整式的除法专题训练
- 格式:doc
- 大小:28.00 KB
- 文档页数:2
完整版)整式的除法练习题(含答案) 整理后:题一、选择题1.下列计算正确的是()A。
a6÷a2=a3B。
a+a4=a5C。
(ab3)2=a2b6D。
a-(3b-a)=-3b2.计算:(-3b3)2÷b2的结果是()A。
-9b4B。
6b4C。
9b3D。
9b43.“小马虎”在下面的计算中只做对一道题,你认为他做对的题目是()A。
(ab)2=ab2B。
(a3)2=a6C。
a6÷a3=a2D。
a3•a4=a124.下列计算结果为x3y4的式子是()A。
(x3y4)÷(xy)B。
(x2y3)•(xy)C。
(x3y2)•(xy2)D。
(-x3y3)÷(x3y2)5.已知(a3b6)÷(a2b2)=3,则a2b8的值等于() A。
6B。
9C。
12D。
816.下列等式成立的是()A。
(3a2+a)÷a=3aB。
(2ax2+a2x)÷4ax=2x+4aC。
(15a2-10a)÷(-5)=3a+2D。
(a3+a2)÷a=a2+a7.下列各式是完全平方式的是() A。
x-x+2B。
1+4x/4XXXD。
x+2x-12/38.下列计算正确的是()A。
(x-2y)(x+2y)=x2-4y2B。
(3x-y)(3x+y)=9x2-y2C。
(-4-5n)(4-5n)=25n2+16D。
(-m-n)(-m+n)=n2-m2题二、填空题9.计算:(a2b3-a2b2)÷(ab)2=ab-1.10.七年级二班教室后墙上的“研究园地”是一个长方形,它的面积为6a2-9ab+3a,其中一边长为3a,则这个“研究园地”的另一边长为2a-3b。
11.已知被除式为x3+3x2-1,商式是x,余式是-1,则除式是x2+2x+1.12.计算:(6x5y-3x2)÷(-3x2)=-2y-2.13.若5x=18,5y=3,则5=3xy。
整式的除法专题训练50题(有答案)1、计算:x・x3+(-2x2)2+24x6÷(-4x2).2、先化简,再求值:其中3、计算:4、计算5、计算(-1)2009+(3.14)0++6、计算题:7、计算.[(x+y)2-y(2x+y)-8x]÷2x;8、先化简,再求值.(-2a4x2+4a3x3-a2x4)÷(-a2x2),其中a=,x=-4.9、28x4y2÷7x3y10、化简求值:已知|a+|+(b-3)2=0,求代数式[(2a+b)2+(2a+b)(b-2a)-6b]÷2b的值.11、先化简再求值:[(x+2y)(x-2y)-(x+4y)2]÷(4y),其中x=5,y=2.12、计算:13、计算:.14、计算:15、化简求值:[(x-y)2+y(4x-y)-8x]÷2x,其中x=8,y=2009.16、计算:(-3x2n+2y n)3÷[(-x3y)2] n17、计算:[(2x-y)(2x+y)+y(y-6x)]÷2x;18、先化简,再求值:,其中.19、计算:.20、先化简,再求值:,其中21、化简:[(+1)(+2)一2]÷22、先化简,再求值:,其中23、先化简,再求值:(2a+b)(2a-b)+b(2a+b)-4a2b÷b,其中a=-,b=2.24、计算:=___________.25、计算:(-2xy2)2・3x2y÷(-x3y4) =____________。
26、计算:3x6y4÷(xy3)=_____________; (am-bm)÷m =________________27、已知,那么、的值为()A、,B、,C、,D、,28、把下式化成(a-b)p的形式:15(a-b)3[-6(a-b)p+5](b-a)2÷45(b-a)529、一个长方形的面积是平方米,其长为米,用含有的整式表示它的宽为________米.30、已知一个单项式除以另一个单项式后,得到一个5次单项式,试写出另一个单项式________________(只写出一个正确的答案即可)31、化简= .32、四条线段A.B.C.d成比例,其中b=3cm,c=2cm,d=6cm,则a=_____cm。
《整式的除法》习题一、选择题1.下列计算正确的是( )A.a 6÷a 2=a 3B.a +a 4=a 5C.(ab 3)2=a 2b 6D.a -(3b -a )=-3b2.计算:(-3b 3)2÷b 2的结果是( )A.-9b 4B.6b 4C.9b 3D.9b 43.“小马虎”在下面的计算中只做对一道题,你认为他做对的题目是( )A.(ab )2=ab 2B.(a 3)2=a 6C.a 6÷a 3=a 2D.a 3•a 4=a 124.下列计算结果为x 3y 4的式子是( )A.(x 3y 4)÷(xy )B.(x 2y 3)•(xy )C.(x 3y 2)•(xy 2)D.(-x 3y 3)÷(x 3y 2)5.已知(a 3b 6)÷(a 2b 2)=3,则a 2b 8的值等于( )A.6B.9C.12D.816.下列等式成立的是( )A.(3a 2+a )÷a =3aB.(2ax 2+a 2x )÷4ax =2x +4aC.(15a 2-10a )÷(-5)=3a +2D.(a 3+a 2)÷a =a 2+a7.下列各式是完全平方式的是() A 、412+-x x B 、241x + C 、22b ab a ++ D 、122-+x x 8.下列计算正确的是( )A 、222)2)(2(y x y x y x -=+-B 、229)3)(3(y x y x y x -=+- C 、1625)54)(54(2+=---n n n D 、22))((m n n m n m -=+--- 二、填空题9.计算:(a 2b 3-a 2b 2)÷(ab )2=_____.10.七年级二班教室后墙上的“学习园地”是一个长方形,它的面积为6a 2-9ab +3a ,其中一边长为3a ,则这个“学习园地”的另一边长为_____.11.已知被除式为x 3+3x 2-1,商式是x ,余式是-1,则除式是_____.12.计算:(6x 5y -3x 2)÷(-3x 2)=_____.13.若35,185==yx , 则y x 25-= 14.()()()()32223282y x x y x -⋅-⋅--= ; 15.若1004x y +=,2x y -=,则代数式22x y -的值是 。
《整式的除法》习题一、选择题1.下列计算正确的是( )A.a 6÷a 2=a 3B.a +a 4=a 5C.(ab 3)2=a 2b 6D.a -(3b -a )=-3b2.计算:(-3b 3)2÷b 2的结果是( )A.-9b 4B.6b 4C.9b 3D.9b 43.“小马虎”在下面的计算中只做对一道题,你认为他做对的题目是( )A.(ab )2=ab 2B.(a 3)2=a 6C.a 6÷a 3=a 2D.a 3•a 4=a 124.下列计算结果为x 3y 4的式子是( )A.(x 3y 4)÷(xy )B.(x 2y 3)•(xy )C.(x 3y 2)•(xy 2)D.(-x 3y 3)÷(x 3y 2)5.已知(a 3b 6)÷(a 2b 2)=3,则a 2b 8的值等于( )A.6B.9C.12D.816.下列等式成立的是( )A.(3a 2+a )÷a =3aB.(2ax 2+a 2x )÷4ax =2x +4aC.(15a 2-10a )÷(-5)=3a +2D.(a 3+a 2)÷a =a 2+a7.下列各式是完全平方式的是() A 、412+-x x B 、241x + C 、22b ab a ++ D 、122-+x x 8.下列计算正确的是( ) A 、222)2)(2(y x y x y x -=+- B 、229)3)(3(y x y x y x -=+-C 、1625)54)(54(2+=---n n nD 、22))((m n n m n m -=+--- 二、填空题9.计算:(a 2b 3-a 2b 2)÷(ab )2=_____.10.七年级二班教室后墙上的“学习园地”是一个长方形,它的面积为6a 2-9ab +3a ,其中一边长为3a ,则这个“学习园地”的另一边长为_____.11.已知被除式为x 3+3x 2-1,商式是x ,余式是-1,则除式是_____.12.计算:(6x 5y -3x 2)÷(-3x 2)=_____.13.若35,185==yx , 则y x 25-= 14.()()()()32223282y x x y x -⋅-⋅--= ; 15.若1004x y +=,2x y -=,则代数式22x y -的值是 。
初二上册数学整式的除法练习题在初二上册的数学课程中,整式的除法是一个重要的知识点。
通过
练习题的形式进行训练,能够帮助学生更好地掌握和应用这一知识。
本文将为大家提供一些初二上册数学整式的除法练习题,希望对大家
的学习有所帮助。
练习题一: 整式的因式分解
1. 将12a^3a−4a^2a^2−20a^2a^3进行因式分解。
2. 将32a^3a^2−48a^2a^3+16aa^4进行因式分解。
练习题二: 整式的除法
3. 计算 (12a^4+8a^3−4a^2) ÷ (4a^2)。
4. 计算 (16a^3−8a^2+12a) ÷ (4a)。
练习题三: 应用题
5. 若一个长方形的长和宽分别是2a^2−4a和a−3,求该长方形的面积。
6. 某数比2a−1多9,这个数减去4a的四倍等于5a-8,求这个数。
练习题四: 解答题
7. 解方程a^2−5a−14=0。
8. 解方程a^2+7a+10=0。
以上是初二上册数学整式的除法练习题。
希望同学们利用课余时间多加练习,巩固并提高自己的数学能力。
祝大家学业进步!。
精品文档《整式的除法》习题一、选择题)( 1.下列计算正确的是 6 35 22623 4 b)=-3a(b=a3bB.a+a-=aaD.(C.aba)-A.a=÷a223) ÷b 2.计算:(-3b的结果是)(4344 D.9b B.6b C.9A.-9bb) 小马虎”在下面的计算中只做对一道题,你认为他做对的题目是( 3.“124232663223a? =aa a )a= C.aD.÷a)A.(aba=ab= B.(43)的式子是( 4.下列计算结果为xy23332233423(x-x)y(xy)C.xyy))?(xy÷A.(x)y÷)(xy)B.(xD.y()?(822362) 的值等于)=3,则a( 5.已知(abb)÷(a bD.81 C.12 B.9 A.6).下列等式成立的是( 6222+4a )÷4ax B.(2ax=2+axxA.(3a+a)÷a=3a2223a =aa+)÷)(-5=3a+2 D.(aaC.(15a+-10a)÷).下列各式是完全平方式的是(7122222b??ab?2x?11?4xax?xx? CA、、D、 B、4)8.下列计算正确的是(2222y?9x??y)(3x?y)yx?2y)(x?2y)?x?2(3x(、B 、A222m?n)?n?()?25n?16?mm?n)(?5?(4?5n)(4?n D、C、二、填空题23222=_____.ab)b 9.计算:(a)÷b(-a2-9ab+3a,其中一边长为3a,“学习园地”是一个长方形,它的面积为6a则这个“学10.七年级二班教室后墙上的习园地”的另一边长为_____.32-1,商式是x,余式是-1,则除式是11.已知被除式为x_____+3x.522)=_____.)÷(6x(-3y-3xx12.计算:xyyx?23,5?5?18513.若= 则,????23????2322y?2?x?y?8?x?x;.14 =22x?y2??y1004xy??x的值是,,则代数式.若15。
整式的除法练习题(含答案).doc 整式的除法》题一、选择题1.正确答案是B。
改写为:a+a4=a5是错误的,应为a+a4=a4+a,所以选项B正确。
2.正确答案是D。
改写为:(-3b3)2÷b2=9b6÷b2=9b4,所以选项D正确。
3.正确答案是A。
改写为:(ab)2=a2b2,所以选项A正确。
4.正确答案是C。
改写为:(x3y2)•(xy2)=x4y4,所以选项C正确。
5.正确答案是B。
改写为:(a3b6)÷(a2b2)=a(b4),所以a2b8=a(b4)•a2b2=ab6•a2b2=9a2b8,所以选项B正确。
6.正确答案是D。
改写为:(a3+a2)÷a=a2+a,所以选项D正确。
7.正确答案是D。
改写为:x+2x-12=(x-2)(x+6),所以选项D正确。
8.正确答案是C。
改写为:(-4-5n)(4-5n)=-16+20n+20n-25n2=25n+16,所以选项C正确。
二、填空题9.计算:(a2b3-a2b2)÷(ab)2=ab-a,所以答案为ab-a。
10.另一边长为2a-3b,所以答案为2a-3b。
11.除式为x2+4x-1,所以答案为x2+4x-1.12.计算:(6x5y-3x2)÷(-3x2)=-2y,所以答案为-2y。
13.计算:5=1·5=18·xy,所以xy=1/18.14.计算:-2x2y·(-x)·(-y)=2x3y3,所以答案为2x3y3/8x2=-y/4.15.计算:x=(x+y)+(x-y)=1004+2=1006,所以x-y=1006-2=1004.16.计算:2x-4=5,所以x=3.5.代入4x2-16x+16得到答案为16.25.17.计算:m=3,n=6,所以2a3b9+3=8a9b15,解得a=2/3,b=3/2.所以答案为2a3b6+3.18.加上的单项式为4x,因为16x2+4x=(4x)2,所以答案为4x。
《整式的除法》习题之阳早格格创做一、采用题1.下列估计精确的是()A.a6÷a2=a3B.a+a4=a5C.(ab3)2=a2b6D.a-(3b-a)=-3b2.估计:(-3b3)2÷b2的截止是()b4b4C.9b3b43.“小马虎”正在底下的估计中只干对付一讲题,您认为他干对付的题目是()A.(ab)2=ab2B.(a3)2=a6C.a6÷a3=a2D.a3•a4=a124.下列估计截止为x3y4的式子是()A.(x3y4)÷(xy)B.(x2y3)•(xy)C.(x3y2)•(xy2)D.(-x3y3)÷(x3y2)5.已知(a3b6)÷(a2b2)=3,则a2b8的值等于().9C6.下列等式创制的是()A.(3a2+a)÷a=3aB.(2ax2+a2x)÷4ax=2x+4aC.(15a2-10a)÷(-5)=3a+2D.(a3+a2)÷a=a2+a两、挖空题7.估计:(a2b3-a2b2)÷(ab)2=_____.8.七年级两班课堂后墙上的“教习园天”是一个少圆形,它的里积为6a2-9ab+3a,其中一边少为3a,则那个“教习园天”的另一边少为_____.9.已知被除式为x3+3x2-1,商式是x,余式是-1,则除式是_____.10.估计:(6x5y-3x2)÷(-3x2)=_____.三、解问题11.三峡一期工程中断后的当年收电量为5.5×109度,某市有10万户住户,若仄衡每户用电2.75×103度.那么三峡工程该年所收的电能供该市住户使用几年?(截止用科教记数法表示)12.估计.(1)(30x4-20x3+10x)÷10x(2)(32x3y3z+16x2y3z-8xyz)÷8xyz(3)(6a n+1-9a n+1+3a n-1)÷3a n-1.13.若(x m÷x2n)3÷x2m-n取2x3是共类项,且m+5n=13,供m2-25n的值.14.若n为正整数,且a2n=3,估计(3a3n)2÷(27a4n)的值.15.一颗人制天球卫星的速度是2.6×107m/h,一架飞机的速度是1.3×106m/h,人制天球卫星的速度飞机速度的几倍?参照问案一、采用题1.问案:C剖析:【解问】A、a6÷a2=a4,故本选项过失;B、a+a4=a5,没有是共类项没有克没有及合并,故本选项过失;C、(ab3)2=a2b6,故本选项精确;D、a-(3b-a)=a-3b+a=2a-3b,故本选项过失.故选C.【分解】根据共底数幂的除法,底数没有变指数相减;合并共类项,系数相加字母战字母的指数没有变;积的乘圆,把每一个果式分别乘圆,再把所得的幂相乘,对付各选项估计后利用排除法供解.2.问案:D剖析:【解问】(-3b3)2÷b2=9b6÷b2=9b4.故选D.【分解】根据积的乘圆,等于把积中的每一个果式分别乘圆,再把所得的幂相乘;单项式相除,把系数取共底数幂分别相除动做商的果式,对付于只正在被除式里含有的字母,则连共它的指数动做商的一个果式,估计即可.3.问案:B剖析:【解问】A、应为(ab)2=a2b2,故本选项过失;B、(a3)2=a6,精确;C、应为a6÷a3=a3,故本选项过失;D、应为a3•a4=a7,故本选项过失.故选B.【分解】根据积的乘圆,等于把积的每一个果式分别乘圆,再把所得的幂相乘;幂的乘圆,底数没有变指数相乘;共底数幂相除,底数没有变指数相减;共底数幂相乘,底数没有变指数相加;对付各选项分解推断后利用排除法供解.4.问案:B剖析:【解问】A、(x3y4)÷(xy)=x2y3,本选项分歧题意;B、(x2y3)•(xy)=x3y4,本选项切合题意;C、(x3y2)•(xy2)=x4y4,本选项分歧题意;D、(-x3y3)÷(x3y2)=-y,本选项分歧题意,故选B【分解】利用单项式除单项式规则,以及单项式乘单项式规则估计得到截止,即可干出推断.5.问案:B剖析:【解问】∵(a3b6)÷(a2b2)=3,即ab4=3,∴a2b8=ab4•ab4=32=9.故选B.【分解】单项式相除,把系数战共底数幂分别相除,动做商的果式,对付于只正在被除式里含有的字母,则连共它的指数所有动做商的一个果式,利用那个规则先算出ab4的值,再仄圆.6.问案:D剖析:【解问】A、(3a2+a)÷a=3a+1,本选项过失;B、(2ax2+a2x)÷4ax=x+a,本选项过失;C、(15a2-10a)÷(-5)=-3a2+2a,本选项过失;D、(a3+a2)÷a=a2+a,本选项精确,故选D【分解】A、利用多项式除以单项式规则估计得到截止,即可干出推断;B、利用多项式除以单项式规则估计得到截止,即可干出推断;C、利用多项式除以单项式规则估计得到截止,即可干出推断;D、利用多项式除以单项式规则估计得到截止,即可干出推断.两、挖空题7.问案:b-1剖析:【解问】(a2b3-a2b2)÷(ab)2=a2b3÷a2b2-a2b2÷a2b2=b-1.【分解】本题是整式的除法,相除时不妨根据系数取系数相除,相共的字母相除的准则举止,对付于多项式除以单项式不妨是将多项式中的每一个项分别除以单项式.8.问案:2a-3b+1剖析:【解问】∵少圆形里积是6a2-9ab+3a,一边少为3a,∴它的另一边少是:(6a2-9ab+3a)÷3a=2a-3b+1.故问案为:2a-3b+1.【分解】由少圆形的里积供法可知由一边乘以另一边而得,则本题由里积除以边少可供得另一边.9.问案:x2+3x剖析:【解问】[x3+3x2-1-(-1)]÷x=(x3+3x2)÷x=x2+3x.【分解】有被除式,商及余数,被除式减来余数再除以商即可得到除式.10.问案:-2x3y+1剖析:【解问】(6x5y-3x2)÷(-3x2)=6x5y÷(-3x2)+(-3x2)÷(-3x2)=-2x3y+1.【分解】利用多项式除以单项式的规则,先用多项式的每一项除以单项式,再把所得的商相加估计即可.三、解问题11.问案:2×10年剖析:【解问】该市用电量为2.75×103×105=2.75×108(5.5×109)÷(2.75×108)=(5.5÷2.75)×109-8=2×10年.问:三峡工程该年所收的电能供该市住户使用2×10年.【分解】先供出该市总用电量,再用当年总收电量除以用电量;而后根据共底数幂相乘,底数没有变指数相加战共底数幂相除,底数没有变指数相减估计.12.问案:(1)3x3-2x2+1;(2)4x2y2+16xy2-1;(3)(-3a n+1+3a n-1)÷3a n-1=-3a2+1.剖析:【解问】(1)(30x4-20x3+10x)÷10x=3x3-2x2+1;(2)(32x3y3z+16x2y3z-8xyz)÷8xyz=4x2y2+16xy2-1;(3)(6a n+1-9a n+1+3a n-1)÷3a n-1=(-3a n+1+3a n-1)÷3a n-1=-3a2+1.【分解】(1)根据多项式除以单项式的规则估计即可;(2)根据多项式除以单项式的规则估计即可;(3)先合并括号内的共类项,再根据多项式除以单项式的规则估计即可.13.问案:39.剖析:【解问】(x m÷x2n)3÷x2m-n=(x m-2n)3÷x2m-n=x3m-6n÷x2m-n=x m-5n果它取2x3为共类项,所以m-5n=3,又m+5n=13,∴m=8,n=1,所以m2-25n=82-25×12=39.【分解】根据共底数幂相除,底数没有变指数相减,对付(x m÷x2n)3÷x2m-n化简,由共类项的定义可得m-5n=2,分离m+5n=13,可得问案.14.问案:1剖析:【解问】本式=9a6n÷(27a4n)=a2n,∵a2n=3,∴本式=×3=1.【分解】先举止幂的乘圆运算,而后举止单项式的除法,末尾将a2n=3完全代进即可得出问案.15.问案:20.剖析:【解问】根据题意得:(2.6×107)÷(1.3×106)=2×10=20,则人制天球卫星的速度飞机速度的20倍.【分解】根据题意列出算式,估计即可得到截止.。
专题14.8整式的除法姓名:__________________班级:______________得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•襄州区期末)计算(﹣4x3+2x)÷2x的结果正确的是()A.﹣2x2+1B.2x2+1C.﹣2x3+1D.﹣8x4+2x【分析】多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加,据此求出计算(﹣4x3+2x)÷2x的结果是多少即可.【解析】(﹣4x3+2x)÷2x=(﹣4x3)÷2x+2x÷2x=﹣2x2+1故选:A.2.(2021•蜀山区模拟)计算(﹣2x)3÷(﹣x)的结果是()A.﹣2x2B.2x2C.﹣8x3D.8x2【分析】直接利用积的乘方运算法则以及整式的除法运算法则计算得出答案.【解析】(﹣2x)3÷(﹣x)=﹣8x3÷(﹣x)=8x2.故选:D.3.(2020秋•镇原县期末)如果一个单项式与﹣5ab的积为−58a2bc,则这个单项式为()A.18a2c B.18ac C.258a3b2c D.258ac【分析】根据单项式除以单项式的运算法则计算,得到答案.【解析】设这个单项式为A,由题意得,A•(﹣5ab)=−58a2bc,∴A=−58a2bc÷(﹣5ab)=18ac,故选:B.4.(2021春•菏泽月考)长方形的面积是9a2﹣3ab+6a3,一边长是3a,则它的另一边长是()A.3a2﹣b+2a2B.2a2+3a﹣b C.b+3a+2a2D.3a2﹣b+2a【分析】由长方形面积公式即可列出式子,计算即得答案.【解析】另一边长为:(9a2﹣3ab+6a3)÷3a=3a﹣b+2a2=2a2+3a﹣b,故选:B.5.下列计算正确的是()A.﹣3x3+(﹣x)=3x3B.(3xy)2÷xy=3xyC.28x4y2÷7x3y=4xy D.﹣4x3y÷2x2=2x【分析】利用整式的除法法则逐个运算得结论.【解析】∵﹣3x3与﹣x不是同类项,不能加减,故A不正确;(3xy)2÷xy=9x2y2÷xy=9xy≠3xy,故B不正确;28x4y2÷7x3y=4xy,故C正确;﹣4x3y÷2x2=﹣2xy≠2x,故D不正确.故选:C.6.(2021春•沙坪坝区校级月考)长方形面积3a2﹣9ab+6a,它的一边长为3a,长方形的周长是()A.4a﹣3b+2B.8a﹣6b+4C.3a2﹣9ab+6a D.6a2﹣18ab+12a【分析】先求出长方形另一边,再由周长公式即可求得答案.【解析】长方形另一边为:(3a2﹣9ab+6a)÷3a=a﹣3b+2,长方形周长是:2×(3a+a﹣3b+2)=8a﹣6b+4.故选:B.7.(2021春•铁岭月考)x m y n÷x2y3=xy,则有()A.m=2,n=6B.m=3,n=4C.m=2,n=3D.m=3,n=5【分析】根据单项式相除的法则,列出方程即可得到答案.【解析】∵x m y n÷x2y3=xy,∴m﹣2=1且n﹣3=1,∴m=3,n=4,故选:B.8.(2021春•瑶海区校级期中)计算(5m2+15m3n﹣20m4)÷(﹣5m2)结果正确的是()A.4m2﹣3mn﹣1B.1﹣3mn+4m2C.﹣1﹣3m+4m2D.4m2﹣3mn【分析】直接利用整式的除法运算法则计算得出答案.【解析】(5m2+15m3n﹣20m4)÷(﹣5m2)=(5m2)÷(﹣5m2)+15m3n÷(﹣5m2)﹣20m4÷(﹣5m2)=﹣1﹣3mn+4m2.故选:A.9.(2020•台湾)计算2x2﹣3除以x+1后,得商式和余式分别为何?()A.商式为2,余式为﹣5B.商式为2x﹣5,余式为5C.商式为2x+2,余式为﹣1D.商式为2x﹣2,余式为﹣1【分析】先将被除式2x2﹣3补0,再列竖式计算即可.【解析】∵被除式2x2﹣3缺项,∴补0后变为2x2+0x﹣3,长除法计算为:故选:D.10.(2021春•槐荫区期末)如果“□×2ab=4a2b”,那么“□”内应填的代数式是()A.2b B.2ab C.a D.2a【分析】直接利用单项式除以单项式运算法则计算得出答案.【解析】□×2ab=4a2b,∴4a2b÷2ab=2a,则“□”内应填的代数式是2a.故选:D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2021春•大埔县期末)计算2a7÷a3=2a4.【分析】根据单项式除以单项式的运算法则进行计算求解.【解析】原式=2a7﹣3=2a4,故答案为:2a4.12.(2020秋•松江区期末)计算:(12a3+6a2﹣3a)÷3a=4a2+2a﹣1【分析】原式利用多项式除以单项式的法则计算即可.【解析】原式=4a2+2a﹣1.13.(2021春•沈阳月考)计算:12a3b2c÷(4a2b)=3abc.【分析】利用单项式除以单项式法则计算即可.【解析】12a3b2c÷(4a2b)=(12÷4)•(a3÷a2)•(b2÷b)•c=3abc,故答案为:3abc.14.(2020秋•禹城市期末)(6a3b2﹣14a2b2+8a2b)÷(﹣2a2b)=﹣3ab+7b﹣4.【分析】直接利用整式的除法运算法则计算得出答案.【解析】(6a3b2﹣14a2b2+8a2b)÷(﹣2a2b)=6a3b2÷(﹣2a2b)﹣14a2b2÷(﹣2a2b)+8a2b÷(﹣2a2b)=﹣3ab+7b﹣4.故答案为:﹣3ab+7b﹣4.15.(2021春•宁德期末)一个三角形的面积为3xy﹣4y,一边长是2y,则这条边上的高为3x﹣4.【分析】根据三角形的面积S=12ah,得到:h=2,代入计算即可.【解析】根据题意得:2(3xy﹣4y)÷(2y)=(6xy﹣8y)÷(2y)=3x﹣4,故答案为:3x﹣4.16.(2021春•宁波期中)计算:(9m2n﹣6mn2)÷(﹣3mn)=﹣3m+2n.【分析】直接利用整式的除法运算法则计算得出答案.【解析】(9m2n﹣6mn2)÷(﹣3mn)=9m2n÷(﹣3mn)﹣6mn2÷(﹣3mn)=﹣3m+2n.故答案为:﹣3m+2n.17.(2020秋•奉贤区期末)计算:(4x4y3﹣5x5y2)÷2x2y=2x2y2−52x3y.【分析】直接利用整式的除法运算法则计算得出答案.【解析】原式=4x4y3÷2x2y﹣5x5y2÷2x2y=2x2y2−52x3y.故答案为:2x2y2−52x3y.18.(2021春•郫都区校级期中)一个长方形的面积是25﹣4y2,它的长为5+2y,则它宽是5﹣2y;它的周长是20.【分析】直接利用整式的除法运算法则以及整式的加减运算法则计算得出答案.【解析】∵一个长方形的面积是25﹣4y2,它的长为5+2y,∴它宽是:(25﹣4y2)÷(5+2y)=5﹣2y;它的周长是:2(5+2y+5﹣2y)=20.故答案为:5﹣2y;20.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)(﹣b)7÷(﹣b)2;(2)(a2b)3÷(a2b);(3)(x﹣y)3÷(y﹣x)2;(4)y12÷(﹣y)4÷(﹣y)3;(5)(﹣9)11÷[﹣32×(﹣3)3].【分析】直接利用同底数幂的除法运算法则以及积的乘方运算法则分别化简得出答案.【解析】(1)(﹣b)7÷(﹣b)2=(﹣b)5=﹣b5;(2)(a2b)3÷(a2b)=a6b3÷a2b=a4b2;(3)(x﹣y)3÷(y﹣x)2=(x﹣y)3÷(x﹣y)2=x﹣y;(4)y12÷(﹣y)4÷(﹣y)3=y12÷y4÷(﹣y)3=﹣y5;(5)(﹣9)11÷[﹣32×(﹣3)3]=﹣322÷35=﹣317.20.(2021春•宝安区期末)计算:(1)(﹣3)2+(π﹣3)0﹣|﹣5|+(1﹣2)2021;(2)(﹣2xy)2+(x2y)3÷(﹣x4y).【分析】(1)直接利用零指数幂的性质以及有理数的乘方运算法则、绝对值的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及整式的除法运算法则分别化简,再合并同类项即可.【解析】(1)(﹣3)2+(π﹣3)0﹣|﹣5|+(1﹣2)2021=9+1﹣5﹣1=4;(2)(﹣2xy)2+(x2y)3÷(﹣x4y)=4x2y2+x6y3÷(﹣x4y)=4x2y2﹣x2y2=3x2y2.21.(2021春•贺兰县期中)如果o)3÷(232)2=1832,求m,a,b的值.【分析】先根据整式的除法运算法则计算已知等式的左边,再根据底数相同,指数也相等得方程,求解即可.【解析】∵o )3÷(232)2=B 33÷(464)=14B 3K63K4,∴13K63K4=1832.则=18,−6=3,3−4=2,,解得=12,=3,=2.22.计算:(1)(6a 2b +3a )÷a ;(2)(4x 3y 2﹣x 2y 2)÷(﹣2x 2y );(3)(20m 4n 3﹣12m 3n 2+3m 2n )÷(﹣4m 2n ):(4)[15(a +b )3﹣9(a +b )2]÷3(a +b )2.【分析】各小题直接利用整式的除法运算法则分别计算得出答案.【解析】(1)(6a 2b +3a )÷a =6a 2b ÷a +3a ÷a =6ab +3;(2)(4x 3y 2﹣x 2y 2)÷(﹣2x 2y )=4x 3y 2÷(﹣2x 2y )﹣x 2y 2÷(﹣2x 2y )=﹣2xy +12y ;(3)(20m 4n 3﹣12m 3n 2+3m 2n )÷(﹣4m 2n )=20m 4n 3÷(﹣4m 2n )﹣12m 3n 2÷(﹣4m 2n )+3m 2n ÷(﹣4m 2n )=﹣5m 2n 2+3mn −34;(4)[15(a +b )3﹣9(a +b )2]÷3(a +b )2=15(a +b )3÷3(a +b )2﹣9(a +b )2÷3(a +b )2=5(a +b )﹣3=5a+5b﹣3.23.(2021春•秦都区月考)如图,甲长方形的长为m+7,宽为m+1,面积为S1;乙长方形的长为m+4,宽为m+2,面积为S2.(m为正整数)(1)试比较S1,S2的大小;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S与图中的甲长方形面积S1的差(即S﹣S1)是一个常数,求出这个常数.【分析】(1)表示出甲、乙面积,作差比较即可;(2)求出正方形边长,表示出面积,作差即可得答案.【解析】(1)S1=(m+1)(m+7)=m2+8m+7,S2=(m+2)(m+4)=m2+6m+8,∴S1﹣S2=(m2+8m+7)﹣(m2+6m+8)=2m﹣1∵m为正整数,∴2m﹣1>0,∴S1>S2;(2)∵甲的周长为2(m+7+m+1)=4m+16,∴正方形边长为(4m+16)÷4=m+4,∴正方形面积S=(m+4)2=m2+8m+16,∴S﹣S1=m2+8m+16﹣(m2+8m+7)=9,∴这个常数是9.24.(2021春•玄武区期中)观察下列各式:(x﹣1)÷(x﹣1)=1;(x2﹣1)÷(x﹣1)=x+1;(x3﹣1)÷(x﹣1)=x2+x+1;(x4﹣1)÷(x﹣1)=x3+x2+x+1.根据上面各式的规律可得(x n+1﹣1)÷(x﹣1)=x n+x n﹣1+…+x+1;利用规律完成下列问题:(1)52021+52020+52019+…+51+1=52022−14;(2)求(﹣3)20+(﹣3)19+(﹣3)18+…+(﹣3)的值.【分析】根据各式规律即可确定出所求;(1)仿照题目中规律,将x=5,n=2021代入后再等式变形即可;(2)将x=﹣3,n=20代入题目中发现的规律,再等式变形计算即可求出答案.【解析】由题意得:x n+1﹣1;(1)将x=5,n=2021代入得:(52022﹣1)÷(5﹣1)=52021+52020+52019+…+51+1,∴52021+52020+52019+…+51+1=52022−15−1=52022−14.(2)将x=﹣3,n=20代入得:[(﹣3)21﹣1]÷(﹣3﹣1)=(﹣3)20+(﹣3)19+(﹣3)18+…+(﹣3)+1,∴(﹣3)20+(﹣3)19+(﹣3)18+…+(﹣3)=(−3)21−1−3−1=321+14−1=321−34.。
初二《整式的除法》习题一、选择题1.下列计算正确的是( )A.a6÷a2=a3B.a+a4=a5C.(ab3)2=a2b6D.a-(3b-a)=-3b2.计算:(-3b3)2÷b2的结果是( )A.-9b4B.6b4C.9b3D.9b43.“小马虎”在下面的计算中只做对一道题,你认为他做对的题目是( )A.(ab)2=ab2B.(a3)2=a6C.a6÷a3=a2D.a3•a4=a12 4.下列计算结果为x3y4的式子是( )A.(x3y4)÷(xy)B.(x2y3)•(xy)C.(x3y2)•(xy2)D.(-x3y3)÷(x3y2)5.已知(a3b6)÷(a2b2)=3,则a2b8的值等于( )A.6B.9C.12D.816.下列等式成立的是( )A.(3a2+a)÷a=3aB.(2ax2+a2x)÷4ax=2x+4aC.(15a2-10a)÷(-5)=3a+2D.(a3+a2)÷a=a2+a二、填空题7.计算:(a2b3-a2b2)÷(ab)2=_____.8.七年级二班教室后墙上的“学习园地”是一个长方形,它的面积为6a2-9ab+3a,其中一边长为3a,则这个“学习园地”的另一边长为_____.9.已知被除式为x3+3x2-1,商式是x,余式是-1,则除式是_____.10.计算:(6x5y-3x2)÷(-3x2)=_____.三、解答题11.三峡一期工程结束后的当年发电量为5.5×109度,某市有10万户居民,若平均每户用电2.75×103度.那么三峡工程该年所发的电能供该市居民使用多少年?(结果用科学记数法表示)12.计算.(1)(30x4-20x3+10x)÷10x(2)(32x3y3z+16x2y3z-8xyz)÷8xyz(3)(6a n+1-9a n+1+3a n-1)÷3a n-1.13.若(x m÷x2n)3÷x2m-n与2x3是同类项,且m+5n=13,求m2-25n 的值.14.若n为正整数,且a2n=3,计算(3a3n)2÷(27a4n)的值.15.一颗人造地球卫星的速度是2.6×107m/h,一架飞机的速度是1.3×106m/h,人造地球卫星的速度飞机速度的几倍?参考答案一、选择题1.答案:C解析:【解答】A、a6÷a2=a4,故本选项错误;B、a+a4=a5,不是同类项不能合并,故本选项错误;C、(ab3)2=a2b6,故本选项正确;D、a-(3b-a)=a-3b+a=2a-3b,故本选项错误.故选C.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母与字母的指数不变;积的乘方,把每一个因式分别乘方,再把所得的幂相乘,对各选项计算后利用排除法求解.2.答案:D解析:【解答】(-3b3)2÷b2=9b6÷b2=9b4.故选D.【分析】根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式,计算即可.3.答案:B解析:【解答】A、应为(ab)2=a2b2,故本选项错误;B、(a3)2=a6,正确;C、应为a6÷a3=a3,故本选项错误;D、应为a3•a4=a7,故本选项错误.故选B.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;对各选项分析判断后利用排除法求解.4.答案:B解析:【解答】A、(x3y4)÷(xy)=x2y3,本选项不合题意;B、(x2y3)•(xy)=x3y4,本选项符合题意;C、(x3y2)•(xy2)=x4y4,本选项不合题意;D、(-x3y3)÷(x3y2)=-y,本选项不合题意,故选B【分析】利用单项式除单项式法则,以及单项式乘单项式法则计算得到结果,即可做出判断.5.答案:B解析:【解答】∵(a3b6)÷(a2b2)=3,即ab4=3,∴a2b8=ab4•ab4=32=9.故选B.【分析】单项式相除,把系数与同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式,利用这个法则先算出ab4的值,再平方.6.答案:D解析:【解答】A、(3a2+a)÷a=3a+1,本选项错误;B、(2ax2+a2x)÷4ax=x+a,本选项错误;C、(15a2-10a)÷(-5)=-3a2+2a,本选项错误;D、(a3+a2)÷a=a2+a,本选项正确,故选D【分析】A、利用多项式除以单项式法则计算得到结果,即可做出判断;B、利用多项式除以单项式法则计算得到结果,即可做出判断;C、利用多项式除以单项式法则计算得到结果,即可做出判断;D、利用多项式除以单项式法则计算得到结果,即可做出判断.二、填空题7.答案:b-1解析:【解答】(a2b3-a2b2)÷(ab)2=a2b3÷a2b2-a2b2÷a2b2=b-1.【分析】本题是整式的除法,相除时可以根据系数与系数相除,相同的字母相除的原则进行,对于多项式除以单项式可以是将多项式中的每一个项分别除以单项式.8.答案:2a-3b+1解析:【解答】∵长方形面积是6a2-9ab+3a,一边长为3a,∴它的另一边长是:(6a2-9ab+3a)÷3a=2a-3b+1.故答案为:2a-3b+1.【分析】由长方形的面积求法可知由一边乘以另一边而得,则本题由面积除以边长可求得另一边.9.答案:x2+3x解析:【解答】[x3+3x2-1-(-1)]÷x=(x3+3x2)÷x=x2+3x.【分析】有被除式,商及余数,被除式减去余数再除以商即可得到除式.10.答案:-2x3y+1解析:【解答】(6x5y-3x2)÷(-3x2)=6x5y÷(-3x2)+(-3x2)÷(-3x2)=-2x3y+1.【分析】利用多项式除以单项式的法则,先用多项式的每一项除以单项式,再把所得的商相加计算即可.三、解答题11.答案:2×10年解析:【解答】该市用电量为2.75×103×105=2.75×108(5.5×109)÷(2.75×108)=(5.5÷2.75)×109-8=2×10年.答:三峡工程该年所发的电能供该市居民使用2×10年.【分析】先求出该市总用电量,再用当年总发电量除以用电量;然后根据同底数幂相乘,底数不变指数相加与同底数幂相除,底数不变指数相减计算.12.答案:(1)3x3-2x2+1;(2)4x2y2+16xy2-1;(3)(-3a n+1+3a n-1)÷3a n-1=-3a2+1.解析:【解答】(1)(30x4-20x3+10x)÷10x=3x3-2x2+1;(2)(32x3y3z+16x2y3z-8xyz)÷8xyz=4x2y2+16xy2-1;(3)(6a n+1-9a n+1+3a n-1)÷3a n-1=(-3a n+1+3a n-1)÷3a n-1=-3a2+1.【分析】(1)根据多项式除以单项式的法则计算即可;(2)根据多项式除以单项式的法则计算即可;(3)先合并括号内的同类项,再根据多项式除以单项式的法则计算即可.13.答案:39.解析:【解答】(x m÷x2n)3÷x2m-n=(x m-2n)3÷x2m-n=x3m-6n÷x2m-n=x m-5n因它与2x3为同类项,所以m-5n=3,又m+5n=13,∴m=8,n=1,所以m2-25n=82-25×12=39.【分析】根据同底数幂相除,底数不变指数相减,对(x m÷x2n)3÷x2m-n 化简,由同类项的定义可得m-5n=2,结合m+5n=13,可得答案.14.答案:1解析:【解答】原式=9a6n÷(27a4n)=a2n,∵a2n=3,∴原式=×3=1.【分析】先进行幂的乘方运算,然后进行单项式的除法,最后将a2n=3整体代入即可得出答案.15.答案:20.解析:【解答】根据题意得:(2.6×107)÷(1.3×106)=2×10=20,则人造地球卫星的速度飞机速度的20倍.【分析】根据题意列出算式,计算即可得到结果.。
《整式的除法》习题一、选择题1.下列计算正确的是( )A.a 6÷a 2=a 3B.a +a 4=a 5C.(ab 3)2=a 2b 6D.a -(3b -a )=-3b2.计算:(-3b 3)2÷b 2的结果是( )A.-9b 4B.6b 4C.9b 3D.9b 43.“小马虎”在下面的计算中只做对一道题,你认为他做对的题目是( )A.(ab )2=ab 2B.(a 3)2=a 6C.a 6÷a 3=a 2D.a 3•a 4=a 124.下列计算结果为x 3y 4的式子是( )A.(x 3y 4)÷(xy )B.(x 2y 3)•(xy )C.(x 3y 2)•(xy 2)D.(-x 3y 3)÷(x 3y 2)5.已知(a 3b 6)÷(a 2b 2)=3,则a 2b 8的值等于( )A.6B.9C.12D.816.下列等式成立的是( )A.(3a 2+a )÷a =3aB.(2ax 2+a 2x )÷4ax =2x +4aC.(15a 2-10a )÷(-5)=3a +2D.(a 3+a 2)÷a =a 2+a7.下列各式是完全平方式的是() A 、412+-x x B 、241x + C 、22b ab a ++ D 、122-+x x 8.下列计算正确的是( ) A 、222)2)(2(y x y x y x -=+- B 、229)3)(3(y x y x y x -=+-C 、1625)54)(54(2+=---n n nD 、22))((m n n m n m -=+--- 二、填空题9.计算:(a 2b 3-a 2b 2)÷(ab )2=_____.10.七年级二班教室后墙上的“学习园地”是一个长方形,它的面积为6a 2-9ab +3a ,其中一边长为3a ,则这个“学习园地”的另一边长为_____.11.已知被除式为x 3+3x 2-1,商式是x ,余式是-1,则除式是_____.12.计算:(6x 5y -3x 2)÷(-3x 2)=_____.13.若35,185==yx , 则y x 25-= 14.()()()()32223282y x x y x -⋅-⋅--= ; 15.若1004x y +=,2x y -=,则代数式22x y -的值是 。
专题3.7 整式的除法运算(专项训练)1.计算:(1)(9x5+12x3﹣6x)÷3x;(2)(﹣2x+1)(3x﹣2).【解答】解:(1)(9x5+12x3﹣6x)÷3x=3x4+4x2﹣2;(2)(﹣2x+1)(3x﹣2)=﹣6x2+4x+3x﹣2=﹣6x2+7x﹣2.2.计算:(1)3x2(2x﹣1);(2)(12a3﹣6a2+3a)÷3a.【解答】解:(1)原式=6x3﹣3x2.(2)原式=4a2﹣2a+1.3.计算:(1)(x﹣3)(x+1);(2)(15a2b﹣10ab2)÷5ab.【解答】解:(1)原式=x2+x﹣3x﹣3=x2﹣2x﹣3.(2)原式=15a2b÷5ab﹣10ab2÷5ab=3a﹣2b.4.计算:(1)3y•5y2;(2)(15y2﹣5y)÷5y.【解答】解:(1)原式=3×5(y•y2)=15y3;(2)原式=15y2÷5y﹣5y÷5y5.计算:(1)a2(5a﹣3b);(2)(m2n+2m3n﹣3m2n2)÷(m2n).【解答】解:(1)原式=5a3﹣3a2b;(2)(m2n+2m3n﹣3m2n2)÷(m2n)=m2n÷m2n+2m3n÷m2n﹣3m2n2÷m2n=1+2m﹣3n.6.计算:(12x3﹣18x2+6x)÷(﹣6x).【解答】解:(12x3﹣18x2+6x)÷(﹣6x)=﹣2x2+3x﹣1.7.计算:.【解答】解:原式=3x2y2÷xy﹣2xy2÷xy+xy÷xy=6xy﹣4y+2.7.计算:[4y(2x﹣y)+2x(y﹣2x)]÷(4x﹣2y).【解答】解:[4y(2x﹣y)+2x(y﹣2x)]÷(4x﹣2y)=[4y(2x﹣y)﹣2x(2x﹣y)]÷[2(2x﹣y)]=2(2x﹣y)(2y﹣x)÷[2(2x﹣y)]=2y﹣x.8.计算:(1)a3•a•a4+(﹣2a4)2+(a2)4;(2)(a4b7﹣a2b6)÷(﹣ab3)2.【解答】解:(1)原式=a3+1+4+(﹣2)2a4×2+a2×4=a8+4a8+a8=6a8;(2)原式=(a4b7﹣a2b6)÷()=(a4b7)÷()﹣(a2b6)÷()=24a2b﹣4.(1)(4a2b+6a2b2﹣ab2)÷2ab;(2)(2x+1)(3x2﹣2x+2).【解答】解:(1)(4a2b+6a2b2﹣ab2)÷2ab=4a2b÷2ab+6a2b2÷2ab﹣ab2÷2ab=2a+3ab﹣.(2)(2x+1)(3x2﹣2x+2)=2x•3x2+2x•(﹣2x)+2x•2+1•3x2+1•(﹣2x)+1×2=6x3﹣4x2+4x+3x2﹣2x+2=6x3﹣x2+2x+2.11.计算:(12a4﹣4a3﹣8a2)÷(2a)2.【解答】解:原式=(12a4﹣4a3﹣8a2)÷4a2=3a2﹣a﹣2.12.计算:(1)(8x3y2﹣4x2y2)÷(2xy)2;(2)(x﹣3)4÷(x﹣3)2.【解答】解:(1)原式=(8x3y2﹣4x2y2)÷(4x2y2)=8x3y2÷(4x2y2)﹣4x2y2÷(4x2y2)=2x﹣1;(2)(x﹣3)4÷(x﹣3)2=(x﹣3)2=x2﹣6x+9.13.计算:[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷3x2y.【解答】解:原式=[x3y2﹣x2y﹣(x2y﹣x3y2)]÷3x2y=(x3y2﹣x2y﹣x2y+x3y2)÷3x2y=(2x3y2﹣2x2y)÷3x2y=2x3y2÷3x2y﹣2x2y÷3x2y=xy﹣.14.(2022秋•沙坪坝区期末)计算:(1)a8÷a2﹣a•a5+(a2)3;(2)[(x+y)(x﹣y)﹣x(x﹣2y)]÷y.【解答】解:(1)原式=a6﹣a6+a6=a6;(2)原式=(x2﹣y2﹣x2+2xy)÷y=(﹣y2+2xy)÷y=﹣y+2x.15.(2022秋•汉南区校级期末)计算:(1)(﹣a2)2b2÷4a4b2;(2)(x+2)2+(x+2)(x﹣2)﹣2x2.【解答】解:(1)(﹣a2)2b2÷4a4b2=a4b2÷4a4b2=;(2)(x+2)2+(x+2)(x﹣2)﹣2x2=x2+4x+4+x2﹣4﹣2x2=4x.16.(2022秋•雄县校级期末)计算:(1);(2)(﹣m+n)(m+n)﹣(m﹣2n)2.【解答】解:(1)原式==(16x2﹣3xy)÷4x=;(2)原式=n2﹣m2﹣(m2﹣4mn+4n2)=n2﹣m2﹣m2+4mn﹣4n2=﹣2m2+4mn﹣3n2.17.(2022秋•邯山区校级期末)计算:(1)(a+2b)(a﹣2b)﹣(a﹣b)2;(2)﹣2x2x4﹣(﹣3x3)2﹣x9÷x3.【解答】解:(1)原式=a2﹣4b2﹣(a2﹣2ab+b2)=a2﹣4b2﹣a2+2ab﹣b2=﹣5b2+2ab;(2)原式=﹣2x6﹣9x6﹣x6=﹣12x6.18.(2022秋•灵宝市校级期末)计算:(1)(15x2y﹣10xy2)÷5xy;(2)(2x﹣1)2﹣(2x+5)(2x﹣5);(3)[2a2•8a2+(2a)3﹣4a2]÷2a.【解答】解:(1)(15x2y﹣10xy2)÷5xy=15x2y÷5xy﹣10xy2÷5xy=3x﹣2y;(2)(2x﹣1)2﹣(2x+5)(2x﹣5)=4x2﹣4x+1﹣(4x2﹣25)=4x2﹣4x+1﹣4x2+25=﹣4x+26;(3)[2a2⋅8a2+(2a)3﹣4a2]÷2a=(16a4+8a3﹣4a2)÷2a=16a4÷2a+8a3÷2a﹣4a2÷2a=8a3+4a2﹣2a.19.(2022秋•天山区校级期末)计算:(1)4a4b3÷(﹣2ab)2;(2)(3x﹣y)2﹣(3x+2y)(3x﹣2y).【解答】解:(1)4a4b3÷(﹣2ab)2=4a4b3÷4a2b2=a2b;(2)(3x﹣y)2﹣(3x+2y)(3x﹣2y)=9x2﹣6xy+y2﹣9x2+4y2=5y2﹣6xy.20.(2022秋•番禺区校级期末)计算:(1)(﹣a2)3•(3a)2;(2)4(x+1)2﹣(2x+3)(2x﹣3).【解答】解:(1)(﹣a2)3•(3a)2=﹣a6•9a2=﹣9a8;(2)4(x+1)2﹣(2x+3)(2x﹣3)=4(x2+2x+1)﹣(4x2﹣9)=4x2+8x+4﹣4x2+9=8x+13.21.(2022秋•阿瓦提县期末)计算(1)x3y3÷(xy)2.(2)[(xy﹣2)(xy+2)﹣2x2y2+4]÷(xy).【解答】解:(1)原式=(xy)3÷(xy)2=xy.(2)原式=(x2y2﹣4﹣2x2y2+4)÷(xy)=(﹣x2y2)÷(xy)=﹣xy.22.(2022秋•宝山区期末)计算:(21x6y6﹣42x5y4)÷7x5y3+2y.【解答】解:(21x6y6﹣42x5y4)÷7x5y3+2y=3xy3﹣6y+2y=3xy3﹣4y.23.(2022秋•越秀区校级期末)计算:[(x﹣y)2﹣(x+3y)(x﹣3y)]÷2y.【解答】解:原式=[x2﹣2xy+y2﹣(x2﹣9y2)]÷2y=(x2﹣2xy+y2﹣x2+9y2)÷2y=(﹣2xy+10y2)÷2y=﹣x+5y.24.(2022秋•和平区校级期末)化简(1)(5x+2y)(3x﹣2y)(2)(2a﹣1)(2a+1)﹣a(4a﹣3)【解答】解:(1)(5x+2y)(3x﹣2y)=15x2﹣10xy+6xy﹣4y2=15x2﹣4xy﹣4y2;(2)(2a﹣1)(2a+1)﹣a(4a﹣3)=4a2﹣1﹣4a2+3a=3a﹣1.25.(2022秋•平城区校级期末)计算:(1)a4+(﹣2a2)3﹣a8÷a4;(2)(m+3n)(m﹣3n)+(2m﹣3n)2.【解答】解:(1)原式=a4﹣8a6﹣a4=﹣8a6;(2)原式=(m2﹣9n2)+(4m2﹣12mn+9n2)=m2﹣9n2+4m2﹣12mn+9n2=5m2﹣12mn.26(2022秋•宽城区校级期末)计算(1)(2m2﹣m)2÷(﹣m2);(2)(y+2)(y﹣2)﹣(y﹣1)(y+5).【解答】解:(1)原式=(4m4﹣4m3+m2)÷(﹣m2)=﹣4m2+4m﹣1;(2)原式=y2﹣4﹣(y2+5y﹣y﹣5)=y2﹣4﹣y2﹣4y+5=﹣4y+1.27.(2022秋•洪山区校级期末)计算:(1)a3•a+(﹣3a3)2÷a2;(2)(2a+b)(2a﹣b)﹣2(a﹣b)2.【解答】解:(1)原式=a4+9a6÷a2=a4+9a4=10a4;(2)原式=4a2﹣b2﹣2(a2﹣2ab+b2)=4a2﹣b2﹣2a2+4ab﹣2b2=2a2﹣3b2+4ab.28.(2022•蒲城县一模)计算:(﹣3)﹣2=()A.9B.C.D.﹣9【答案】B【解答】解:,故选:B.29.(2022春•镇巴县期末)计算﹣3﹣2的结果是()A.﹣9B.﹣6C.D.【答案】C【解答】解:﹣3﹣2=﹣=﹣,故选:C.30.(2022春•江都区月考)若,则a、b、c大小关系正确的是()A.a<b<c B.b<a<c C.a<c<b D.b<c<a【答案】C【解答】解:a=﹣,b=9,c=1,∴a<c<b,故选:C.31.(雨花台区校级期末)计算:﹣(3×2﹣4)0+(﹣)﹣3﹣4﹣2×(﹣)﹣3.【解答】解:﹣(3×2﹣4)0+(﹣)﹣3﹣4﹣2×(﹣)﹣3=﹣1﹣8﹣×(﹣64)=﹣9+4=﹣532.(2019秋•开远市期末)计算:﹣()2×9﹣2×(﹣)÷+4×(﹣0.5)2【解答】解:=×××+4×=+1=133.(顺义区期末)计算:(﹣1)﹣2018+()2﹣(π﹣4)0﹣3﹣2;【解答】解:原式=1+﹣1﹣=.34.(2020•高淳区二模)计算:.【解答】解:原式=﹣8÷4+4﹣2+1=﹣2+4﹣2+1=1.35.(普宁市期末)计算:0.25×(﹣2)﹣2÷(16)﹣1﹣(π﹣3)0.【解答】解:原式=0.25×÷﹣1=÷﹣1=1﹣1=0.36.(南海区期末)计算:(﹣1)2018+(﹣)﹣2﹣()0+16×2﹣3【解答】解:原式=1+9﹣1+2=11。
《整式的除法》习题一、选择題1. 下列计算正确的是()-T- a-a C.(日F )'二才” (3Z T -5)=-3Z?2•计算:(-3們2三庁的结果是()3. “小马虎”在下面的计算中只做对一道题,你认为他做对的题目是()A. (ab ) 2-al} B ・(S') 2-a 4-a-d •4. 下列计算结果为/”的式子是()A. (xy ) 4- (xy) B ・('y') • (%y) C ・(%匸)• (") D. ) 4- (xy)5. 已知(^6)4-(aW)=3,则的值等于()6. 下列等式成立的是()C. (15a"-10a ) 4- (-5)二3尹2D. (d+W )十2=/+日7. 下列各式是完全平方式的是( )C 、(-4 一 5/?)(4 一 5/?) = 25〃2 +16D 、(-in 一 n )(-m + //) = n 2 一 m 2二、填空题9. 计算:(才方‘-孑方)十(必)2=__ .10. 七年级二班教室后墙上的''学习园地”是一个长方形,它的面积为6/-9。
決3日,其中一边长为3日,则这 个“学习园地”的另一边长为. .11. 已知被除式为A3Z-U 商式是汕余式是-1,则除式是(3耳+自)4-z?=3aB. (2cV+/x)十4日AF 2卅4nA> — x + — B 、1 + 4・L 4 8.下列计算正确的是( C 、+ cib + Z?~)D 、+ 2x — 1 A. (x-2y)(x + 2y) = x 2 -2y 2 B 、(3x_y)(3x+y) = 9〒12 ・计算:(6F广3”)4- (-3”)二13. 若5V =18,5V = 3,则5_2一___________14. (-2x2y/ -8(x2)2 -(-x)2 -(-y)3 = _________________ :15. 若x+y = 1004, x-y = 2,则代数式x2 -y2的值是__________________ 。