2013新课标高中物理总复习第13章---第3讲
- 格式:ppt
- 大小:1.50 MB
- 文档页数:35
第十三章电磁感应与电磁波初步1、磁场磁感线一认识磁场的性质1.对磁场性质的理解:基本性质对放入其中的磁体或电流产生力的作用客观性质磁场虽然不是由分子、原子组成的,但是它和常见的桌子、房屋、水和空气一样,是一种客观存在的物质特殊性质磁场和常见的由分子、原子组成的物质不同,它是以一种场的形式存在的形象性磁体之间、磁体与电流间,电流与电流间通过磁场发生作用,如同用弹簧连接的小球,靠弹簧发生相互作用一样2.电场与磁场的比较:比较项目电场磁场不同点产生电荷周围磁体、电流、运动电荷周围基本性质对放入其中的电荷有电场力的作用对放入其中的磁极、电流有磁场力的作用作用特点对放入其中的磁体无力的作用对放入其中的静止电荷无力的作用相同点磁场和电场一样,都是不依赖于人的意志而客观存在的特殊物质,都具有能量【思考·讨论】图一中异名磁极相互吸引,同名磁极相互排斥,图二中一段直导线悬挂在蹄形磁铁的两极间,通以电流,导线就会移动;图三中两条通过同向电流的导线相互吸引,通过反向电流的导线相互排斥,这些相互作用是怎样实现的?提示:磁体的周围和电流的周围都存在着磁场,磁体和磁体之间、磁体和电流之间、电流和电流之间的相互作用都是通过磁场来传递的。
【典例示范】下列关于磁场的说法中,正确的是( )A.只有①磁铁周围才存在磁场B.磁场是为了解释磁极间的相互作用而人为规定的C.磁场只有②在磁极与磁极、磁极和通电导线发生作用时才产生D.磁极与磁极之间、磁极与通电导线之间、通电导线与通电导线之间都是通过磁场发生相互作用的【审题关键】序号信息提取①电流周围也有磁场②电流和电流之间发生作用时也有【解析】选D。
磁场存在于磁体周围和电流周围,故A错误;磁场是实际存在的,不是假想的,磁感线是假想的,故B错误;磁场存在于磁体和电流周围,即使没有发生作用,磁场仍然是存在的,故C错误;磁极与磁极,磁极与电流、电流与电流之间都是通过磁场发生相互作用的,故D正确。
物理13章知识点归纳总结第一节:力和牛顿运动定律1. 力的概念:力是物体相互作用的结果,具有大小和方向。
2. 牛顿第一定律(惯性定律):物体静止或匀速直线运动时,受力和加速度为零。
3. 牛顿第二定律(动力学方程):物体受到的力与其加速度成正比,反比于物体质量。
4. 牛顿第三定律(作用-反作用定律):相互作用的两个物体对彼此施加的力大小相等、方向相反。
第二节:运动的描述和曲线运动1. 位移和位移矢量:物体从初始位置到终点位置的位移以及与距离的区别。
2. 平均速度和瞬时速度:描述物体运动的速度概念。
3. 加速度:速度随时间的变化率,可以是正值、负值或零。
4. 一维曲线运动:描述物体在一条直线上的运动,如匀速运动和变速运动。
5. 二维曲线运动:描述物体在平面上的运动,如圆周运动和抛体运动。
第三节:牛顿运动定律的应用1. 平面运动:应用牛顿运动定律解决平面上匀速直线运动和曲线运动问题。
2. 弹力和重力:弹力由弹性物体恢复形状产生,重力是地球对物体的吸引力。
3. 摩擦力:物体之间表面接触产生的阻碍运动力,可以分为静摩擦力和动摩擦力。
4. 斜面运动:分析物体在斜面上的运动情况,考虑斜面的倾角和摩擦力的影响。
5. 圆周运动:物体围绕固定轴的运动,通过角速度和圆周加速度等参数来描述。
第四节:功、动能和机械能守恒1. 功:力对物体做功的量度,与力的大小、物体的位移以及力和位移之间的夹角有关。
2. 动能:描述物体运动能量的概念,包括动能定理和动能守恒。
3. 功率:描述功在单位时间内所做的工作量。
4. 动量:物体运动的量度,由质量和速度的乘积得出。
5. 机械能守恒定律:在没有外力和摩擦力的情况下,一个系统的机械能保持不变。
第五节:弹性碰撞和静电场1. 弹性碰撞:两个物体发生碰撞后能量守恒,动量守恒,且碰撞前后的动能之和保持不变。
2. 静电场:电荷相互作用产生的力场,由带电物体周围的电荷引起。
3. 应用静电定律:静电力和电场强度的关系,通过库伦定律计算电荷之间的作用力。
物理第十三章复习资料物理第十三章复习资料物理学作为一门自然科学,研究的是物质和能量之间的相互关系。
而在物理学的学习过程中,第十三章是一个非常重要的章节,涉及到电磁波和光的性质。
本文将为大家提供一些关于物理第十三章的复习资料,帮助大家更好地理解和掌握这一章节的内容。
一、电磁波的基本概念电磁波是一种由电场和磁场相互作用而产生的波动现象。
它是一种横波,能够在真空和介质中传播。
电磁波的频率和波长之间存在着一定的关系,即c=λν,其中c是光速,λ是波长,ν是频率。
电磁波的频率范围很广,从无线电波、微波、红外线、可见光、紫外线、X射线到γ射线,波长从数百米到10^-12米不等。
二、电磁波的特性和性质1. 反射和折射:电磁波在介质边界上遇到时,会发生反射和折射现象。
反射是指电磁波在介质边界上遇到时,一部分波束返回原来的介质中;折射是指电磁波从一种介质传播到另一种介质时改变传播方向。
2. 干涉和衍射:电磁波在遇到障碍物时,会发生干涉和衍射现象。
干涉是指两束或多束电磁波相遇时,互相叠加形成干涉图样;衍射是指电磁波在通过小孔或绕过障碍物时发生弯曲和扩散。
3. 偏振:电磁波可以是偏振的,即电场矢量只在一个特定的方向上振动。
常见的偏振方式有线偏振和圆偏振。
三、光的本质和光的传播速度光既可以被看作是一种波动现象,也可以被看作是一种粒子现象。
这种二象性是光的本质。
根据光的波动性质,我们可以解释光的干涉、衍射和偏振现象;而根据光的粒子性质,我们可以解释光的能量量子化和光电效应等现象。
光的传播速度是一个常数,即光速c。
在真空中,光速的数值约为3.00×10^8m/s。
光在介质中传播时,会因为介质的折射率而改变传播速度。
四、光的反射和折射定律光在介质边界上发生反射和折射时,遵循反射定律和折射定律。
反射定律:入射光线、反射光线和法线所在的平面上的入射角等于反射角。
折射定律:入射光线、折射光线和法线所在的平面上的入射角的正弦值与折射角的正弦值成正比。
3电磁感应现象及应用[学习目标] 1.知道什么是电磁感应现象.2.通过实验探究感应电流产生的条件.3.了解电磁感应现象的应用.一、划时代的发现1.“电生磁”的发现:1820年,奥斯特发现了电流的磁效应.2.“磁生电”的发现1831年,法拉第发现了电磁感应现象.3.电磁感应:法拉第把他发现的磁生电的现象叫作电磁感应,产生的电流叫作感应电流.二、产生感应电流的条件1.实验:探究感应电流产生的条件探究一:如图甲实验中,让导体棒在磁场中保持相对静止时或者平行于磁场运动时,无论磁场多强,闭合回路中都没有电流,当导体ab做切割磁感线运动时,闭合回路中有电流产生.探究二:如图乙,当线圈A的电流不变时,线圈B所在的回路中没有电流产生;当线圈A 的电流变化时,线圈B所在回路中就有了电流.2.产生感应电流的条件:当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中就产生感应电流.三、电磁感应现象的应用生产、生活中广泛使用的变压器、电磁炉等都是根据电磁感应制造的.1.判断下列说法的正误.(1)只要闭合电路内有磁通量,闭合电路中就有感应电流产生.(×)(2)穿过闭合线圈的磁通量发生变化时,线圈内部就一定有感应电流产生.(√)(3)闭合电路的一部分导体做切割磁感线运动时,电路中会产生感应电流.(√)(4)不论电路是否闭合,只要电路中磁通量发生变化,电路中就有感应电流.(×)2.如图所示,条形磁体A沿竖直方向插入线圈B的过程中,电流表G的指针(选填“不偏转”或“偏转”);若条形磁体A在线圈B中保持不动,电流表G的指针(选填“不偏转”或“偏转”).答案偏转不偏转一、磁通量的变化磁通量的变化大致可分为以下几种情况:(1)磁感应强度B不变,有效面积S发生变化.如图(a)所示.(2)面积S不变,磁感应强度B发生变化.如图(b)所示.(3)磁感应强度B和面积S都不变,它们之间的夹角发生变化.如图(c)所示.例1(2022·普洱市景东一中高二月考)如图所示,在条形磁体外面套着一圆环,当圆环由磁体N极向下平移到磁体S极的过程中,圆环所在处的磁感应强度和穿过圆环的磁通量变化的情况是()A.磁感应强度和磁通量都逐渐增大B.磁感应强度和磁通量都逐渐减小C.磁感应强度先减弱后增强,磁通量先增大后减小D.磁感应强度先增强后减弱,磁通量先减小后增大答案 C解析当圆环由磁体N极向下平移到磁体S极的过程中,磁感应强度先减弱后增强;磁铁内部磁感线与外部磁感线的总数相等,所以穿过圆环的磁感线条数一定是内部大于外部,则外部磁感线条数越多,总磁通量越小,所以穿过圆环的磁通量先增大后减小.故选C.针对训练1如图所示,通电直导线右边有一个矩形线框,线框平面与直导线共面,若使线框逐渐远离(平动)通电导线,则穿过线框的磁通量将()A.逐渐增大B.逐渐减小C.保持不变D.不能确定答案 B解析线框远离导线时,穿过线框的磁感应强度减小,线框的面积不变,所以穿过线框的磁通量减小.故选B.二、产生感应电流的条件1.实验:探究感应电流产生的条件(1)实验一:如图所示,导体棒AB做切割磁感线运动时,线路中电流产生,而导体棒AB顺着磁感线运动时,线路中电流产生.(均选填“有”或“无”)(2)实验二:如图所示,当条形磁体插入或拔出线圈时,线圈中电流产生,但条形磁体在线圈中静止不动时,线圈中电流产生.(均选填“有”或“无”)(3)实验三:如图所示,将小线圈A插入大线圈B中不动,当开关S闭合或断开时,电流表中电流通过;若开关S一直闭合,当改变滑动变阻器的阻值时,电流表中电流通过;而开关S一直闭合,滑动变阻器的滑动触头不动时,电流表中电流通过.(均选填“有”或“无”)(4)归纳总结:实验一:导体棒做切割磁感线运动,回路的有效面积发生变化,从而引起了磁通量的变化,产生了感应电流.实验二:磁体插入或拔出线圈时,线圈中的磁场发生变化,从而引起了磁通量的变化,产生了感应电流.实验三:开关闭合、断开或滑动变阻器的滑动触头移动时,小线圈A中电流变化,从而引起穿过大线圈B的磁通量变化,产生了感应电流.三个实验共同特点是:产生感应电流时闭合回路的磁通量都发生了变化.答案(1)有无(2)有无(3)有有无2.感应电流产生条件的理解不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然会产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,且穿过该电路的磁通量也一定发生了变化.例2(多选)(2021·北京四中期中)如图所示,下列情况能产生感应电流的是()A.如图甲所示,导体棒AB顺着磁感线运动B.如图乙所示,条形磁体插入或抽出线圈C.如图丙所示,小螺线管A插入大螺线管B中不动,开关S一直闭合D.如图丙所示,小螺线管A插入大螺线管B中不动,开关S一直闭合,改变滑动变阻器接入电路的阻值答案BD解析导体棒顺着磁感线运动,没有切割磁感线,穿过闭合电路的磁通量没有发生变化,无感应电流,故选项A错误;条形磁体插入线圈时线圈中的磁通量增加,抽出线圈时线圈中的磁通量减少,都产生感应电流,故选项B正确;开关S一直闭合,回路中为恒定电流,螺线管A产生的磁场稳定,螺线管B中的磁通量无变化,线圈中不产生感应电流,故选项C错误;开关S一直闭合,滑动变阻器接入电路的阻值变化,回路中的电流变化,螺线管A产生的磁场发生变化,螺线管B中磁通量发生变化,产生感应电流,故选项D正确.例3(多选)下图中能产生感应电流的是()答案BD解析A选项中,电路没有闭合,无感应电流;B选项中,面积增大,通过闭合电路的磁通量增大,有感应电流;C选项中,穿过圆环的磁感线相互抵消,磁通量恒为零,无感应电流;D选项中,穿过闭合电路的磁通量减小,有感应电流.判断是否产生感应电流的技巧1.电路闭合和磁通量发生变化是产生感应电流的两个条件,二者缺一不可.2.磁通量发生变化,其主要内涵体现在“变化”上,磁通量很大,若没有变化,也不会产生感应电流.若开始时磁通量虽然是零,但是磁通量是变化的,仍然可以产生感应电流.针对训练2(2021·衡水中学期中)如图所示,条形磁体正上方放置一矩形线框,线框平面水平且与条形磁体平行,则线框由N极匀速平移到S极的过程中,线框中的感应电流的情况是()A.线框中始终无感应电流B.线框中始终有感应电流C.线框中开始有感应电流,当线框运动到磁体中部时无感应电流,过中部后又有感应电流D.线框中开始无感应电流,当线框运动到磁体中部时有感应电流,过中部后又无感应电流答案 B解析条形磁体周围的磁感线如图所示,由线框位置可知,线框从N极的正上方向右移动至S极正上方过程中,在N极正上方时,有磁感线穿过线框,在磁体正中间时,穿过线框的磁通量为零,在S极正上方时,又有磁感线穿过线框,所以,在线框向右运动的过程中,磁通量始终在变化,所以线框中始终有感应电流.故选B.考点一电磁感应现象的发现及认识1.(多选)自然界的电、热和磁等现象都是相互联系的,很多物理学家为寻找它们之间的联系做出了贡献.下列说法正确的是()A.奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系B.楞次发现了电流的磁效应,拉开了研究电与磁相互关系的序幕C.法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系D.焦耳发现了电流的热效应,定量得出了电能和热能之间的转换关系答案ACD解析奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系,故A正确,B错误;法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系,故C正确;焦耳发现了电流的热效应,定量得出了电能和热能之间的转换关系,故D正确.2.(多选)下面属于电磁感应现象的是()A.闭合电路的一部分导体做切割磁感线运动时,在电路中产生电流的现象B.通电导体周围产生磁场C.变化的磁场使闭合电路中产生电流D.电荷在电场中定向移动形成电流答案AC解析闭合电路的一部分导体做切割磁感线时,在电路中产生电流的现象是电磁感应现象,故A正确;通电导体周围产生磁场属于电流的磁效应,故B错误;变化的磁场使闭合电路中产生电流是因磁通量的变化形成感应电流,属于电磁感应现象,故C正确;电荷在电场中定向移动形成电流不是电磁感应产生的电流,不属于电磁感应现象,故D错误.考点二磁通量变化情况的判断3.(多选)闭合线圈按如图所示的方式在磁场中运动,则穿过闭合线圈的磁通量发生变化的是()答案AB解析A图中,图示状态Φ=0,转动过程中Φ不断变化,因此磁通量发生变化;B图中线圈离直导线越远磁场越弱,磁感线越疏,所以当线圈远离导线时,线圈中磁通量不断变小;C图中线圈中的磁通量为零,在向下移动过程中,线圈的磁通量一直为零,磁通量不变;D 图中,随着线圈的转动,B与S都不变,B又垂直于S,所以Φ=BS始终不变,故A、B正确.4.如图所示,在同一平面内有四根彼此绝缘的直导线,分别通有大小相同、方向如图所示的电流,要使由四根直导线所围成的面积内的磁通量增加,则应切断哪一根导线中的电流()A.切断i1B.切断i2C.切断i3D.切断i4答案 D解析根据安培定则判断出四根通电直导线中电流在所围面积内产生的磁场方向,可知只有i4中电流产生的磁场垂直于纸面向外,则要使磁通量增加,应切断i4,故选D.5.如图所示,一环形线圈沿条形磁铁的轴线,从磁铁N极的左侧A点运动到磁铁S极的右侧B点,A、B两点关于磁铁的中心对称,则在此过程中,穿过环形线圈的磁通量将()A.先增大,后减小B.先减小,后增大C.先增大,后减小、再增大,再减小D.先减小,后增大、再减小,再增大答案 A解析穿过线圈的磁通量应以磁铁内部磁场为主的,而内部的磁感线是一定值,在A、B点时,外部磁感线比较密,即与内部相反的磁感线多,相抵后剩下的内部的磁感线就少;中间位置时,外部磁感线比较疏,即与内部相反的磁感线少,相抵后剩下的内部的磁感线就多.所以两端磁通量小,中间磁通量大,A正确.考点三有无感应电流的判断6.(2021·哈尔滨市宾县月考)法拉第在1831年发现了“磁生电”现象.如图所示,他把两个线圈绕在同一个软铁环上,线圈A和电池连接,线圈B用长直导线连通,在长直导线正下方平行于导线放置一个小磁针,下列有关实验现象的说法中正确的是()A.只要线圈A中电流足够大,小磁针就会发生偏转B.线圈A闭合开关电流稳定后,线圈B匝数较少时小磁针不偏转,匝数足够多时小磁针偏转C.线圈A和电池接通瞬间,小磁针会偏转D.线圈A和电池断开瞬间,小磁针不会偏转答案 C解析小磁针会不会偏转取决于线圈B中有没有电流,而线圈B中有没有电流取决于线圈B 中的磁通量是否发生变化,当线圈A中电流足够大,但不变化时,线圈B中无感应电流,小磁针不会发生偏转,A错误;当线圈A闭合开关电流稳定后,穿过线圈B的磁通量不发生变化,所以小磁针也不会发生偏转,故B错误;线圈A和电池接通或断开的瞬间,穿过线圈B 的磁通量发生变化,所以线圈B中有感应电流,则小磁针会偏转,故C正确,D错误.7.(多选)下列情况中都是线框在磁场中做切割磁感线运动,其中线框中有感应电流的是()答案BC解析A中导体虽然“切割”了磁感线,但穿过闭合线框的磁通量并没有发生变化,没有感应电流.B中线框的一部分导体“切割”了磁感线,穿过线框的磁感线条数越来越少,线框中有感应电流.C中虽然与A近似,但由于是非匀强磁场,运动过程中,穿过线框的磁感线条数增加,线框中有感应电流.D中线框尽管是部分切割,但磁感线条数不变,无感应电流.故选B、C.8.(2021·哈尔滨市南岗区期中)某实验装置如图所示,在铁芯P上绕着两个线圈A和B.如果线圈A中电流i随时间t的关系有如图所示的A、B、C、D四种情况,那么在t1到t2这段时间内,哪种情况线圈B中没有感应电流()答案 A解析通过线圈A的电流发生变化,电流产生的磁感应强度发生变化,穿过线圈B的磁通量发生变化,才能产生感应电流,在t1到t2这段时间内,B、C、D图中线圈A中的电流发生变化,线圈B中会产生感应电流,而A图中电流不变,在线圈B上不产生感应电流,故选A.9.(多选)(2022·贺州市平桂高级中学高二月考)如图所示,导线ab和cd互相平行,则下列四种情况中,导线cd中有电流产生的是()A.开关S闭合或断开的瞬间B.开关S是闭合的,但滑动触头向左滑C.开关S是闭合的,但滑动触头向右滑D.开关S始终闭合,滑动触头不动答案ABC解析导线cd中有电流产生的原因是回路中的磁通量发生变化,上半部分中的磁场是由导线ab中的电流激发的,如果想让磁感应强度变化,导线ab中的电流应发生变化,开关闭合或断开瞬间,电流从无到有或从有到无,发生了变化;开关闭合,滑动触头向左滑,电流减小;开关闭合,滑动触头右滑,电流变大;开关闭合,滑动触头不变,电流不变.故A、B、C 正确,D错误.10.(多选)(2021·黄冈中学期中)如图所示,是一水平放置的矩形线圈abcd,在细长的磁体的N 极附近竖直下落,整个下落过程中线圈保持水平,由图中的位置A经过位置B到位置C,这三个位置都靠得很近且位置B刚好在条形磁体的中心轴线上.在这个过程中,下列说法正确的是()A.由位置A到位置B,线圈内不产生感应电流B.由位置A到位置B,线圈内产生感应电流C.由位置B到位置C,线圈内产生感应电流D.由位置B到位置C,线圈内不产生感应电流答案BC解析如图所示,作出线圈下落过程示意图,由图可知,从位置A到位置B的过程中,从线圈下面向上穿过线圈的磁通量减少(B位置时,Φ=0);而从位置B到位置C时,从线圈上面向下穿过线圈的磁通量增加,故由位置A到位置B和位置B到位置C的两个过程中,穿过线圈的磁通量都发生变化,线圈中都会产生感应电流,故B、C正确,A、D错误.11.如图所示,一通电螺线管b放在闭合金属线圈a内,螺线管的中心线恰好和线圈的一条直径MN重合.要使线圈a中产生感应电流,可采用的方法有()A.使螺线管在线圈a所在平面内转动B.使螺线管中的电流发生变化C.使线圈a以MN为轴转动D.使线圈a以与MN垂直的直径为轴转动答案 D解析题图所示位置,线圈a所在平面与磁感线平行,穿过线圈的磁通量为零,当按A、B、C所述方式变化时,磁通量不变,不产生感应电流;按D所述方式变化时,由于线圈a与磁场夹角变化引起磁通量变化,能够产生感应电流,故选D.12.(多选)在匀强磁场中有两根平行的金属导轨,磁场方向与导轨平面垂直,导轨上有两根可沿导轨平动的导体棒ab、cd,两根导体棒匀速移动的速度大小分别为v1和v2,如图所示,则下列情况可以使回路中产生感应电流的是()A.ab、cd均向右运动,且v1=v2B.ab、cd均向右运动,且v1>v2C.ab、cd均向左运动,且v1>v2D.ab向右运动,cd向左运动,且v1=v2答案BCD解析ab、cd均向右运动,当v1=v2时,闭合回路的磁通量不变,故无感应电流产生,A项错误;B、D两项所述情况,闭合回路的磁通量增加,C项所述情况,闭合回路的磁通量减少,均有感应电流产生,故B、C、D正确.13.(多选)如图所示,水平面内有两条相互垂直且彼此绝缘的通电长直导线,以它们为坐标轴构成一个平面直角坐标系.四个相同的圆形闭合线圈在四个象限内完全对称地放置,两直导线中的电流大小与变化情况相同,电流方向如图所示,当两直导线中的电流都增大且变化量相同时,四个线圈a 、b 、c 、d 中感应电流的情况是( )A .线圈a 中有感应电流B .线圈b 中有感应电流C .线圈c 中无感应电流D .线圈d 中无感应电流答案 AD解析 由安培定则可判断出两通电直导线产生的磁场在第Ⅰ、Ⅲ象限中方向均相同,当两直导线中的电流都增大时,线圈a 、c 中磁通量增大,产生感应电流,选项A 正确,C 错误;利用对称性和安培定则可判断出两通电直导线产生的磁场在第Ⅱ、Ⅳ象限中方向均相反,且线圈b 、d 中的磁通量为零,当两直导线中的电流都增大且变化量相同时,线圈b 、d 中的磁通量仍为零,线圈b 、d 中无感应电流,选项B 错误,D 正确.14.如图所示,一有界匀强磁场,宽度为d ,使一边长为l 的正方形导线框以速度v 向右匀速通过磁场区域,若d >l ,则导线框通过磁场过程中,导线框中不产生感应电流的时间应等于( )A.d vB.l vC.d -l vD.d -2l v答案 C解析 当导线框刚好完全进入磁场时至导线框刚好要出磁场时,穿过导线框的磁通量不发生变化,导线框中不会产生感应电流,对应的位移为d -l ,所以时间为t =d -l v ,选项C 正确.。
第3节电磁感应现象及应用教学设计问题与目标1.了解电磁感应发现的过程,提高学生的分析、论证能力。
2.知道电磁感应现象,以及电磁感性现象的产生及其条件。
重点与难点重点1.知道什么是电磁感应现象.2.了解产生感应电流的条件。
难点1.电磁感应现象的产生及其条件。
2.电磁感应现象中的能量转化特点。
教学准备教师要求条形磁体、电源、导线、原线圈、副线圈、滑动变阻器、开关、电流计。
学生要求复习磁通量,预习本节知识点.教学过程一、导入新课我们知道,闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生磁感应电流。
那么,切割磁感线是产生感应电流的唯一方法吗?还有其他方法吗?这些方法有什么内在联系吗?二、新课教学(一)划时代的发现奥斯特发现的电流的磁效应,震动了整个科学界,它证实电现象与磁现象是有联系的.有关电与磁关系的崭新研究领域洞开在人们面前,激发了科学家们的探索热情。
人们从电流磁效应的对称性角度,开始思考如下的问题:既然电流能够引起磁针的运动,那么,为什么不能用磁体使导线中产生电流呢?人们早就认识了磁化现象,知道磁体能使附近的铁棒产生磁性,带电体能在导体上感应出电荷。
联系到电流的磁效应,法拉第敏锐地觉察到,磁与电之间也应该有这种“感应”。
在1822年的提出了由磁产生电的想法.1831 年,法拉第把两个线圈绕在一个铁环上,一个线圈接电源,另一个线圈接“电流表”。
当给一个线圈通电或断电的瞬间,在另一个线圈上出现了电流。
他在1831年8月29日的日记中写下了首次成功的记录.法拉第从中领悟到,“磁生电”是一种在变化、运动的过程中才能出现的效应.于是,他又设计并动手做了几十个实验,使深藏不露的各种“磁生电”的现象显现而出。
他把这些现象定名为电磁感应,产生的电流叫作感应电流。
法拉第总结出五种产生感应电流的类型:变化着的电流、变化着的磁场、运动的恒定电流、运动的磁体、在磁场中运动的导体。
(二)产生感应电流的条件根据上图组装实验装置,线圈A、变阻器、开关和电源串联,线圈C两端连接在电流表上,把线圈A装在线圈B的里面。
高考物理一轮复习讲义--3-3[高考导航]第1讲 分子动理论 内能知识排查分子动理论1.物体是由大量分子组成的 (1)分子的大小①分子直径:数量级是10-10m ; ②分子质量:数量级是10-26 kg ; ③测量方法:油膜法。
(2)阿伏加德罗常数:1 mol 任何物质所含有的粒子数,N A =6.02×1023mol -1。
2.分子热运动:一切物质的分子都在永不停息地做无规则运动。
(1)扩散现象:相互接触的不同物质彼此进入对方的现象。
温度越高,扩散越快,可在固体、液体、气体中进行。
(2)布朗运动:悬浮在液体(或气体)中的微粒的无规则运动,微粒越小,温度越高,布朗运动越显著。
3.分子力:分子间同时存在引力和斥力,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但总是斥力变化得较快。
(1)r=r0,F引=F斥,F=0(2)r>r0,F引>F斥,F为引力(3)r<r0,F引<F斥,F为斥力温度1.意义:宏观上表示物体的冷热程度(微观上表示物体中分子平均动能的大小)。
2.两种温标(1)摄氏温标和热力学温标的关系T=t+273.15__K;(2)绝对零度(0 K):是低温极限,只能接近不能达到,所以热力学温度无负值。
内能1.分子动能(1)意义:分子动能是分子做热运动所具有的能;(2)分子平均动能:所有分子动能的平均值。
温度是分子平均动能的标志。
2.分子势能(1)意义:由于分子间存在着引力和斥力,所以分子具有由它们的相对位置决定的能。
(2)分子势能的决定因素①微观上:决定于分子间距离和分子排列情况;②宏观上:决定于体积和状态。
3.物体的内能(1)概念理解:物体中所有分子的热运动的动能与分子势能的总和,是状态量;(2)决定因素:对于给定的物体,其内能大小由物体的温度和体积决定,即由物体内部状态决定;(3)物体的内能与物体的位置高低、运动速度大小无关。
(4)改变内能的方式小题速练1.(多选)目前,很多省份已开展空气中PM2.5浓度的监测工作。
温故自查1.线速度(1)物理意义:描述质点沿圆周运动的快慢.(2)方向:质点在圆弧某点的线速度方向沿圆弧该点的方向.(3)大小:v=(s是t时间内通过的弧长).切线2.角速度(1)物理意义:描述质点绕圆心转动的快慢.(2)大小:ω=(rad/s),φ是连结质点和圆心的半径在t时间内转过的角度.3.周期T、频率f做圆周运动的物体运动一周所用的叫周期.做圆周运动的物体单位时间内沿圆周绕圆心转过的圈数,叫做频率,也叫转速.4.v、ω、f、T的关系时间考点精析描述圆周运动的物理量有线速度、角速度、周期、频率、向心加速度五个物理量,线速度描述质点沿圆周运动的快慢,角速度描述质点绕圆心转动的快慢,周期和频率表示质点做圆周运动的快慢,向心加速度描述线速度方向变化的快慢.其中T、f、ω三个量是密切相关的,任意一个量确定,其它两个量就是确定的,其关系为当T、f、ω一定时,线速度v还与r有关,r越大,v越大;r越小,v越小.向心加速度是按效果命名的,总是指向圆心,方向时刻在变化,是一个变加速度.当ω一定时,a与r成正比,当v 一定时,a与r成反比,关系式为a==ω2r.注意对公式中v、r的理解,严格地说,v是相对圆心的速度,r是物体运动轨迹的曲率半径.温故自查匀速圆周运动的向心力,是按作用效果命名的,其动力学效果在于向心加速度,即只改变线速度方向,不会改变线速度的大小.表达式:对于做匀速圆周运动的物体其向心力应由其所受合外力提供,mω2r考点精析1.向心力的作用效果:产生向心加速度以不断改变物体的线速度方向,维持物体做圆周运动.2.向心力的来源向心力可以是重力、弹力、摩擦力等各种力,也可以是各力的合力或某力的分力,总之,只要达到维持物体做圆周运动效果的力,就是向心力.向心力是按力的作用效果来命名的.对各种情况下向心力的来源应明确.如:水平圆盘上跟随圆盘一起匀速转动的物体[如图(a)]和水平地面上匀速转弯的汽车,其摩擦力是向心力;圆锥摆[如图(b)]和以规定速度转弯的火车,向心力是重力与弹力的合力.3.圆周运动中向心力的分析(1)匀速圆周运动:物体做匀速圆周运动时受到的外力的合力就是向心力,向心力大小不变,方向始终与速度方向垂直且指向圆心,这是物体做匀速圆周运动的条件.(2)变速圆周运动:在变速圆周运动中,合外力不仅大小随时间改变,其方向也不沿半径指向圆心.合外力沿半径方向的分力(或所有外力沿半径方向的分力的矢量和)提供向心力,使物体产生向心加速度,改变速度的方向,合外力沿轨道切线方向的分力,使物体产生切向加速度,改变速度的大小.4.圆周运动中的动力学方程无论是匀速圆周运动,还是非匀速圆周运动,向心力和向心加速度关系仍符合牛顿第二定律即:温故自查1.定义做匀速圆周运动的物体,在合外力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐圆心的运动,叫做离心运动.远离2.离心运动的应用和危害利用离心运动制成离心机械,如:离心干燥器、洗衣机的脱水筒等.汽车、火车转弯处,为防止离心运动造成的危害,一是限定汽车和火车的转弯速度不能太;二是把路面筑成外高内低的斜坡以向心力.大增大考点精析物体做离心运动的条件:(1)做圆周运动的物体,由于本身具有惯性,总是想沿着切线方向运动,只是由于向心力作用,使它不能沿切线方向飞出,而被限制着沿圆周运动,如图中B 情形所示.(2)当产生向心力的合外力消失,F=0,物体便沿所在位置的切线方向飞出去,如图中A所示.(3)当提供向心力的合外力不完全消失,而只是小于应当具有的向心力F′=mr ω2,即合外力不足以提供所需的向心力的情况下,物体沿切线与圆周之间的一条曲线运动,如图中C所示.命题规律同轴转动或皮带传动过程中,确定线速度、角速度、向心加速度之间的关系.[考例1]某种变速自行车,有六个飞轮和三个链轮,如图所示,链轮和飞轮的齿数如下表所示,前、后轮直径约为660mm,人骑该车行进速度为4m/s时,脚踩踏板做匀速圆周运动的角速度最小值约为()A .1.9rad/sB .3.8rad/sC .6.5rad/sD .7.1rad/s[解析] 车行驶速度与前、后车轮边缘的线速度相等,故后轮边缘的线速度为4m/s ,后轮的角速度飞轮与后轮为同轴装置,故飞轮的角速度ω1=ω=12rad/s ,飞轮与链轮是用链条连接的,故链轮与飞轮线速度相同,所以ω1r1=ω2r2,r1,r2分别为飞轮和链轮的半径,因此周长L=NΔL=2πr,N为齿数,ΔL为两邻齿间的弧长,故r∝N,所以ωN1=ω2N2.1[答案] B[总结评述]皮带传动、齿轮传动装置,两轮边缘各点的线速度大小相等,根据v=ωr、a=v2/r即可讨论两轮的角速度和边缘的向心加速度的关系.在同一轮上,各点的角速度相同,根据v=ωr、a =ω2r即可讨论轮上各点的线速度和向心加速度的关系.如图所示,甲、乙、丙三个轮子依靠摩擦传动,相互之间不打滑,其半径分别为r1、r2、r3.若甲轮的角速度为ω1,则丙轮的角速度为()[解析]对甲轮边缘的线速度v1=r1ω1对乙轮边缘的线速度v2=r2ω2对丙轮边缘的线速度v3=r3ω3由各轮边缘的线速度相等得:r1ω1=r2ω=r3ω32[答案] A命题规律物体在水平面内做匀速圆周运动,确定轨道平面,确定圆心位置,确定向心力的方向,根据牛顿运动定律,求向心力或向心加速度、线速度、角速度.[考例2]如图所示,质量M=0.64kg的物体置于可绕竖直轴匀速转动的平台上,M用细绳通过光滑的定滑轮与质量为m=0.3kg的物体相连.假定M与轴O的距离r=0.2m,与平台的最大静摩擦力为2N.为使m保持静止状态,水平转台做圆周运动的角速度ω应在什么范围?(g=10m/s2)[解析]m保持静止状态时,M做圆周运动的半径不变,M的向心力由绳的拉力和静摩擦力的合力提供,由于静摩擦力的大小、方向不定,所以存在临界问题.当ω最小时,M受到的最大静摩擦力的方向与拉力的方向相反,则有mg-F fm =代入数据得ω1=2.80rad/s当ω增大时,静摩擦力减小,当ω′=4.84rad/s时,静摩擦力为零.当ω继续增大时,M受到的静摩擦力方向反向,与拉力方向相同,静摩擦力与拉力的合力提供做圆周运动的向心力.当ω最大时有mg+F fm=Mωr代入数据得ω2=6.25rad/s因此ω的取值范围为2.80rad/s≤ω≤6.25rad/s[答案] 2.80rad/s≤ω≤6.25rad/s一个圆盘在水平面内匀速转动,角速度是4rad/s.盘面上距圆盘中心0.10m的位置有一个质量为0.10kg的小物体能够随圆盘一起运动,如下图所示.(1)求物体做匀速圆周运动时所受向心力的大小.(2)关于物体的向心力,甲、乙两人有不同意见:甲认为该向心力等于圆盘对物体的静摩擦力,指向圆心;乙认为物体有向前运动的趋势,摩擦力方向和相对运动趋势的方向相反,即向后,而不是和运动方向垂直,因此向心力不可能是静摩擦力.你的意见是什么?说明理由.[解析](1)根据牛顿第二运动定律得:F=mω2r=0.1×42×0.1N=0.16N. (2)甲的意见是正确的.静摩擦力的方向与物体相对接触面运动的趋势方向相反.设想一下,如果在运动过程中,转盘突然变得光滑了,物体将沿轨迹切线方向滑动,这就如同在光滑的水平面上,一根细绳一端固定在竖直立柱上,一端系一小球,让小球做匀速圆周运动,突然剪断细绳一端,小球将沿轨迹切线方向飞出.这说明物体在随转盘匀速转动的过程中,相对转盘有沿半径向外的运动趋势.[答案](1)0.16N(2)同意甲的意见命题规律(1)根据物体在竖直平面内做圆周运动的临界条件,确定物体在最高点或最低点的速度大小或物体受力情况.(2)根据物体在竖直平面内做圆周运动的速度,由牛顿运动定律确定物体所受合力或物体所受的压力或拉力.[考例3]如图所示,LMPQ是光滑轨道,LM水平,长为5.0m,MPQ是一半径为R=1.6m的半圆,QOM在同一竖直线上,在恒力F作用下,质量m=1kg的物体A由静止开始运动,当达到M时立即停止用力.欲使A刚好能通过Q点,则力F大小为多少?(取g=10m/s2)[解析]物体A经过Q点时,其受力情况如图所示.由牛顿第二定律得mg+F N=物体A刚好过Q点时有F N=0=4m/s对物体从L到Q全过程,由动能定理得Fx LM-2mgR=m v2解得F=8N.[答案]8N[总结评述](1)正确理解A物体“刚好能通过Q点”的含义是解决本题的关键.常用来表达临界状态的词语还有“恰好”“恰能”“至少”“至多”等,同学们在审题时必须高度注意.小球沿圆弧M→P→Q通过最高点Q时,应服从圆周运动的规律,即应从向心力与线速度的关系求解小球经过Q点的临界速度.(2)圆周运动常与机械能守恒定律、动能定理、电荷在磁场中的偏转等知识相联系,构成综合性较强的题目.如图所示的“S”形玩具轨道,该轨道是用内壁光滑的薄壁细圆管弯成,固定在竖直平面内,轨道弯曲部分是由两个半径相等的半圆连接而成,圆半径比细管内径大得多,轨道底端与水平地面相切.弹射装置将一个小球(可视为质点)从a点水平弹射向b点并进入轨道,经过轨道后从P点水平抛出.已知小物体与地面ab段间的动摩擦因数μ=0.2,不计其他机械能损失,ab段长L=1.25m,圆的半径R=0.1m,小物体质量m=0.01kg,轨道质量为M=0.15kg,g =10m/s2.求:(1)若v0=5m/s,小物体从P点抛出后的水平射程;(2)若v0=5m/s,小物体经过轨道的最高点时管道对小物体作用力的大小和方向;(3)设小球进入轨道之前,轨道对地面的压力大小等于轨道自身的重力.当v0至少为多大时,可出现轨道对地面的瞬时压力为零.[解析](1)小物体运动到P点时的速度大小为v,对小物体由a点运动到P点过程应用动能定理得小物体自P点做平抛运动,设运动时间为t,水平射程为s,则:(2)设在轨道最高点时管道对小物体的作用力大小为F,取竖直向下为正方向F +mg=联立代入数据解得F=1.1N,方向竖直向下.(3)分析可知,要使小球以最小速度v0运动,且轨道对地面的压力为零,则小球的位置应该在“S”形轨道的中间位置,设此时速度为v1,解得:v0=5m/s.[答案](1)0.4m(2)1.1N方向竖直向下(3)5m/s命题规律生活中的圆周运动随处可见,和分析一般圆周运动类似,对物体正确的受力分析,确定向心力、轨迹圆是求解的关键.[考例4]铁路转弯处的弯道半径r是由地形决定的.弯道处要求外轨比内轨高,其内外轨高度差h的设计不仅与r有关,还取决于火车在弯道处的行驶速率.下面表格中是铁路设计人员技术手册中弯道半径r及与之对应的内外轨道的高度差h.(g取10m/s2(1)根据表中数据,试导出h和r的关系表达式,并求出当r=440m时,h的设计值;(2)铁路建成后,火车通过弯道时,为保证绝对安全,要求内外轨道均不向车轮施加侧向压力,又已知我国铁路内外轨的间距设计值为L=1435mm,结合表中数据,算出我国火车的转弯速率v(以km/h为单位,结果取整数).(设轨道倾角θ很小时,tanθ≈sinθ)[解析](1)分析表中数据可得,每组h 与r的乘积都等于常数C=660×50×10-3m2=33m2,因此,hr=C,得h=当r=440m时,有h==0.075m=75mm(2)若转弯时,内外轨对车轮均没有侧向压力,火车的受力如图甲所示.由牛顿第二定律得mg tanθ=代入数据解得v≈15m/s=54km/h[答案](1)75mm(2)54km/h[总结评述]近几年,人们对交通运输的快捷提出了更高的要求,为了提高运输力,国家对铁路不断进行提速,这就要求铁路转弯处对应的速率也要提高,由题中表达式v=可知,提高速度可采用两种方法:(1)适当增加内外轨的高度差h;(2)适当增加轨道半径r.如图所示,医学上常用离心分离机加速血液的沉淀,其“下沉”的加速度可这样表示:而普通方法靠“重力沉淀”产生的加速度为a′式子中ρ0,ρ分别为液体密度和液体中固体颗粒的密度,r表示试管中心到转轴的距离,ω为转轴角速度,由以上信息回答:(1)当满足什么条件时,“离心沉淀”比“重力沉淀”快?(2)若距离r=0.2m,离心机转速度n=3000r/min,求a a′.[解析](1)比较两个加速度a和a′可知:只要rω2>g,即ω> 离心沉淀就比重力沉淀快.命题规律物体做圆周运动具有周期性,正确分析物体运动过程,确定物体运动的多解.[考例5]在半径为R的水平圆板中心轴正上方高为h处,水平抛出一小球,圆板匀速转动.当圆板半径OA与初速度方向一致时开始抛出小球,如图所示,要使球与圆板只碰一次,且落点为A,则小球的初速度v0为多大?圆板转动的角速度为多大?[解析]对做平抛运动的小球的运动情况分析可得在竖直方向:如图所示,小球从光滑的圆弧轨道下滑至水平轨道末端时,光电装置被触动,控制电路会使转筒立刻以某一角速度匀速连续转动起来.转筒的底面半径为R,已知轨道末端与转筒上部相平,与转筒的转轴距离为L,且与转筒侧壁上的小孔的高度差为h;开始时转筒静止,且小孔正对着轨道方向.现让一小球从圆弧轨道上的某处无初速滑下,若正好能钻入转筒的小孔(小孔比小球略大,小球视为质点,不计空气阻力,重力加速度为g),求:(1)小球从圆弧轨道上释放时的高度H;(2)转筒转动的角速度ω.[解析](1)设小球离开轨道进入小孔的时间为t,则由平抛运动规律得(2)在小球做平抛运动的时间内,圆筒必须恰好转整数转,小球才能钻进小孔,即ωt=2nπ(n=1,2,3…).命题规律根据物体受力分析和物体运动情况,确定物体做圆周运动时的角速度(或转速)大小范围.[考例6]如图所示,两绳系一个质量为m=0.1kg的小球,两绳的另一端分别固定于轴的A、B两处,上面绳长L=2m,两绳都拉直时与轴夹角分别为30°和45°,问球的角速度在什么范围内,两绳始终张紧?[解析]两绳张紧时,小球受的力如图所示,当ω由0逐渐增大时,ω可能出现两个临界值.(1)BC恰好拉直,但F2仍然为零,设此时的角速度ω1,则有F x=F1sin30°=mωL sin30°,①F y=F1cos30°-mg=0, ②代入已知解①②得,ω1≈2.40rad/s. (2)AC由拉紧转为恰好拉直,但F1已为零,设此时的角速度为ω2,则有F x=F2sin45°=mωL sin30°,③F y=F2cos45°-mg=0, ④代入已知解③④得ω2≈3.16rad/s.可见,要使两绳始终张紧,ω必须满足2.4rad/s≤ω≤3.16rad/s.[答案] 2.4rad/s≤ω≤3.16rad/s如图所示,把一个质量m=1kg的物体通过两根等长的细绳与竖直杆上A、B 两个固定点相连接,绳a、b长都是1m,AB长度是1.6m,直杆和球旋转的角速度等于多少时,b绳上才有张力?[解析]已知a、b绳长均为1m,即sinθ=0.6,θ=37°小球做圆周运动的轨道半径b绳被拉直但无张力时,小球所受的重力mg与a绳拉力F Ta的合力F为向心力,其受力分析如图所示,由图可知小球的向心力为F=mg tanθ根据牛顿第二定律得F=mg tanθ=mr·ω2解得直杆和球的角速度为=3.5rad/s.当直杆和球的角速度ω>3.5rad/s时,b 中才有张力.[答案]ω>3.5rad/s命题规律考查识别图象、分析物体在各位置的运动状态等主要知识内容.[考例7]如图甲所示,在同一竖直平面内的两条正对着的相同半圆形的光滑轨道,相隔一定的距离,虚线沿竖直方向,一小球能在其间运动,今在最高点与最低点各放一个压力传感器,测试小球对轨道的压力,并通过计算机显示出来,当轨道距离变化时,测得两点压力差与距离x的图象如图乙所示,g取10m/s2,不计空气阻力,求:(1)小球的质量为多少?(2)若小球在最低点B的速度为20m/s,为使小球能沿轨道运动,x的最大值为多少?[解析](1)设轨道半径为R,由机械能守恒定律:由图象可得:截距6mg=6,即m=0.1kg[答案](1)0.1kg(2)15m[总结评述]随着高考改革的深入,新高考更加突出对考生应用能力及创新能力的考查,本题就是构建了新的情景:将常见的竖直平面内的圆周变换成两正对着的相同半圆光滑轨道,同时将环内圆周运动和机械能综合,并结合了利用传感器所得的图象,考查了识别图象、分析小球在各位置的状态(特别是特殊点处,如最高点与最低点)等重要知识内容.在本题中既考查了中学阶段很重要的受力分析能力,又对圆周运动的相关知识进行考查,更重要的是考查了同学们在新情景下构建模型、从图象获取信息进行解题的能力.。