吸收式制冷循环
- 格式:pptx
- 大小:2.19 MB
- 文档页数:51
第七章吸收式制冷思考题1 吸收式制冷机是如何完成制冷循环的?在溴化锂吸收式制冷循环中,制冷剂和吸收剂分别起那些作用?从制冷剂、制冷能源、制冷方式、散热方式等各方面比较吸收式制冷和蒸汽压缩式制冷的异同点。
答:吸收式制冷机包括两个循环回路:制冷剂循环和吸收剂循环。
制冷剂循环中,高压气态制冷器在冷凝器中间冷却介质放热被凝结成液态后,经节流装置减压降温进入蒸发器;在蒸发器中气化为低压气体,同时吸收被冷却介质的热量产生制冷效应。
这些过程与蒸汽压缩式制冷循环是完全一样的。
吸收剂循环中,液态吸收剂在吸收器中吸收来自蒸发器的低压气态制冷剂,变为稀溶液;经溶液泵升压后进图发生器,在其中被加热沸腾,其中沸点低的制冷器气化成高压制冷剂气体,进入冷凝器循环,浓溶液返回吸收器。
吸收式制冷循环中,制冷剂用于制取冷量。
吸收剂可以作为将以产生制冷效应的制冷蒸汽从2 试分析在吸收式制冷系统中为何双效系统比单效系统的热力系数高。
答:双效系统中高压发生器的溶液气化所产生的高温冷剂水蒸气作用低压发生器加热溶液,再与低压发生器中溶液气化所产生的冷剂蒸汽混合在一起,作为高压制冷剂进入冷凝器。
由于高压发生器中冷剂蒸汽的凝结热已经用在正循环中,使得发生器的耗热量减少,所以热力系数高。
3 简述蒸汽型单效制冷式冷水机组有哪些部件?说明各个部件的作用与工作原理。
为什么说溶液热交换器是一个节能部件?主要有发生器、冷凝器、蒸发器、吸收器、膨胀阀、减压阀、发生器泵、蒸发器泵、溶液热交换器、冷却水管路、冷冻水管路.来自吸收器的冷稀溶液与来自发生器的热浓溶液在热交换器中进行热交换,既提高了进入发生器的冷稀溶液的温度,又降低了进入吸收器的热浓溶液的温度,减少了吸收器的冷却负荷与发生器的加热负荷,所以是一个节能部件。
4 为什么在溴化锂吸收式制冷剂中,蒸发器不采用蒸汽压缩式制冷系统中的满液式蒸发结构?满液式蒸发器中冲一定高度的制冷剂,产生一定的静压,会是下部液体的蒸发温度升高。
吸收式制冷机的制冷循环流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!吸收式制冷机是一种利用吸收剂(如溴化锂)和制冷剂(如水)之间的吸热和放热反应来实现制冷的设备。
吸收冷却器单元中的水循环过程在总体冷却性能中发挥着关键作用。
在这一过程中,制冷剂水吸收热量,然后通过冷凝器释放,从而产生
冷却水,用于多种用途。
过程从冷冻水进入吸收器开始。
在这个阶段,制冷剂的水从外部来源
吸收热量,经常通过带有二级水循环的热交换器。
这种吸收过程导致
制冷剂水温度下降和蒸汽压力增加。
吸收的热能转移到制冷剂上,然
后从现在冷却的水中分离出来,形成一种高能溶液。
高能溶液然后移动到发电机上,冷冻剂由天然气、蒸汽或废热等热源
煮沸。
这种沸腾过程导致制冷剂释放其吸收的热能并蒸发,导致压力
和温度增加。
剩下的弱溶液随后被泵回吸收器,以便循环继续。
高压和高温蒸汽然后移动到冷凝器,将吸收的热释放到冷却水中。
这
导致制冷剂蒸汽回缩为液态,而冷却水吸收释放的热量。
现在的液态
制冷剂然后进入膨胀阀,其压力降低,导致温度下降,导致循环重新
开始。
关于吸收冷却器的一个有趣的事实是,它们能够将废热作为主要能源。
这使得它们具有很高的能效和环保性,因为它们可以利用各种工业工
艺或可再生能源产生的低级热量。
吸收冷却器单元的水循环过程是为冷却目的产生冷却水的关键组成部
分。
了解这一过程对于优化各种应用的吸收冷却器的性能和效率至关重要。
1.1.4.4.2 氨吸收式制冷循环系统中的压力和温度吸收式制冷系统也被分为高压侧和低压侧两部分。
蒸发器和吸收器属于低压侧。
蒸发器内的压力由所希望的蒸发温度确定,该温度必须稍低于被冷却介质的温度;吸收器内压力稍低于蒸发压力,一方面是因为在它们之间存在着管道等的流动阻力,另一方面也是溶液吸收蒸气所必须具有的推动力。
冷凝器和发生器属于高压侧,冷凝器内的压力是根据冷凝温度而定的,该温度必须稍高于冷却介质的温度;发生器内的压力由于要克服管道阻力等的影响而应稍高于冷凝器的压力。
在进行下面的讨论时将忽略这些压差,然而在实际情况下,这种压差(尤其是蒸发器和吸收器之间的压差)必须加以考虑,特别是在低温装置中,蒸发器和吸收器之间的较小压差就能引起浓度的较大差别。
由于冷凝器和吸收器是用相同的介质(通常为水)来冷却的,如果冷却水平行地通过吸收器和冷凝器,它们的温度可近似地认为是一致的;如果冷却水选通过吸收器,再通过冷凝器时,冷凝器内的温度将高于吸收器内的温度。
发生器内溶液的温度取决于加热介质的温度,该温度稍低于加热介质温度。
单级氨水吸收式制冷机的循环过程在氨水吸收式制冷机中,由于氨和水在相同压力下的气化温度比较接近(例如在一个标准大气压力,氨与水的沸点分别为 -33.4℃和100℃,两者仅相差133.4℃),因而对氨水溶液加热时,产生的蒸气中也含有较多的水分。
氨蒸气浓度的高低直接影响到整个装置的经济性和设备的使用寿命。
为了提高氨蒸气的浓度,必须进行精馏。
精馏原理已在前面"吸收式制冷机的溶液热力学基础"章节中作了介绍。
实际上,精馏程是在精馏塔设备内进行的。
精馏塔进料口以下发生热、质交换的区域叫提馏段,进料口以上发生热、质交换的区域叫精馏段。
精馏塔还有一个发生器(又称再沸器)和回流冷凝器,前者用来加热氨水浓溶液,产生氨和水蒸气,供进一步精馏用;后者用来产生回流液,也供精馏过程使用。
图1为单级氨水吸收式制冷机的流程图浓度为 的浓溶液(点1a)进入精馏塔,在精馏塔内的发生器中被加热,吸收热量 后,部分溶液蒸发,产生的蒸气经过提馏段,得到浓度为 的氨蒸气(1+R)kg,随后经过精馏段和回流冷凝器,使上升的蒸气得到进一步的精馏和分凝,浓度提高到 (点5'' ),由塔顶排出,排出的蒸气质量为1kg。
太阳能吸收式制冷的工作原理太阳能吸收式制冷是一种利用太阳能作为能源的制冷技术。
它通过将太阳能转化为热能,然后利用这种热能去驱动制冷循环,从而实现制冷的效果。
太阳能吸收式制冷的工作原理非常复杂,需要对太阳能的利用、热能的转化、吸收式制冷循环的运行等方面有深入的了解。
在接下来的内容中,将详细介绍太阳能吸收式制冷的工作原理。
1.太阳能的利用太阳能是地球上最为丰富的一种可再生能源。
它主要通过光线和热量的形式传递,可以被广泛利用。
在太阳能吸收式制冷中,最常见的方式是利用太阳能光伏电池板将太阳光转化为电能。
这些电能可以用来直接驱动制冷设备,或者用来加热工质,从而产生热能来驱动制冷循环。
2.热能的转化在太阳能吸收式制冷中,太阳能被转化为热能的方式非常多样。
最常见的方式是利用太阳能热能集热器,将太阳光聚焦在一个小面积上,产生高温。
这种高温可以用来加热工质,产生高温蒸汽或者高温液体,从而驱动制冷循环。
3.吸收式制冷循环吸收式制冷是一种基于溶剂对工质的选择性溶解性能而实现换热和再汽化的技术。
它通过利用吸收剂对工质的选择性溶解性能来实现制冷效果。
典型的吸收式制冷循环包括蒸发器、吸收器、发生器和冷凝器。
工质在蒸发器中受热蒸发,然后被吸收剂溶解,形成溶液,通过换热器将溶液送至发生器蒸发汽化,工质蒸汽通过冷凝器冷凝,释放热量,循环进行。
4.太阳能吸收式制冷的工作原理当太阳能被转化为热能后,可以用来加热工质。
工质的加热过程通常是在太阳能热能集热器中完成的。
当工质被加热至一定温度后,可以进入吸收式制冷循环。
首先,加热的工质进入蒸发器中,受热蒸发,产生蒸汽。
蒸汽经过换热器后进入吸收器,被吸收剂溶解,形成溶液。
此时的溶液富含工质,贫含吸收剂。
随后,富含工质的溶液通过换热器送至发生器,进行加热再汽化。
吸收剂在高温下释放出蒸汽,而工质则被捕获,净化。
蒸汽通过冷凝器后,变为液体,释放出热量。
而此时生成的纯净工质流向蒸发器再次完成循环。
5.太阳能吸收式制冷的特点太阳能吸收式制冷具有如下优点:a.能源环保:利用太阳能作为能源,不会产生二氧化碳等温室气体,对环境的影响较小。
吸收式制冷原理
吸收式制冷是一种基于热力学循环原理的制冷技术。
它通过利用吸收剂和制冷剂之间的化学反应以及水的蒸发和冷凝过程来实现制冷作用。
吸收式制冷系统由吸收器、发生器、冷凝器、蒸发器和泵组成。
制冷过程中,吸收剂和制冷剂在发生器中发生化学反应,产生高浓度的溶液和低浓度的溶液。
高浓度的溶液经过冷凝器冷却,变成富含制冷剂的溶液,然后通过节流阀进入蒸发器。
在蒸发器中,制冷剂从溶液中蒸发,吸收周围热量,从而降低蒸发器内部的温度。
蒸发后的制冷剂气体进入吸收器,并与低浓度溶液反应生成高浓度的溶液,循环重复。
吸收式制冷的核心原理是利用吸收剂和制冷剂之间的化学反应来吸收热量。
吸收剂一般采用氨水(NH3-H2O)或氨盐(稀
碱金属氢氧化物溶液)等溶液,而制冷剂则通常选择氨气
(NH3)或烃类(如R134a、R410a)。
与传统的压缩式制冷相比,吸收式制冷在运行过程中不需要机械压缩装置,因此具有以下优点:1.能量消耗较低:吸收式制
冷系统主要靠化学反应和热力学循环来完成制冷过程,不需要消耗大量电能;2.环境友好:吸收剂和制冷剂一般采用无毒、
无害物质,不会对环境造成严重的污染;3.稳定可靠:吸收式
制冷系统没有机械运动部件,运行稳定可靠,寿命较长。
然而,吸收式制冷也存在一些缺点,例如系统结构复杂、外形较大、制冷效率较低等。
因此,在实际应用中,需要根据具体
情况选择适合的制冷技术。
总之,吸收式制冷是一种基于吸收剂和制冷剂之间化学反应的制冷技术,具有能量消耗低、环境友好、稳定可靠等优点。
但在实际应用中,需要根据具体情况综合考虑各种因素,选择适合的制冷技术。