∠+∠=90°,进而利用互余的性质得出答案.【详解】解:∵∠1+∠2=180°,∴1(21)2∠+∠=90°,∴∠1的余角为:90°−∠1=1(21)2∠+∠−∠1=12(∠2−∠1).故选:C.【点睛】此题主要考查了余角和补角,得出1(21)2∠+∠=90°是解题关键.10.C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-2 3020302222a b a b a b a a b aa b++++ -+-=⨯+⨯)()=10(b-a)+15(a-b)=10b-10a+15a-15b=5a-5b,则这次买卖中,张师傅赚5(a-b)元.故选C.11.3-【分析】先算绝对值,再算加法,即可求解.【详解】原式=(7)4-+=3-,故答案是:3-.12.1 3-【分析】根据立方根的定义进行计算即可.13==-,故答案为:13-.【点睛】本题考查立方根,熟练掌握立方根的定义是解题关键.13.xy3【分析】根据单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数,可得答案.【详解】解:含字母x 和y 的四次单项式可以是xy 3,故答案为:xy 3.【点睛】本题考查了单项式,确定单项式的系数和次数的关键.14.1-或5.【分析】根据数轴上一个点到2的距离为5,可知这个数与2的差的绝对值等于5,从而可以解答本题.【详解】解:∵数轴上一个点到2的距离为3,∴设这个数为x ,则||23x -=.解得,1x =-或5x =.故答案为:1-或5.15.2、92、6、383【分析】根据运动的规则找出点P 、Q 表示的数,分P 、O 、Q 三点位置不同考虑,根据三等分点的性质列出关于时间t 的一元一次方程,解方程即可得出结论.【详解】解:设运动的时间为t (t >0),则点P 表示3t−10,点Q 表示t +6,①点O 在线段PQ 上时,如图1所示.此时3t−10<0,即t <103,∵点O 是线段PQ 的三等分点,∴PO =2OQ 或2PO =OQ ,即10−3t =2(t +6)或2(10−3t )=t +6,解得:t =2-5(舍去)或t =2;②点P 在线段OQ 上时,如图2所示.此时0<3t−10<t +6,即103<t <8.∵点P是线段OQ的三等分点,∴2OP=PQ或OP=2PQ,即2(3t−10)=t+6−(3t−10)或3t−10=2[t+6−(3t−10)],解得:t=92或t=6;③当点Q在线段OP上时,如图3所示.此时t+6<3t−10,即t>8.∵点Q是线段OP的三等分点,∴OQ=2QP或2OQ=QP,即t+6=2[3t−10−(t+6)]或2(t+6)=3t−10−(t+6),解得:t=383或无解.综上可知:点P,Q,O三点在运动过程中,其中两点为端点构成的线段被第三个点三等分,则运动时间为2、92、6、383.故答案为:2、92、6、383.【点睛】本题考查了一元一次方程的应用以及数轴,解题的关键是按P、O、Q三点位置不同分类讨论.本题属于中档题,难度不大,解决该题型题目时,根据运动的过程分情况考虑,再根据三等分点的性质列出方程是关键.16.2-【分析】先算乘方,再算乘除法,最后算加减法,即可求解.【详解】解:原式=219 4369324⎛⎫-+⨯--÷⎪⎝⎭=424184-+--=2-.【点睛】本题主要考查有理数的混合运算,熟练掌握有理数的混合运算法则,是解题的关键.17.北偏东75°.【分析】已知OA的方向是北偏东15°,OB的方向是西北方向,可得∠AOB=60°,根据∠AOC=∠AOB,可得∠AOC=60°,然后求得OC与正北方向的夹角,再根据方位角的表达即可得出答案.【详解】∵OA的方向是北偏东15°,OB的方向是西北方向,∴∠AOB=15°+45°=60°.∵∠AOC=∠AOB,∴∠AOC=60°,∴OC的方向是北偏东15°+60°=75°.故答案为北偏东75°.【点睛】本题考查方位角,掌握方位角的相关知识是解题的关键.18.(1)见解析(2)见解析【分析】(1)根据题意画出直线AB,线段AD,射线BD;(2)根据题意过点D作BC的垂线即可求解.(1)如图所示,画直线AB,线段AD,射线BD;(2)如图所示,过点D画BC的垂线MN;【点睛】本题考查了画射线,线段,直线,画垂线,掌握以上知识是解题的关键.xy ,419.6【分析】通过去括号,合并同类项化简,再代入求值,即可求解.【详解】原式=2222236x xy x xy --++=6xy +,当2,1x y =-=时,原式=216-⨯+=4.【点睛】本题主要考查整式的化简求值,掌握去括号以及合并同类项法则是解题的关键.20.(1)x=3;(2)x=2【分析】(1)通过去括号,移项,合并同类项,未知数系数化为1,即可求解;(2)通过去分母,去括号,移项,合并同类项,未知数系数化为1,即可求解.【详解】解:(1)5(5)24x x -+=-,去括号得:52524x x -+=-,移项,合并同类项得:721x =,解得:x=3;(2)311126x x x -+-=-,去分母得:()633116x x x --=+-,去括号,移项,合并同类项得:48x -=-,解得:x=2.【点睛】本题主要考查解一元一次方程,熟练掌握解一元一次方程的基本步骤,是解题的关键.21.(1)2514A a ab =-++;(2)3A =.【分析】(1)由题意可得:2277A B a ab =+-,将B 代入即可确定;(2)利用绝对值和平方的非负性求出a 与b 的值,代入计算即可求出值.【详解】解:(1)由题意得:2277A B a ab=+-()22246777a ab a ab=-+++-228121477a ab a ab =-+++-2514a ab =-++;(2)∵21(2)0a b ++-=,∴10a +=,20b -=,∴1a =-,2b =,则()()2151214110143A =--+⨯-⨯+=--+=.【点睛】本题考查了整式的加减以及绝对值和平方的非负性,熟练掌握运算法则是解本题的关键.22.(1)钢笔的单价为19元,毛笔的单价为25元;(2)见详解;(3)4或10【分析】(1)设钢笔得单价为x 元,则毛笔单价为(x +6)元,根据题意列出方程,求出方程的解即可得到结果;(2)设单价为19元得钢笔y 支,则单价为25元的毛笔为(70−y )支,根据题意列出方程,求出方程的解即可得到结果;(3)设单价为19元的钢笔z 支,签字笔的单价为a 元,根据题意列出关系式,根据z ,a 为整数,确定出a 与z 的值,即可得到结果.【详解】解:(1)设钢笔的单价为x 元,则毛笔的单价为(x +6)元,由题意得:30x +20(x +6)=1070,解得:x =19,则x +6=25,答:钢笔的单价为19元,毛笔的单价为25元;(2)设单价为19元的钢笔y 支,则单价为25元的毛笔为(70−y )支,根据题意得:19y +25(70−y )=1574,解得:y =883,不合题意,即张老师肯定搞错了;(3)设单价为19元的钢笔z 支,签字笔的单价为a 元,根据题意得:19z +25(70−z )=1574−a ,即6z =176+a ,由a ,z 都是整数,且176+a 应被6整除,经验算当a =4时,6z =180,即z =30,符合题意;当a =10时,6z =186,即z =31,符合题意,则签字笔的单价为4元或10元.故答案为:4或10.【点睛】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.23.(1)两,8;(2)3;38;(3)57,理由见详解【分析】(1)依据夹逼法和立方根的定义进行解答,分别求得1至9的立方,然后依据原数的末位数字判断出它的个位数;(2)利用夹逼法判断出十位数字即可;(3)利用(1)(2)中的方法确定出个位数字和十位数字即可.【详解】解:(1)∵1000<54872<1000000,∴10100,∴54872的立方根是两位数.∵13=1,23=8,33=27,43=64,53=125,63=216,73=343,83=512,93=729,且54872的个位数字是2,∴54872的立方根的个位数字是8.故答案为:两,8;(2)∵27<54<64,∴54872的立方根的十位数字是3.因此54872的立方根是38.故答案为:3;38;(3)185193的末位数字是3,∴185193的立方根的个位数字是7.∵53=125,63=216,且125<185<216,∴185193的立方根的十位数字是5.∴185193的立方根是57.【点睛】本题主要考查的是立方根的概念,依据尾数特征进行解答是解题的关键.24.(1)14°;(2)2α;(3)①∠AOC =2∠DOE ;(2)2∠DOE−52∠AOF =90°【分析】(1)由∠AOC 的度数可以求得∠BOC 的度数,由OE 平分∠BOC ,可以求得∠COE 的度数,又由∠DOC =90°可以求得∠DOE 的度数;(2)由第(1)问的求法,可以直接写出∠DOE 的度数;(3)①首先写出∠AOC 和∠DOE 的度数之间的关系,由∠COD 是直角,OE 平分∠BOC ,∠BOC +∠AOC =180°,可以建立各个角之间的关系,从而可以得到∠AOC 和∠DOE 的度数之间的关系;②首先得到∠AOF 与∠DOE 的度数之间的关系,由42AOC AOF BOE AOF ∠-∠=∠+∠,∠COD 是直角,OE 平分∠BOC ,∠AOC 和∠DOE的关系,可以建立各个角之间的关系,从而可以得到∠AOF 与∠DOE 的度数之间的关系.【详解】解:(1)∵∠COD 是直角,OE 平分∠BOC ,∠AOC =28°,∴∠BOC =180°−∠AOC =152°,∠COE =12∠BOC ,∠COD =90°.∴∠COE =76°,∠DOE =∠COD−∠COE =90°−76°=14°.即∠DOE =14°;(2)∵∠COD 是直角,OE 平分∠BOC ,∠AOC =a ,∴∠DOE =90°−1802α︒-=2α.故答案是:2α;(3)①∠AOC =2∠DOE .理由:∵OE 平分∠BOC ,∴∠BOC =2∠COE .∵∠COD 是直角,∠AOC +∠BOC =180°,∴∠DOE +∠COE =90°,∠AOC +2∠COE =180°.∴∠AOC +2(90°−∠DOE )=180°.化简,得∠AOC =2∠DOE ;②2∠DOE−52∠AOF =90°.理由:∵42AOC AOF BOE AOF ∠-∠=∠+∠,∴2∠AOF +∠BOE =12(∠AOC−∠AOF ),∴2∠AOF +∠BOE =12∠AOC−12∠AOF .又∵∠AOC =2∠DOE ,∴52∠AOF =∠DOE−∠BOE ,∴52∠AOF =∠DOB .∵∠DOB +∠BOC =90°,∠AOC +∠BOC =180°,∠AOC =2∠DOE .∴52∠AOF +180°−∠AOC =90°.∴52∠AOF +180°−2∠DOE =90°.化简,得2∠DOE−52∠AOF =90°.【点睛】本题考查角的计算、角平分线的性质,解题的关键是根据题目中的信息,建立各个角之间的关系,然后找出所求问题需要的条件.25.(1)b=3.5;(2)53b =或—5【分析】(1)将线段AC 用b 表示,根据AC=OB 列式求出b 的值;(2)分情况讨论,B 在O 的右侧或者左侧,根据题意列方程求解.【详解】解:(1)线段AC 可以表示为()92b -+,根据AC=OB ,列式()92b b -+=,解得 3.5b =;(2)当B 在O 点右侧(或O 点)时,19(2)(9)2b b b -+-=-,解得53b =,当B 在O 点左侧时,()192()(9)2b b b -+--=-,解得5b =-,∴b 的值为53b =或5-.。
七年级数学期末复习•填空题(共4小题)1•若|a|+|b匸2,则满足条件的整数a、b的值有_________ 组.2•当x= _______ 时,|x|- 8取得最小值,这个最小值是 _______ •3•若x- 1|+y+2|+|z— 3匸0,则(X-2) (y-3) (z—4)= ___________4.已知|2a+4|+|3- b|= 0,则a+b= ________ •二.解答题(共31小题)5 .如图,点A、B都在数轴上,O为原点.(1)点B表示的数是 _______ ;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是 ______ ;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.6. 有理数x,y在数轴上对应点如图所示:■ --- « -------- « ----------------- •-------- >y0 x(1)在数轴上表示-x,|y|;(2)试把x,y,0,- x,|y|这五个数从小到大用“v”号连接,(3)化简:x+y| - |y - x|+|y|.7. 已知有理数a,b,c在数轴上的位置如图所示,(1) ________________________ 用<,>,=填空:a+c_______ 0,c—b ____ 0, b+a ________________________ 0,abc_______ 0;(2) 化简:|a+c|+|c - b|- |b+a|.8. _______________________________________________ 式子|m - 3|+6的值随着m 的变化而变化,当m= ___________________________ 时,|m - 3|+6有最小 值,最小值是 _______ .9. 已知实数 a , b 满足|a| = b , |ab|+ab = 0,化简 |a|+|— 2b| - |3b - 2a|.10. 若x+丄y -3与|2x - 4y - 144|互为相反数,计算 "* '的值. 2 x-2y12.已知|a+3|+|b - 5| = 0,x ,y 互为相反数,c 与d 互为倒数.求:3 (x+y )- a -2b+ (3cd )的值. (cd 表示 c 乘 d )13. 已知a 、b 互为相反数,m 、n 互为倒数(m 、n 都不等于土 1),x 的绝对值 为2,求-加十呈色-/的值.fF-n14. 已知三个有理数a,b,c ,其积是负数,其和是正数,当■-二亠十丄―一丄―时, a b c求代数式x 2017 - 2x+2的值.15. 已知a , b 是有理数,且a , b 异号,试比较|a+b|, |a - b|, |a|+|b|的大小关系.16. 若|a+2|与(b - 2017) 2互为相反数,且c 的绝对值为1,求a -abc+c b 的值. 厂A表示运算:a - b+c ,若“方框” 的值,列出算式并计算结果. ,表示运11.若“三角” 算:x - y+z+w ,求 14 217. 我们规定运算符号?的意义是:当a>b时,a? b = a- b;当a< b时,a? b =a+b,其他运算符号意义不变,按上述规定,请计算:-14+5X [(-丄)?(-二)]-(34? 43)宁(-68).18. 已知2m- 3与4m-5是一个正数的平方根,求这个正数.19. 如果m+5的平方根是土3,n- 2的平方根是土5,求m+n的值.20. 已知a为’的整数部分,b为.丨;的小数部分求:(1)a,b的值;(2)(a+b)2的算术平方根.21. 回答下列问题:(1)数轴上表示2和5的两点之间的距离是 _____ ,数轴上表示-2和-5的两点之间的距离是__________ ,数轴上表示1和-3的两点之间的距离是 ________ ;(2)数轴上表示x和-1的两点A和B的距离是________ ,AB| = 2,x= ________ (3)当代数式X+1I+X - 2|取最小值时,相应x的取值范围是 ______ .22. 已知多项式(2ax1 2+3x- 1)-( 3x-2x2- 3)的值与x无关,试求2a3- [a2-2 (a+1) +a] - 2 的值.23. 有这样一道题:计算(2x3- 3^y- 2xy2)-( x3- 2xf+y3) + (- x3+3x2y -y3)的值,其中x二丄,y=- 1.甲同学把x诗”错抄成了“ x—寺”.但他计算的结果也是正确的,请你通过计算说明原因.24. 已知A= 3a2- 4ab, B = a2+2ab.(I)求A-2B; (U)若|3a+1|+ (2- 3b) 2= 0,求A- 2B 的值.25. 先化简,后求值,(1) 化简:2 (a2b+ab2)-( 2ab2- 1+a2b)- 2,其中a=- 2,b= 1;(2) 若(2b- 1) 2+|a+2| = 0 时,求2ab- 2b 的值.26.元旦期间,某商场打出促销广告(如下表)优惠一次性购物一次性购物一次性购物条件不超过200元超过200元但不超过500 超过500元元优惠无优惠全部按9折优惠其中500元仍按9折优惠,办法超过500元部分按8折优惠小明妈妈第一次购物用了134元,第二次购物用了490 元.1小明妈妈第一次所购物品的原价是 _______ 元;2小明妈妈第二次所购物品的原价是多少元?(写出解答过程)(3) 若小明妈妈将两次购买的物品一次性买清,可比两次购买节省多少元?27 •期末考试快到了,小天同学需要复印一些复习资料.某誊印社的报价是:复印不超过20时,每页收费0.12元;复印页数超过20时, 超过部分每页收费降为0.09元.某图书馆复印同样大小文件,不论复印多少页,每页收费0.1元.请问小天应该选择到哪里复印复习资料?28•襄阳市某校七年级有5名教师带学生去公园秋游,公园的门票为每人30元, 现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都按7.5折收费.(1)若有x名学生,则用式子表示两种优惠方案各需要多少元?(2)当学生人数是多少时,两种方案费用一样多?(3)当学生人数分别是40人,100人,你打算采用哪种方案优惠?为什么?29•已知当x=- 1时,代数式2mx3-3mx+6的值为7.(1)若关于y的方程2my+ n= 11-ny- m的解为y= 2,求n的值;(2)若规定⑻表示不超过a的最大整数,例如[4.3] = 4,请在此规定下求[m-亍n] 的值.(n为(1)中求出的数值)30.如图,直线AB、CD相交于点O,/ DOE = /BOD,OF平分/ AOE.(1)判断OF与OD的位置关系,并说明理由;(2)若/ AOC:/ AOD= 1: 5,求/ EOF 的度数.CD 相交于点O , 0E 把/ BOD 分成两部分.AOC 的对顶角: ,/ EOB 的邻补角:/ EOD = 2: 3,求/ AOE 的度数.如果AB = 6cm ,求线段MN 的长度..V \A J C D33.已知:如图1,点M 是线段AB 上一定点,AB = 12cm, C 、D 两点分别从 M 、 B 出发以1cm/s 、2cm/s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上, D 在线段BM 上)(1) ________________________________________________ 若 AM = 4cm ,当点 C 、D 运动了 2s ,此时 AC = ___________________________ , DM =________ ;(2) 当点C 、D 运动了 2s ,求AC+MD 的值.(3) 若点C 、D 运动时,总有 MD = 2AC ,则AM = ________ (填空)(4) 在(3)的条件下,N 是直线AB 上一点,且 AN - BN = MN ,求孚的值.nD<----- < ------------------------------------------- • ------------ • -------- *■ -------------------------- 4 -------------- ・ A CM D B31.如图,直线AB 、 (1)直接写出图中/ M 是AB 的中点,BC = 2CD , N 是BD 的中点,35.如图,将两块直角三角尺的直角顶点C叠放在一起.①若/DCE = 35°,求/ ACE、/ DCB、/ ACB 的度数;②若/ ACB= 140°求/ DCE的度数;③猜想:/ ACB与/ DCE有怎样的数量关系,并说明理1,求/ 4的度数./ 2,•填空题(共4小题)1•若|a|+|b匸2,则满足条件的整数a、b的值有8组.【解答】解:T |a|+|b匸2,•••a匸0, |b匸2或|a|= 1|b匸1,或a匸2, |b|= 0,a= 0, b= 2;a= 0, b=-2;a= 1, b= 1; a= 1, b=- 1; a=- 1, b= 1; a=-1, b=- 1; a=-2, b = 0; a= 2, b = 0,2•当x= 0 时,|x|- 8取得最小值,这个最小值是-8 •解••• Xl>0, •当x= 0时,XI取最小值是0, •当x= 0时,|x|- 8取最小值是-8,3•若x- 1|+y+2|+|z— 3匸0,贝U( x-2) (y- 3) (z—4)= - 5 •解: V x- 1|+y+2|+|z-3|= 0,二x- 1 = 0, y+2 = 0, z- 3= 0,解得,x= 1, y=- 2, z= 3,则(x- 2) (y-3) (z- 4) = ( 1 - 2) (- 2-3) (3-4)=- 5,4.已知|2a+4|+|3- b|= 0,则a+b= 1 •【解答】解:由题意得:2a+4= 0, 3-b = 0,解得:a=- 2, b = 3,则a+b= 1,二.解答题(共31小题)5 .如图,点A、B都在数轴上,O为原点.(1)点B表示的数是-4 ;(2)点B以每秒2个单位长度的速度沿数轴向右运动2秒后点B表示数0 ;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.【解答】解:(1)点B表示的数是-4; (2) 2秒后点B表示的数是-4+2X 2 = 0;(3)①当点O是线段AB的中点时,OB = OA, 4-3t= 2+t,解得t= 0.5;②当点B是线段OA的中点时,OA= 2OB, 2+t= 2 (3t - 4),解得t= 2;③当点A是线段OB的中点时,OB = 2 OA, 3t- 4 = 2 (2+t),解得t= 8.综上所述,符合条件的t的值是0.5, 2或8.6. 有理数x, y在数轴上对应点如图所示:------ • --------- • ----------------- • --------- > y 0 x(1) 在数轴上表示-x , |y|;(2) 试把x , y , 0,- x , |y|这五个数从小到大用“v”号连接,(3) 化简:x+y| - |y - x|+|y|.—" ----- 8 ----- H -- "—$,解: (1)如图,° x(2) 根据图象,-x v y v 0v |y|v x ;(3) 根据图象,x >0, y v 0, 且|x|>|y|,A x+y >0, y - x v 0,二 |x+y| - |y - x|+|y| =x+y+y - x - y = y .7. 已知有理数a , b , c 在数轴上的位置如图所示, ■■上丄 丄—a J 0~2 (1) 用v,>,=填空:a+c v 0, c -b > 0, b+a v 0, abc > 0;(2) 化简:|a+c|+|c - b|-|b+a|.【解答】解:(1)根据数轴可知:a v b v 0v c ,且|c|v |b|v |a|,••• a+c v 0, c- b >0, b+a v 0, abc >0,(2) 原式=-(a+c ) + (c - b ) + (b+a )=- a - c+c - b+b+a = 0.8. 式子|m - 3|+6的值随着m 的变化而变化,当m = 3 时,|m - 3|+6有最小值, 最小值是 6 .解:式子|m - 3|+6的值随着m 的变化而变化,当m = 3时, |m - 3|+6有最小值,最小值是:6.9. 已知实数 a , b 满足|a| = b , |ab|+ab = 0,化简 |a|+|-2b| - |3b - 2a|. 【解答】 解:T |a| = b , |a|>0,二 b >0,又v |ab|+ab = 0,二 |ab|=- ab ,•••|ab|A 0, •- ab >0,二 ab <0, 即卩 a <0,• a 与 b 互为相反数,即 b =- a . •- 2b <0, 3b - 2a >0,• |a|+|-2b|- |3b - 2a|=- a+2b -(3b - 2a )= a - b =- 2b 或 2a .10. 若x+» 3与|2x -4y - 144|互为相反数,计算• |x+二y - 3|+|2x - 4y - 144|= 0,二 x+【解答】解:v -3|与|2x - 4y - 144互为相反数,的值.y - 3= 0, 2x - 4y - 144= 0,解得x = ,y =— L3S 5=二 12A表示运算:a - b+c ,若“方框”]」x-2y,表示运11.若“三角”/\1JI求4 L J算: x - y+z+w , 的值,列出算式并计算结果.(-丄)x ( - 8)=丄.12312.已知|a+3|+|b -5| = 0, x , y 互为相反数,c 与d 互为倒数.求:3 (x+y )- a -2b+ (3cd )的值. (cd 表示 c 乘 d ) 解:原式八丄- 』)X( - 2 - 1.5+1.5- 6)=解:••• |a+3|+|b -5|= 0, x , y 互为相反数,c 与d 互为倒数, 二 a =- 3, b = 5, x+y = 0, cd = 1,则原式=0+3- 10+3=- 4. 13.已知a 、b 互为相反数,m 、n 互为倒数(m 、n 都不等于土 1) , x 的绝对值 a+b 2----- -x fii-n 解:根据题意得:a+b = 0, mn = 1, x = 2或-2,则原式=-2+0- 4=- 6. 的值. 14.已知三个有理数a , b , c ,其积是负数,其和是正数,当厂• 求代数式x 2017 - 2x+2的值. 解:•••三个有理数a 、b 、c ,其积是负数,二a , b , c 均工0,且a , b , c 全为负 数或一负两正,•••其和是正数,••• a , b , c 一负两正, a =1+1 - 1 = 1 时,代数式 x 2017 - 2x+2 = 12017- 2X1+2= 1. … '萨—a 15.已知a ,b 是有理数,且a , b 异号,试比较|a+b|, |a - b|, |a|+|b|的大小关系. 解:•••有理数a , b 异号,如图,假设a >0>b ,0 A ------ 〜bCa•••当 BO v AO 时,|a+b|v AO ;当 BO >AO 时,|a+b|v BO ,而 |a - b| = AB > AO 或 BO ,: |a+b|v|a - b|, 又v |a|+|b|=AO+BO = AB ,: |a - b|= |a|+|b|,: |a+b|v |a - b|=|a|+|b|.当a v O v b 时,同理可得|a+b|v |a- b|= |a|+|b|.16. 若|a+2|与(b- 2017) 2互为相反数,且c的绝对值为1,求a-abc+c b的值. 解:T |a+2|与(b- 2017) 2互为相反数,且c的绝对值为1,二a+2 = 0, b - 2017= 0, c=± 1,—a=-2, b= 2017,当c= 1 时,a-abc+c b=(- 2)- (- 2)x 2017X 1+12017=( - 2) +4034+1 = 4033,当c=- 1 时,a- abc+c b=(- 2)-(- 2)x2017X( - 1) + (- 1) 2017=(-2)- 4034+ (- 1)=- 4037.17. 我们规定运算符号?的意义是:当a>b时,a? b = a- b;当a< b时,a? b=a+b,其他运算符号意义不变,按上述规定,请计算:-14+5X [(-丄)?(-忡]-(34? 43)宁(-68).解:根据题中的新定义得:原式=-1+5X(-二-二)-(81 - 64)-( - 68)18. 已知2m- 3与4m-5是一个正数的平方根,求这个正数.解:••• 2m- 3 与4m-5 是一个正数的平方根,二2m- 3=-( 4m- 5), m=^•••这个正数为(2m- 3) 2=(2xg- 3) 2=+,或2m- 3 = 4m- 5,解得m= 1, 故这个正数是丄或1.919. 如果m+5的平方根是土3, n- 2的平方根是土5,求m+n的值.解:根据题意知m+5= 9、n- 2 = 25,贝U m=4、n = 27,所以m+n = 31.20. 已知a为.■的整数部分,b为.丨「;的小数部分求:(1) a, b的值;(2) (a+b) 2的算术平方根.【解答】解:(1)v 9v 11v 16,二3v 一v4,二 a = 3;v 9v 13v 16,• 3<卜门:y 4,二b= 1「; - 3;(2)v 当a= 3, b=T^-3 时,(a+b) 2=( 3+ 】:;-3) 2= 13,••( a+b)的算术平方根是E〕「;.21. 回答下列问题:(1)数轴上表示2和5的两点之间的距离是 3 ,数轴上表示-2和-5的两点之间的距离是 3 , 数轴上表示1和-3的两点之间的距离是4 ;(2) 数轴上表示x 和-1的两点A 和B 之间的距离是 X - ( - I I ,如果AB| =2,那么x =1或-3;(3)当代数式X+1I+X - 2|取最小值时,相应x 的取值范围是-1W x w 2 .【解答】 解:(1) |2 - 5匸 |-3匸 3; |-2-(- 5)匸 |-2+5匸 3; |1-(- 3) | =|4|= 4; (2) |x -( - 1) |= |x+1|,由 |x+1|= 2,得 x+1 = 2 或 x+1 = — 2,所 以 x = 1 或 x =- 3;(3) 若|x+1|+x — 2|取最小值,那么表示x 的点在-1和2之间的线段上, 11 16 1? + =9 99所以-1 w x w 2.22. 已知多项式(2ax 2+3x — 1) — ( 3x — 2x 2— 3)的值与x 无关,试求2a 3— [a 2—2 (a+1) +a] — 2 的值.解:(2a«+3x - 1) — ( 3x — 2x 2— 3)= 2ax 2+3x — 1 — 3x+2x 2+3= 由结果与x 无关,得到2a+2= 0,即•••原式=2a 3— a 2+2a+2 — a — 2 = 2a 3— 23. 有这样一道题:计算(2x 3— 3x 2y — 2xy 2) — ( x 3— 2xy 2+y 3) y 3)的值,其中x =a =— 1,2a +a = —2 — 1 — 1 = — 4.1I 他计算的结果也是正确的,请你通过计算说明原因. 解:原式=2x - 3«y - 2x/ — x 3+2x/ — y 3 - x 3+3x 2y — y 3= — 2y 3, 24.已知 A = 3a 2 — 4ab , B = a 2+2ab .(I)求 A — 2B ; (U)若 |3a+1|+ (2— 3b )解:(I) A — 2B = 3a 2— 4ab — 2 (a 2+2ab ) (H)v |3a+1|+ (2— 3b ) (2a+2) x 2+2,+ ( — x 3+3x 2 y— ax = ”但 2= 0,求A — 2B 的值.=3a 2 — 4ab — 2 a 2 — 4ab = a 2— 8ab .b=2 3 2 = 0,又|3a+1|》0, (2 — 3b ) 2>0,:a =二原式=”错抄成了 ,y =— 1 •甲同学把“ x25. 先化简,后求值,(1) 化简:2 (a 2b+ab 2) — ( 2ab 2— 1+a 2b )— 2,其中 a = — 2, b = 1; (2) 若(2b — 1) 2+|a+2| = 0 时,求 2ab — 2b 的值. 解:(1) 2a 2b+2ab 2 — 2ab 2+1 — a 2b — 2= a 2b — 1, 当 a = — 2, b = 1 时,原式=4— 1 = 3;(2)v( 2b — 1) 2+|a+2| = 0,二 2b — 1 = 0,a+2 = 0,即卩 a = — 2,b =丄,贝U 2ab — 2b = — 2— 1= — 3.26. 元旦期间,某商场打出促销广告(如下表)优惠 一次性购物 一次性购物 一次性购物条件不超过200元 超过200元但不超过500元超过500元超过500元部分按8折优惠小明妈妈第一次购物用了 134元,第二次购物用了 490元. (1) 小明妈妈第一次所购物品的原价是 134元;(2) 小明妈妈第二次所购物品的原价是多少元?(写出解答过程)(3) 若小明妈妈将两次购买的物品一次性买清,可比两次购买节省多少元? 解:(1)v 第一次付了 134 元 V 200X 90%= 180 元,•••第一次购物不享受优惠,即所购物品的原价为 134元;故答案为134. (2) v 第二次付了 490 元〉500X 90%= 450 元,•第二次购物享受了 500元按9折优惠,超过部分8折优惠. 设小明妈妈第二次所购物品的原价为 x 元,根据题意得:90%X 500+ (x - 500)X 80%= 490,得 x = 550. 答:小明妈妈第二次所购物品的原价分别为 550元.(3) 500X 90%+ (550+134 — 500) X 80% = 597.2 (元),又 134+490= 624 (元), 624 — 597.2= 26.8 (元)她将这两次购物合为一次购买节省 26.8元.优惠 无优惠 全部按9折优惠其中500元仍按9折优惠,办法27. 期末考试快到了,小天同学需要复印一些复习资料.某誊印社的报价是:复印不超过20时,每页收费0.12元;复印页数超过20时, 超过部分每页收费降为0.09元.某图书馆复印同样大小文件,不论复印多少页,每页收费0.1元.请问小天应该选择到哪里复印复习资料?【解答】解:设当复印x(x>20)页时,两处收费一样,根据题意,得:20X 0.12+0.09X( x- 20)= 0.1x,解得:x = 60.①当复印少于20页时,图书馆合算;②当20v x v 60时,取x= 30,则誊印社收费20 X 0.12+0.09X 10= 3.3元,图书馆收费0.1 X 30= 3元,所以图书馆合算;③当x> 60时,取x= 100,则誊印社收费20X 0.12+0.09X 80= 9.6元,图书馆收费0.1X100= 10元,所以誊印社合算.综上所述,当复印页数少于60页时,去图书馆合算;当复印页数等于60页时,两处一样合算;当复印页数多于60页时,去誊印社合算.28. 襄阳市某校七年级有5名教师带学生去公园秋游,公园的门票为每人30元,现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都按7.5折收费.(1)若有x名学生,则用式子表示两种优惠方案各需要多少元?(2)当学生人数是多少时,两种方案费用一样多?(3)当学生人数分别是40人,100人,你打算采用哪种方案优惠?为什么?【解答】解:(1)甲:0.8?30x= 24x (元);乙:(x+5)?0.75X 30= 22.5x+112.5 (2)依题意得:24x= 22.5X+112.5,解得x= 75.答:当学生人数是75人时,两种方案费用一样多;(3)m= 40时,甲方案付费为24X40= 960元,乙方案付费22.5X45= 1012.5 元,所以采用甲方案优惠;m= 100时,甲方案付费为24X 100= 2400元,乙方案付费22.5X 105= 2362.5元,所以采用乙方案优惠.29. 已知当x=- 1时,代数式2mx3- 3mx+6的值为7.(1)若关于y的方程2my+ n= 11-ny- m的解为y= 2,求n的值;(2)若规定⑻表示不超过a的最大整数,例如[4.3] = 4,请在此规定下求[m-寸n]的值.(n 为(1)中求出的数值) 解:(1)把 x = — 1 代入得:-2m+3m+6= 7 ,解得:m = 1 , 把 m = 1 , y =2 代入得:4+n = 11 — n X 2 — 1,解得:n = 2; 工 X 2= 1 — 3.5= — 2.5 ,则[m —丄n] = [ - 2.5] = — 3.430. 如图,直线 AB 、CD 相交于点O ,/ DOE = /BOD , OF 平分/ AOE . (1)判断OF 与OD 的位置关系,并说明理由;【解答】解:(1) OF 与0D 的位置关系:互相垂直, 理由::OF 平分/ AOE ,./ AOF = / FOE , v/ DOE =/ BOD , 2•••OF 与OD 的位置关系:互相垂直;=30°,【解答】解:(1)/ AOC 的对顶角是/ BOD , / EOB 的邻补角是/ AOE , 故答案为:/ BOD ,/ AOE ;(2)v/AOC = 70°,./ BOD =/ AOC = 70°,v/ BOE : / EOD = 2: 3,(2)把 m = 1, n = 2 代入得:m- n = 1 — X 180°= 90°,./AOF+ / BOD =/ FOE+/DOE =(2) I/ AOC :/ AOD = 1: 5,.•./ AOC ^-X 180 ° = 30°, •/ BOD =/ EOD• / AOE = 120° ,./ EOF — /AOE = 60AB 、 31.如图,直线 (1)直接写出图中/(2)若/ AOC = 70° CD相交于点O , OE 把/ BOD 分成两部分. AOC 的对顶角: / BOD, / EOB 的邻补角:/ AOE且/ BOE :/ EOD = 2: 3,求/ AOE 的度数.5,求/ EOF 的度数.•••/ BOE =-亠 X 70°= 28°, •••/ AOE = 180°— 28°= 152°. A / AOE 的度 数为15232. 如图所示,AB : BC = 3: 4, M 是AB 的中点,BC = 2CD , N 是BD 的中点, 如果AB = 6cm ,求线段MN 的长度.•\AB【解答】 解:••• AB : BC = 3: 4、AB = 6cm,A BC = 8cm, ••• B C = 2C D 、M 是 AB 的中点…CD — • BD = BC+CD = 12cm,v N 是 BD 的中点,贝U MN = BM+BN = 9cm .33. 已知:如图1,点M 是线段AB 上一定点,AB = 12cm, C 、D 两点分别从 M 、 B 出发以1cm/s 、2cm/s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上, D 在线段BM 上)(1) 若 AM = 4cm ,当点 C 、D 运动了 2s ,此时 AC = 2 , DM = 4 ;(2) 当点C 、D 运动了 2s ,求AC+MD 的值. (3) 若点C 、D 运动时,总有 MD = 2AC ,则AM =4 (填空)【解答】解:(1)根据题意知,CM = 2cm , BD = 4cm,v AB = 12cm , AM = 4cm , • BM = 8cm ,• AC = AM — CM = 2cm, DM = BM — BD = 4cm, 故答案为:2, 4;(2) 当点 C 、D 运动了 2 s 时,CM = 2 cm, BD = 4 cm ■/ AB = 12 cm , CM = 2 cm , BD = 4 cm• AC+MD = AM — CM+BM — BD = AB — CM — BD = 12— 2 — 4 = 6 cm ; (3) 根据C 、D 的运动速度知:BD = 2MC ,v MD = 2AC ,• BD+MD = 2 (MC+AC ),即 MB = 2AM , v AM+BM = AB ,A AM+2AM = AB ,• AM = =AB = 4,故答案为:4; (4) ①当点N 在线段AB 上时,如图1,BC = 4cm, BM6cm ,(4) 在(3)的条件下,N 是直线AB 上一点,且 AN — BN = MN ,求空 的值.1 L 1 」I 1A c xf N D R£1••• AN - BN= MN,又:AN- AM = MN /• BN = AM = 4 ••• MN = AB- AM - BN= 12- 4- 4= 4•足=—=二;AB 12 3②当点N在线段AB的延长线上时,如图2,i 」EA CM D圍2••• AN - BN= MN,又T AN - BN = AB:MN = AB= 12•壘=更=1;AB 12综上所述胆=二或1.AB 334. 如图,AB、CD 交于点O,/ 1 = Z 2,Z 3:/ 1 = 8: 1,求/ 4 的度数.【解答】解::OE 平分/ BOD,二/ 1 = / 2,T/ 3:/ 1 = 8: 1,:/ 3= 8/1.•••/ 1 + / 2+/3= 180°,:/ 1 + / 1+8/ 1 = 180°,解得/ 1 = 18°,:/4=/1 + / 2= 36°.35. 如图,将两块直角三角尺的直角顶点C叠放在一起.①若/DCE = 35°,求/ ACE、/ DCB、/ ACB 的度数;②若/ACB= 140°,求/ DCE的度数;③猜想:/ ACB与/ DCE有怎样的数量关系,并说明理由.【解答】解:① T/ACD = 90°,/ BCE= 90°,/ DCE = 35°,:/ ACE= 55°,/ DCE = 55°,/ ACB= 125°;②•••/ ACB= 140°,/ ACD = 90°:/ DCB = 140°- 90° = 50° v/ ECB= 90°:/ DCE = 90o- 50°= 40°.③猜想得/ ACB+/ DCE= 180°(或/ ACB与/ DCE互补)理由:v/ ECB= 90°, / ACD = 90°:/ ACB=/ ACD+ / DCB = 90° +/DCB/ DCE=/ ECB-/ DCB = 90°-/ DCB :/ ACB+/ DCE = 180°.。