数字电子钟制作(含电路图)
- 格式:doc
- 大小:423.00 KB
- 文档页数:2
摘要数字钟是一个对1Hz频率进行计数的电路.振荡器产生的时钟旌旗灯号经由火频器形成秒脉冲旌旗灯号,秒脉冲旌旗灯号输入计数器进行计数,显示出时光.秒计数器电路计满60后触发分计数器电路,分计数器电路计满60后触发时计数器电路,当计满24小时后重零开端计数.一般由振荡器.分频器.计数器.译码器.数码显示器等几部分构成.振荡电路:重要用来产生时光尺度旌旗灯号.石英晶体振荡器可以进步时光旌旗灯号的稳固度.分频器:振荡器产生的尺度旌旗灯号频率很高,要得到“秒”旌旗灯号,需必定级数的分频器进行分频.计数器:有了“秒”旌旗灯号,则可以依据60秒为1分,24小时为1天的进制,分离设定“时”.“分”.“秒”的计数器,分离为60进制,60进制,24进制计数器,并输出一分,一小时,一天的进位旌旗灯号.译码显示:将“时”“分”“秒”显示出来.将计数器输入状况,输入到译码器,产生驱动数码显示器旌旗灯号,呈现出对应的进位数字字型.症结词数字钟振荡计数校订目次2.1计划比较42.2计划选择63单元模块设计73.3.1按键一:光标的移位与闪耀123.3.2按键二:时光的上翻让时光得到修正143.3.3 按键三:肯定154 体系调试155 体系功效和指标参数155.1 体系功效166 设计总结和领会17申谢18参考文献18附录数字电子钟电路总图19数字电子钟是一个用数字电路实现的时,分,秒计时的装配,与机械式时钟比拟具有更高的精确性.本次的数字电子钟的设计道理就是一种典范的数字电路,个中还包含了一些组合逻辑电路和时序电路.本次的数字电子钟的设计重要目标是为了让我们更好的控制数字电子钟的道理,从而控制逻辑电路的一些典范应用,学会本身制造电子钟.经由过程对数字电子钟得设计进一步的懂得各类中小范围集成电路的感化和适用办法.我们此次设计的数字电子钟是以24小时为一个时光周期,显示的满刻度是23时59分59秒,在六位7段共阴极的数码管上精确显示其响应的时,分,秒.并设置了三个时光的按键,分离控制时光的移位闪耀,时光的上翻修正,时光的确认.便利认为控制和设置时光.同时为了包管计时的稳固性和计时的精确性我们采取了用32.768K 的晶体振荡器来产生时钟旌旗灯号,来供给表针时光的基准旌旗灯号.数字电子钟的整体设计道理框图如图一所示:秒,然后主动清零从00时00分00秒开端从新计时,别的还加进了按键部分的操纵,便利人们对时光的控制,设置,调剂.秒旌旗灯号产生器是全部体系的时基旌旗灯号,它直接决议了计时体系的精度,在此次设计中采取的是石英晶体振荡器加分频器来实现.将得到的尺度旌旗灯号1HZ送入秒计数器中,秒计数器采取的是60进制的计数器,每累计都60秒得时刻就会发出一个分脉冲旌旗灯号,该旌旗灯号将作为分计数器的时钟脉冲,分计数器也是采取的60进制的计数器,每累计到60分钟,发出一个时脉冲旌旗灯号,该旌旗灯号将被作为时脉冲时钟脉冲,式计数器采取的24进制的计数器,如许就可以实现一天24小时的累计.2.1 计划比较计划一:555构成的多谢振荡器如图二因为f=1.43(R1+2R2)C1,我们可以经由过程调剂R1,R2,C1的值,转变其输出的频率.计划二:晶体振荡器分频电路石英晶体振荡电路1,采取频率fs=32768HZ的石英晶体图三D1,D2是反向器,D1用于振荡,D2用于缓冲整形.Rf为反馈电电阻(10—100M),反馈电阻的感化为COMS反相器供给偏置,使其工作在放大状况.电容C1,C2与晶体配合构成pi型收集,完成对振荡器频率的控制,并供给须要的180度相移,最后输出fs=32768HZ.图三2,多级分频电路1HZ将32768HZ脉冲旌旗灯号输入到CD4060(如图四:CD4060的引脚图介绍)构成的脉冲振荡的14位二进制计数器,所以从最后一级Q14输出的脉冲旌旗灯号频率为:32768/16384=2HZ.再经由二次分频,得到最后的1HZ 的尺度旌旗灯号脉冲,即秒脉冲.如图五,就是所得到最后的脉冲旌旗灯号.图四:CD4060引脚图图五:1HZ的旌旗灯号产生的波形2.2 计划选择1,采取555多谢振荡器长处:555内部的比较器敏锐度较高,并且采取差分电路情势,它的振荡频率受电源电压和温度变更的影响很小.缺陷:要精确的输出1HZ的脉冲,对电容和电阻的数值精度请求很高,所以输出脉冲既不敷精确也不敷稳固.2,采取晶体振荡分频电路长处:因为晶体的阻抗频率响应可知,它的选频特征异常好,有一个极为稳固的串联谐振频率fs,且等效品德因数Q很高.只有频率为fs的旌旗灯号最轻易经由过程,且其他频率的旌旗灯号均会被晶体所衰减.3,比较的成果因为振荡器是数字钟的焦点,振荡器的稳固度及频率的精度决议了数字钟计时的精确程度.为了达到设计请求,获得更高的计时精度,我们在设计中选用了计划二即用晶体振荡器构成振荡电路.一般来说振荡器的频率越高,计时精度就越高.如图六图六3单元模块设计时光计数电路的设计将分频器产生的尺度基旌旗灯号即秒旌旗灯号经由秒计数器,分计数器,时计数器,分离得到“秒”个位,十位,“分”个位,十位以及“时”个位,十位的计时输出旌旗灯号,然后送至译码显示电路,以便实现用数码管显示时,分,秒的请求.在设计中“秒”和“分”的计数器应当为六十进制的计数器,而“时”计数器应当为二十四进制的计数器.在设计中采取的10进制的计数器74LS160来实现时光的计数单元的计数功效.74LS160的芯片引脚图如图七所示:图七:74LS160引脚图P0,P1,P2,P3---计数器的输入端QO,Q1,Q2,Q3—计数器的输出端CEP,CET---计数器的计数端CP---计数器的触发端TC---计数器的进位端R---计数器的清零端PE----计数器的置数端74LS160计数器是同步计数,异步清零表1是74LS160的逻辑表:计数器部分计数的道理图八:图八:计数器的道理图此图为“秒”计数器部分,用两片74LS160来构成60进制的计数器,因为160本身就是10进制的计数器,故在“秒”个位当主动的加到10时就会主动清零,同时向“秒”十位的计数器的进位,在这片160当“秒”十位和个位分离显示到“5”和“9”时向下一级的“分”计数器进位.同应当“分”的十位和个位分离显示“5”和“9”时向“时”计数器进位.当“时”计数器的十位和个位分离显示“2”和“4”时用反馈清零的办法将其清零.其“分”计数器,“时”计数器的道理图同“秒”计数器的道理图大致雷同.设计中“时”,“分”,“秒”的显示是选择共阴极的七段数码管显示的.共阴极七段数码管译码显示电路是将计数器输出的8421BCD码译成数码显示所须要的高下电平,其引脚如图九.在译码显示电路中采取的是CD4511-7段译码驱动器,其芯片的引脚如图十.译码器的A,B,C,D分离与十进制的计数器的四个输出端相连接a,b,c,d,e,f,g即为驱动七段数码管的旌旗灯号.其依据A,B,C,D所得的计数旌旗灯号,数码管就显示出相对应的字型.图九:共阴极七段数码管的引脚图图十:CD4511的引脚图个中A,B,C,D---BCD码得输入端a,b,c,d,e,f,g—译码的输出端,输出为“1”有用,用来驱动共阴极LED数码管.LT—测试输入端,LT=“0”时,译码输出全为“1”BI—消隐输入端,BI=“0”时,译码输出全为“0”LE—锁定器,LE=“1”时译码器处于锁定(保持)状况,译码器输出保持在LE=0时的数值,LE=0为正常译码其译码的显示电路如图十一所示:图十一:译码器的驱动显示电路三个按键的电路本次设计还用到了按键部分,设计顶用到了三个按键,其功效分离是移位并闪耀,时光的上翻,时光的肯定.设置这三个按键的目标其主如果为了人们能很好的控制和调剂时光.便利人们对时光的调剂.按键部分主如果采取各类逻辑门与计数芯片,译码芯片的有理联合来实现各个按键的功效的.如图十二图十二:三个按键按键一:光标的移位与闪耀认为部分:下之后计数器停滞计数即在这里给“秒”计数器输入的无效的旌旗灯号脉冲,此时数码管保持先前记下的时光不在走动.采取计数器160和译码器138的联合.给计数器160送一个初始数1即此时D3D2D1D0=0001.将计数器的Q2Q1Q0分离与138的输入端CBA相连接.且在138输出端的Y0接一个反相器包管在正常的情形下计数器能正常的计数.将输出端得Y0,Y1,Y2,Y3进行与运算,并将输出的值与产生的旌旗灯号脉冲进行与运算.在未按下按键的时刻则不会影响到脉冲的正常输入,计数器的正常计数.个中74LS138的引脚图如图十三:图十三:74LS138引脚图A2,A1,A0—译码器的3位二进制输入端Y0,Y1,Y2,Y3,Y4,Y5,Y6.,Y7—译码器的8个输出旌旗灯号,并且输出的均为低电平有用.S3,S2,S1—译码器的三个使能端,当S1=1,且S2=0,S3=0时,译码器处于正常的工作状况.闪耀部分:因为要使光标移位,须要断定认为在了那只数码管上,所以想到使数码管闪耀的办法,产生显著的视觉后果从而精确的断定须要转变那只数码管的时光值.斟酌到译码器CD4511的一个使能端BI,当BI 为高电平的时刻会产生消隐的现象.故在使数码管闪耀的这一功效,选择从译码器查找办法.数码管的闪耀与高下脉冲相连.当按键一被按下之后,译码器138的输出端Y1,Y2,Y3的值不竭的变更且有且只有一个为有用的点平0.当它们分离与旌旗灯号脉冲进行或运算后输出的的成果取决与旌旗灯号脉冲,当脉冲为高点平的时刻则数码管就熄灭,当脉冲输出的是低电平的时刻数码管就点亮.如斯的亮灭亮灭…….从而达到视觉上的数码管的闪耀功效.按键一电路如图十四,十五,十六图十四:计数器与138的联合图十五:与运算产生kk控制旌旗灯号脉冲图十六:光标的闪耀按键二:时光的上翻让时光得到修正按键二的功效主如果修正时光.在这里让时光上翻转变即当按键二被按下一次对应闪耀的数码管的值就加一次,一向到所得的值是我们本身想要的值为止.按键二必须在按键一被按下之后才有用.故当按键一被按下后译码器Y1,Y2,Y3有且有一个输出的是有用的低电平,按键二被按下后也会得到一个有用的低电平.将Y1,Y2,Y3分离与按键二得到的低电平进行或运算,并在得到的成果后面加一个反相器,如许就只有当输出的值均为0时才干得到1,如许就可以得到三个旌旗灯号clk1,clk2,clk3.同时要使计数器加数,只要给响应的计数器输入有用的正脉冲就可以了.故在设计中将得到的三个旌旗灯号对应的与计数器的脉冲输入相连接.如图十七:图十七:产生有用的信按键三:肯定按键三的功效就是肯定键即恢复正常有用的脉冲旌旗灯号,让计数器正常的计数,译码器正常的译码,数码管正常的显示时光.使按键部分的那些功效都消掉.当按键三被按下后即立时得到一个低电平的旌旗灯号.将按键三得到的旌旗灯号与计数器的清零端相连接,即可控制其的可否正常工作.从而让输出的kk为高电平,如许在kk与产生的旌旗灯号脉冲进行与运算的时刻就取决于产生的脉冲旌旗灯号.如许产生的脉冲旌旗灯号又恢复成为有用的脉冲旌旗灯号,使计数器正常的计数工作.4 体系调试单个元件的调试数码管共阴,共阳的检测:在proteus的仿真软件中将数码管的的a,b,c,d,e,f,g的随意率性一段或者几段置于高电平,数码管剩下的另一管脚置于低电平,假如数码管发亮且输出的字符是对应输入的字符的,那么此数码管为共阴数码管.假如数码管不亮,没有反响则解释数码管是共阳的数码管.时钟电路的调试将晶体振荡器电路产生的旌旗灯号脉冲经由过程proteus软件进行仿真.1,将仿真的示波器记到晶体振荡电路的波形的输出端,在示波器上显示出波形旌旗灯号的频率为32768HZ.2,再将仿真的示波器接到经由CD4060分频器后的输出端,得到的输出波形旌旗灯号的频率为2HZ.3,最后将仿真里面的示波器接到二分频器后的输出端得到的旌旗灯号波形的频率为1HZ即为全部设计须要的尺度基旌旗灯号.计数电路的调试在秒计数器上参加一个尺度的1HZ脉冲旌旗灯号,在proteus仿真软件长进行计数器的精确计数的调试.这部分重要调试的是“秒”计数器,“分”计数器的60进制得到调试,当“秒”或“分”的计数达到“59”时,“秒”或者“分”可以或许精确的清零并向前一计数器进位.其数码管的显示如图十八:图十八:时光的精确显示5 体系功效和指标参数5.1 体系功效该电路重要实现了时光的精确计数,在设计中将计数器74LS160与译码器CD4511,计数器74LS160和译码器74LS138,分频器与晶体振荡电路有用的分散在了一路,得到比较精确的时光显示.此外,加上三个按键的设置,便利了人们随时对时光的调剂,从而更好的控制时光.1.基旌旗灯号的频率1HZ2.电路供电+5v3设计总结和领会本次课程设计经由为期2周的不懈尽力,今朝根本达到了预期的请求,可以或许精确的以一秒为周期的在数码管上显示时光,并且三个按键也能精确的实现它们各自的功效,让人们能很好的调节时光.在设计中所采取的各个芯片都在运行很好的实现了它们各安闲设计中的功效感化.全部设计的道理简略,靠得住机能高,成本低,功效很轻易实现,并且实现的后果也异常的优越.因为此次设计是在放假时代自力完成的,所以在各模块之间的连接上,以及某些参数的肯定上可能还消失必定的问题.但经由过程此次设计,收成也颇多.总体上来说此次设计电路道理其实不难,但是在设计进程固然许多器械本身明确该那么做,但是在真正的应用中倒是其实是无从下手,碰到的许多小问题比本身想象中的要庞杂得许多,让本身疑惑是不是斟酌错了或者是走错了偏向.在设计中,许多芯片的功效是本身不是很熟习的,不合芯片之间的连接更是让本身觉得生疏.比方,在晶体振荡电路中产生的32768HZ的旌旗灯号与分频器CD4511的链接,分频的道理对当时设计本身来说是很隐约的,但是经由过程讯问同窗和先生后让本身对分频的道理有了懂得,并且还从许多的办法中选择了32768HZ的晶体振荡器和CD4511分频器来产生尺度的基旌旗灯号.在计数器的选择上,固然本身对这部分比较熟习,但是当真正的接触它时,才知道许多的器械不是本身想象中的那样轻易,许多的小错误就让本身觉得寸步难行.经由过程不竭的查阅材料懂得选择了十进制的74LS160实现了精确的计数功效.在按键部分,这是全部设计让我受益最多的部分,按键部分是本身在设计最后才做的部分,刚开端真的是无从下手,感到斟酌的器械许多,并且许多的器械本身又不会.在先生和同窗的帮忙下才让本身有了一个比较清楚的思绪,在设计中将计数器74LS160和译码器74LS138有机的联合来实现了三个按键的根本功效.经由过程此次的设计让本身熟习了许多器械,学会了许多器械,进修了本身已经学过的器械,也进修了本身没有接触过的器械.对计数器74LS160,译码器74LS138,CD4511,分频器CD4060都有了一个很清楚的熟习.同时不单对此次设计中应用到的芯片本身有了懂得,对其他得芯片如:74LS190,74LS161,触发器等也有懂得和熟习,对设计中的芯片的其他功效也有所懂得,如:计数器在必定的时刻也可以做为分频器应用等.此次为期两周的课程设计,让我对各类电路有所懂得,也让我懂得了关于数字时钟的道理和设计理念.经由过程本身的亲手实践,才让我熟习到本身的缺少.所以说,坐而言不如立而行,对于这些电路和连接照样须要本身亲手的现实操纵才会真正的懂得和控制,才会有深入的印象.致谢在这里我起首要感激我们这组的指导先生林竟力先生对我们的设计进程中的仔细指导.在设计和论文写作进程中,得到了先生的指导和点拨,使得我的理论和实践操纵才能都得到了进步.同时也要感激我们这和我一路合作的组员以及在我设计进程中碰到问题就教的同窗,他们的虚心帮忙和提示也是让我的设计能顺遂的完成的重要原因之一.【参考文献】[1] 康华光.[2]康华光.附录数字电子钟电路总图数字电子钟的总电路图。
多功能数字钟电路设计1设计内容简介数字钟是一个简单的时序组合逻辑电路,数字钟的电路系统主要包括时间显示,脉冲产生,报时,闹钟四部分。
脉冲产生部分包括振荡器、分频器;时间显示部分包括计数器、译码器、显示器;报时和闹钟部分主要由门电路构成,用来驱动蜂鸣器。
2设计任务与要求Ⅰ以十进制数字形式显示时、分、秒的时间。
Ⅱ小时计数器的计时要求为“24翻1”,分钟和秒的时间要求为60进位。
Ⅲ能实现手动快速校时、校分;Ⅳ具有整点报时功能,报时声响为四低一高,最后一响为整点。
Ⅴ具有定制控制(定小时)的闹钟功能。
Ⅵ画出完整的电路原理图3主要集成电路器件计数器74LS162六只;74LS90三只;CD4511六只;CD4060六只;三极管74LS191一只;555定时器1只;七段式数码显示器六只,74LS00 若干;74LS03(OC) 若干;74LS20 若干;电阻若干,等4设计方案数字电子钟的原理方框图如图(1)所示。
该电路由秒信号发生器、“时,分,秒”计数器、译码器及显示器、校时电路、整点报时电路、闹钟定时等电路组成。
秒信号产生器决定了整个计时系统的精度,故用石英晶体振荡器加分频器来实现。
将秒信号送入“秒计时器”,“秒计时器”采用六十进制计数器,每累计60秒发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。
“分计数器”也采用六十进制计数器,每60分钟,发出一个“时脉冲”,该信号经被送到“时计数器”作为“时计数器”的时钟脉冲,而“时计数器”采用二十四进制计数器,实现“24翻1”的计数方式,可实现对一天二十四小时的累计。
译码显示电路将“时”、“分”、“秒”计数器的输出状态通过七段式显示译码器译码,通过刘伟LED 七段显示器显示出来。
整点报时电路是根据计时系统的输出状态产生一脉冲信号,然后触发一音频发生器实现整点报时,定时电路与此类似。
校时电路是用“时”、“分”、“秒”显示数5电路设计5.1秒信号发生器秒信号发生器是数字钟的核心部分,它的精度和稳定度决定了数字钟的质量,通常用晶体整荡器产生的脉冲经过整形、分频获得1 Hz的秒脉冲。
目录摘要 (1)1数字钟的结构设计及方案选择 (2)1.1振荡器的选择 (2)1.2计数单元的构成及选择 (3)1.3译码显示单元的构成选择 (3)1.4校时单元电路设计及选择 (4)2 数字钟单元电路的设计 (4)2.1振荡器电路设计 (4)2.2时间计数单元设计 (4)2.2.1集成异步计数器74LS390 (5)2.2.2 用74LS390构成秒和分计数器电路 (5)2.2.3用74LS390构成时计数器电路 (6)2.2.4 时间计数单元总电路 (7)2.3译码显示单元电路设计 (7)2.4 校时单元电路设计 (7)2.5整点报时单元电路设计 (1)3 数字钟的实现电路及其工作原理 (9)4电路的搭建与调试 (10)5结束语 (10)参考文献 (11)附录1: (12)摘要数字钟被广泛用于个人家庭及公共场所,成为人们日常生活中的必需品。
诸如定时自动报警、按时自动打铃、定时广播、自动起闭路灯、定时开关烘箱、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。
因此,研究数字钟及扩大其应用,有着非常现实的意。
数字电子钟,从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。
数字电子钟有以下几部分组成:振荡器,分频器,60进制的秒、分计时器和12进制计时计数器,秒、分、时的译码显示部分及校正电路等。
关键词:数字钟 555多谐振荡器计数器 74LS390 74LS48数字电子时钟的设计及制作1数字钟的结构设计及方案选择数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。
主要由振荡器、分频器、计数器、译码器显示器和校时电路组成。
振荡器产生稳定的高频脉冲信号,作为数字钟的时间基准,通常使用石英晶体震荡器,然后经过分频器输出标准秒脉冲,或者由555构成的多谐振荡器来直接产生1HZ的脉冲信号。
秒计数器满60后向分计数器进位,分计数器满60后向小时计数器进位,小时计数器按照“12翻1”规律计数。
做成时钟,并不难,把十进改成6进就行了如下:1,震荡电路的电容用晶震,记时准确.2, 时:用2块计数器,十位的用1和2(记时脚)两个脚.分:用2块计数器,十位的用1,2,3,4,5,6,(记时脚)6个脚.秒:同分.评论:74系列的集成块不如40系列的,如:用CD4069产生震荡,CD4017记数,译码外加.电压5V.比74LS160 74LS112 74LS00好的.而且CD4069外围元件及少.如有需要我可以做给你.首先需要产生1hz的信号,一般采用CD4060对32768hz进行14分频得到2hz,然后再进行一次分频。
(关于此类内容请参考数字电路书中同步计数器一章)(原文件名:4060.JPG)一种分频电路:(原文件名:秒信号1.JPG)采用cd4518进行第二次分频另一种可以采用cd4040进行第二次分频第三种比较麻烦,是对1mhz进行的分频(原文件名:秒信号2.JPG)介绍一下cd4518:CD4518,该IC是一种同步加计数器,在一个封装中含有两个可互换二/十进制计数器,其功能引脚分别为1~7和9~{15}。
该计数器是单路系列脉冲输入(1脚或2脚;9脚或10脚),4路BCD码信号输出(3脚~6脚;{11}脚~{14}脚)。
此外还必须掌握其控制功能,否则无法工作。
手册中给有控制功能的真值(又称功能表),即集成块的使用条件,如表2所示。
从表2看出,CD4518有两个时钟输入端CP和EN,若用时钟上升沿触发,信号由CP输入,此时EN端应接高电平“1”,若用时钟下降沿触发,信号由EN端输入,此时CP端应接低电平“0”,不仅如此,清零(又称复位)端Cr也应保持低电平“0”,只有满足了这些条件时,电路才会处于计数状态,若不满足则IC不工作。
计数时,其电路的输入输出状态如表3所示。
值得注意,因表3输出是二/十进制的BCD码,所以输入端的记数脉冲到第十个时,电路自动复位0000状态(参看连载五)。
另外,该CD4518无进位功能的引脚,但从表3看出,电路在第十个脉冲作用下,会自动复位,同时,第6脚或第{14}脚将输出下降沿的脉冲,利用该脉冲和EN端功能,就可作为计数的电路进位脉冲和进位功能端供多位数显用。
多功能大尺寸LED 时钟显示屏的设计与制作LED 数码管时钟显示屏的组成及工作原理一、时钟显示屏的组成数码管时钟显示屏的组成电路如图所示:由电源电路,单片机最小系统,时钟电路,键盘电路,数码管驱动显示电路,温湿度检测电路,红外接收电路,光亮度检测电路,语音报时电路、电器控制电路,通讯电路等组成。
图3-1 多功能时钟显示屏的组成框图二、时钟显示屏的工作原理时钟显示屏以单片机为核心完成对时钟芯片DS1302管理和数码管的驱动显示控制。
数码管采用静态显示方式,由多片串入并出芯片74HC595(功能等同74HC164)级联的方式进行驱动。
通过温湿度传感器实现温湿度的检测,红外接收电路完成无线调表和多种定时等时钟功能的设置,用按键也可实现时钟调整等以及各种时钟功能的设定。
光亮传感器可以监测环境明暗,实时调整数码管的显示亮度。
语音报时电路实现语音报时,电器控制电路可实现家用电器的定时控制或者上课打铃的控制等,通讯电路可进行有线、无线通讯、控制等。
单片机最小系统数码管红外接收电路键盘电路温湿度传感器光亮检测电路驱动电路语音报时电路通讯电路电器控制电路扩展接口时钟电路功能与特点一、功能:1、年、月、日、时、分、秒、星期;2、温度、湿度检测与显示;3、农历日期的显示;4、手动按键调表;5、红外遥控器调表;6、预留光亮度检测及显示亮度的自动调整;7、预留继电器控制(10A,可实现定时打铃、家电定时控制等);8、预留语音报时和音乐报时功能;9、预留RS232和485串行通讯接口,实现与微机通讯或者远程通讯;10、预留蜂鸣器提示音功能;11、预留无线通讯接口,可实现无线通讯;12、预留I/O接口,方便今后功能扩展。
13、电源保护电路,防止电源反接烧坏路线板元件;二、特点:1、大尺寸,由1.5~2.3寸数码管显示;2、农历、星期能尾随日期变化自动调整;3、采用时钟芯片和备用电池,走时准确,断电不影响计时;4、静态显示工作模式,延长时钟显示屏使用寿命;5、采用新型单片机功能更强、速度更快;6、硬件设计功能丰富;7、可实现数码管显示亮度随环境明暗自动调节,人性化设计,使用舒适;8、可实现多种显示模式,以实现节能目的;9、软件开辟可实现多种扩展功能;10、插接件接口设计,便于组装、维护。
数字逻辑课程设计-多功能数字电子钟多功能数字钟的设计与仿真一.设计任务与要求设计任务:设计一个多功能数字钟。
要求:1.有“时”、“分”、“秒”(23小时59分59秒)显示且有校时功能。
(设计秒脉冲发生器)2.有整点报时功能。
(选:上下午、日期、闹钟等)3. 用中规模、小规模集成电路及模拟器件实现。
4. 供电方式: 5V直流电源二.设计目的、方案及原理1.设计目的(1)熟悉集成电路的引脚安排。
(2)掌握各芯片的逻辑功能及使用方法。
(3)了解面包板结构及其接线方法。
(4)了解多功能数字钟的组成及工作原理。
(5)熟悉多功能数字钟的设计与制作2.设计思路(1)设计数字钟的时、分、秒电路。
(2)设计可预置时间的校时电路。
(3)设计整点报时电路。
3.设计过程3.1.总体设计方案及其工作原理为:数字钟原理框图入图1所示,电路一般包括一下几个部分:振荡器、星期、小时、分钟、秒计数器、校时电路、报时电路。
数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。
由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定。
通常使用石英晶体振荡器电路构成数字钟,但也可以用555定时器构成。
图1 系统框图数字钟计时的标准信号应该是频率相当稳定的1HZ秒脉冲,所以要设置标准时间源。
数字钟计时周期是24小时,因此必须设置24计数器,秒、分、时由数码管显示。
ﻫ为使数字钟走时与标准时间一致,校时电路是必不可少的。
设计中采用开关控制校时电路“时”“分”“秒”计数器进行校时操作。
3.2.各独立功能部件的设计(1)分、秒计时器(60进制),时计数器(24进制),星期计数器(7进制)如下图,图中蓝色线为高电平+5v,绿色为接地线,红色线为时钟脉冲。
获得秒脉冲信号后,可根据60秒为一分,60分为一小时,24时为一个计数周期的计数规则,分别确定秒、分、时的计数器。
由于秒和分的显示都为60进制,因此他们可有两级十进制计数器组成,其中秒和分的个位为十进数器,十位为六进制计数器,可利用两片74160集成电路来实现。
引言数字电子钟是采用数字电路实现对时,分,秒数字显示的计时装置。
数字钟是人们生活中不可少的用品,随处可见,如车站,码头,剧院,办公室等公众场合,可以说给人们的生活,工作,娱乐带来不少方便,又因为数字集成电路的发展采用了先进的石英技术,使数字钟具有走时准确,性能稳定,携带方便等优点。
虽然现在市场上又现成的数字钟集成电路芯片卖,但这里所写的自制电子钟可以满足一些特殊需要,列如可以随意设置时,分,秒的输出,改变显示数字的大小等。
又因为现在科技使得集成电路技术发展迅速,尤其是中规模集成电路技术的发展,使电子钟变得更加体积小,省电,计时准确,因此,在这里设计制作一个数字电子钟有着一定的意义,同时也兼顾了我们在学校所学的数字电路知识。
关键词:数字电子钟走时准确设计制作目录述论一.数字电路基本组成框图二.组成部分及各部分作用2.1 单元电路2.1.1 振荡电路2.1.2 时分秒显示电路2.1.3 译码显示电路2.1. 4 校时电路2.2 进制电路2.3 基本逻辑门电路三.电子钟触发器四.脉冲信号的产生五.调试六.结论七.参考文献述论多功能数字电子钟是由晶体振荡器、计数器、译码和数码显示电路、校时电路等组成。
该电子钟可以满足使用者的一些特殊要求,输出方式灵活,如可以随意设置时、分、秒的输出,改变显示数字的大小等等。
并且由于集成电路技术的发展,特别是MOS集成电路技术的发展,使数字电子钟具有体积小、耗电省、计时准确、性能稳定、维护方便等优点。
此次设计运用了学院中所学的数电、模电等知识,利用元器件等工作原理,制成了具有校时功能的数字电子钟。
电路主要采用中规模CMOS集成电路.本系统的设计电路由脉冲逻辑电路模块、时钟脉冲模块、电源模块、时钟译码显示电路模块、校时模块等部分组成。
采用电池作电源,采用低功耗的CMOS芯片及液晶显示器,有效的解决了功耗问题,能更好地为人们的生活带来便利。
一数字电子钟的基本组成框图二组成部分及各部分作用数字钟是一个将‚时‛、‚分‛、‚秒’’显示于人的视觉器官的计时装置。
电子技术课程设计报告设计题目:数字电子时钟班级:学生姓名:学号:指导老师:完成时间:一.设计题目:数字电子时钟二.设计目的:1.熟悉集成电路的引脚安排和各芯片的逻辑功能及使用方法;2.了解数字电子钟的组成及工作原理 ;3.熟悉数字电子钟的设计与制作;三、设计任务及要求用常用的数字芯片设计一个数字电子钟,具体要求如下:1、以24小时为一个计时周期;2、具有“时”、“分”、“秒”数字显示;3、数码管显示电路;4、具有校时功能;5、整点前10秒,数字钟会自动报时,以示提醒;6、用PROTEUS画出电路原理图并仿真验证;四、设计步骤:电路图可分解为:1.脉冲产生电路;2.计时电路;3.显示电路;4校时电路;5整点报时电路;1.脉冲电路是由一个555定时器构成的一秒脉冲,即频率为1HZ;电路图如下:2.计时电路即是计数电路,通过计数器集成芯片如:74LS192 、74LS161、74LS163等完成对秒脉冲的计数,考虑到计数的进制,本设计采用的是74LS192;秒钟个位计到9进10时,秒钟个位回0,秒钟十位进1,秒钟计到59,进60时,秒钟回00,分钟进1;分钟个位计到9进10时,分钟个位回0,分钟十位进1,分钟计到59,进60时,分钟回00,时钟进1;时钟个位记到9进10时,时钟个位回0,时钟十位进1,当时钟计数到23进24时,时钟回00.电路图如下:3.显示电路是完成各个计数器的计数结果的显示,由显示译码器和数码管组成,译码器选用的是4511七段显示译码器,LED数码管选用的是共阴极七段数码管,数码管要加限流电阻,本设计采用的是400欧姆的电阻;电路图如下:4.校时电路通过RS触发器及与非门和与门对时和分进行校准,电路图如下:5.整点报时电路即在时间出现整点的前几秒,数值时钟会自动提醒,本设计采用连续蜂鸣声;根据要求,电路应在整点前10秒开始整点报时,也就是每个小时的59分50秒开始报时,元器件有两个三输入一输出的与门,一个两输入一输出的与门,发生器件选择蜂鸣器;具体电路图如下:六.设计用到的元器件有:与非门74LS00,与门74LS08,74LS11,7段共阴极数码管,计数器芯片74LS192,555定时器,4511译码器,电阻,电容,二极管在电路开始工作时,对计数电路进行清零时会使用到,单刀双掷开关;设计电路图如报告夹纸;七.仿真测试:1.电路计时仿真电路开始计数时:计数从1秒到10秒的进位,从59秒到一分钟的进位,从1分到10分的进位,从59分到一小时的进位,从1小时到10小时的进位,从23小时到24小时的进位,然后重新开始由此循环,便完成了24小时循环计时功能,仿真结果如下:1. 7.2.8.3. 9.4. 10.5. 11.6. 12.13.2.电路报时仿真由电路图可知,U18:A和U18:B的6个输入引脚都为高电平时,蜂鸣器才会通电并发声,当计数器计数到59分50秒是,要求开始报时,而59分59秒时,还在报时,也就是说只需要检测分钟数和秒计数的十位,5的BCD码是4和1,9的BCD码是8和1,一共需要6个测端口,也就是上述的6个输入端口,开始报时时,报时电路状态如图:3.校时电路仿真正常计时校时U15:D和u15:C是一个选通电路,12角接的是秒的进位信号,9角接的是秒的脉冲信号,当SW1接到下引脚时,U15:D接通,u15:C关闭,进位信号通过,计数器的分技术正常计时;当SW1接到上引脚时,U15:D关闭,u15:C接通,校时的秒脉冲通过,便实现了分钟校时,时钟的校时与分钟校时大致相同;八.心得体会以及故障解决设计过程中遇到了一个问题,就是在校时电路开始工作时,校时的选择电路会给分钟和时钟的个位一个进位信号,也就是仿真开始时电路的分钟和时钟个位会有一个1;为了解决这个问题,我采用的是在电路开始工作时,同时给分钟和时钟的个位一个高电平的清零信号来解决,由于时钟的个位和十位的清零端是连在一起的,再加上分钟的个位,在校时小时的时候且当小时跳完24小时时,会给分钟的个位一个清零信号,这时在电路中加一个单向导通的二极管变解决了,具体加在那儿,请参考电路图;在设计过称中,我们也许遇到的问题不止一个两个,而我们要做的是通过努力去解决它;首先我们要具备丰富的基础知识,这是要在学习和实际生活中积累而成的;其次,我们还有身边的朋友同学老师可以请教,俗话说:三人行,必有我师;最后,我们还有网络,当今是个信息时代,网络承载信息的传递,而且信息量非常大,所以我们也可以适当的利用网络资源;通过这次对数字钟的设计与制作,让我了解了设计电路的步骤,也让我了解了关于数字钟的原理与设计理念,要设计一个电路总要先用仿真,仿真成功之后才实际接线;但是仿真是在一个比较好的状态下工作,而电路在实际工作中需要考虑到一些驱动和限流电阻等等,因为,再实际接线中有着各种各样的条件制约和干扰;而且,在仿真中无法成功的电路接法,在实际中因为芯片本身的特性而能够成功;所以,在设计时应考虑两者的差异,从中找出最适合的设计方法;这次学习让我对各种电路都有了大概的了解,所以说,坐而言不如立而行,对于这些电路还是应该自己动手实际操作才会有深刻理解,才能在实际生活和工作中应用起来;。
数字电子钟的制作1 电路原理图数字电子钟的电路原理图如图1.1所示。
图1.1 数字电子钟的电路原理图2 工作原理数字电子钟由多谐振荡器、计数器、显示译码器、显示器和校时电路组成。
多谐振荡器产生秒脉冲信号,秒脉冲送入计数器计数,计数结果通过“时”、“分”、“秒”显示译码器译码,由显示器显示时间。
数字时钟的组成框图如图2.1所示。
图2.1 数字电子钟的组成框图2.1 多谐振荡器与分频电路多谐振荡器与分频电路如图2.2所示。
多谐振荡器是一种能产生矩形波的自激振荡器,也称矩形波发生器。
“多谐”指矩形波中除了基波成分外,还含有丰富的高次谐波成分。
多谐振荡器没有稳态,只有两个暂稳态。
在工作时,电路的状态在这两个暂稳态之间自动地交替变换,由此产生矩形波脉冲信号,常用作脉冲信号源及时序电路中的时钟信号。
数字时钟里用的是555定时器构成的1khz多谐振荡器。
可调电阻Rw可以改变输出信号的频率。
图2.2 多谐振荡器电路与分频电路如图2.2所示图中电容C、电阻R1和R2作为振荡器的定时元件,决定着输出矩形波正、负脉冲的宽度。
定时器的触发输入端(2脚)和阀值输入端(6脚)与电容相连;集电极开路输出端(7脚)接R1、R2相连处,用以控制电容C的充、放电;外界控制输入端(5脚)通过0.01uF电容接地。
电路接通电源的瞬间,由于电容C来不及充电,Vc=0v,所以555定时器状态为1,输出Vo为高电平。
同时,集电极输出端(7脚)对地断开,电源Vcc 对电容C充电,电路进入暂稳态I,此后,电路周而复始地产生周期性的输出脉冲。
多谐振荡器两个暂稳态的维持时间取决于RC充、放电回路的参数。
多谐振荡器与分频电路为计数器提供计数脉冲和为校时电路提供校时脉冲。
多谐振荡器的振荡频率设计为2Hz,R为51KΩ,RW大约为50 KΩ,C为4.7μF。
多谐振荡器产生的2Hz脉冲信号为校时电路的校时脉冲。
2Hz脉冲信号经过CD4013组成的分频器,进行2分频,输出1 Hz的秒脉冲为计数器的计数脉冲。
/安徽工程大学机电学院单片机课程设计题目:数字电子时钟设计指导老师:***制作人员:范超学号:************班级:自动化2132日期:7月13日-7月24日总评成绩:课程任务设计书设计题目:数字电子时钟的设计设计任务:1.设计一款时,分,秒可调数字电子时钟可整点报时;2.设计三个按键K1,K2和K3,用于调节时钟的时间;3.用8个、七段LED数码管作为显示设备,开机显示00-00-00;本设计采用AT89C51单片机为核心器件。
具有电子钟显示,时间调整,整点报时等功能。
此数字钟是一个将“时”、“分”、“秒”显示于人的视觉器官的计时装置。
根据60秒为一分、60分为1小时的计数周期,构成秒、分、时的计数,实现计时的功能。
而且能显示清晰、直观的数字符号。
针对数字钟会产生误差的现象,就设计有校准时间的功能。
AT89C51单片机控制的数字钟的硬件结构与软件设计,给出了汇编语言源程序。
此数字钟是一个将“时”、“分”、“秒”显示于人的视觉器官的计时装置。
它的计时周期为24小时,显示满刻度为24时00分00秒,另外应有校时功能。
电路由时钟脉冲发生器、时钟计数器、译码驱动电路和数字显示电路以及时间调整电路组成。
用晶体振荡器产生时间标准信号,这里采用石英晶体振荡器。
根据60秒为1分、60分为1小时、24小时为1天的计数周期,分别组成两个60进制(秒、分)、一个24进制(时)的计数器。
显示器件选用LED八段数码管。
在译码显示电路输出的驱动下,显示出清晰、直观的数字符号。
针对数字钟会产生走时误差的现象,在电路中就设计有有校准时间功能的电路。
关键字:Proteus,Keil uVision,AT89C51,电子钟,整点报时摘要 (3)第1章概述 (5)1.1 设计背景 (5)1.2系统方案论证与设计 (5)第2章系统硬件设计 (7)2.1 系统总电路的设计 (7)2.1.1系统的总框图 ................................................................................................2.1.2芯片的选择 (7)2.2最小系统设计 (9)2.2.1时钟电路的选择与设计 (10)2.2.2复位电路的选择与设计 .............................................. 错误!未定义书签。
数字电子钟的设计与制作一、设计概述1.设计任务➢时钟脉冲电路设计➢60进制计数器设计➢24进制计数器设计➢“秒”,“分”,“小时”脉冲逻辑电路设计➢“秒”,“分”,“小时”显示电路设计➢“分”,“小时”校时电路➢整点报时电路2.功能特性➢设计的数字钟能直接显示“时”,“分”,“秒”,并以24小时为一计时周期。
➢当电路发生走时误差时,要求电路具有校时功能。
➢要求电路具有整点报时功能,报时声响为四低一高,最后一响正好为整点。
3.原理框图图 1 原理框图二、设计原理数字钟是一个将“时”,“分”,“秒”显示于人的视觉器官的计时装置。
它的计时周期为24小时,显示满刻度为23时59分59秒,另外应有校时功能和报时功能。
因此,一个基本的数字钟电路主要由译码显示器、“时”,“分”,“秒”计数器、校时电路、报时电路和振荡器组成。
干电路系统由秒信号发生器、“时、分、秒”计数器、译码器及显示器、校时电路、整点报时电路组成。
秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,一般用石英晶体振荡器加分频器来实现。
将标准秒信号送入“秒计数器”,“秒计数器”采用60进制计数器,每累计60秒发现胡一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。
“分计数器”也采用60进制计数器,每累计60分钟,发出一个“时脉冲”信号,该信号将被送到“时计数器”。
“时计数器”采用24进制计时器,可实现对一天24小时的累计。
译码显示电路将“时”、“分”、“秒”计数器的输出状态菁七段显示译码器译码,通过六位LED七段显示器显示出来。
整点报时电路时根据计时系统的输出状态产生一脉冲信号,然后去触发一音频发生器实现报时。
校时电路时用来对“时”、“分”、“秒”显示数字进行校对调整的。
三、设计步骤1.计数器电路根据计数周期分别组成两个60进制(秒、分)和一个24进制(时)的计数器。
把它们适当连接就可以构成秒、分、时的计数,实现计时功能。
CC4518的符号如图,一个芯片集成了两个完全相同的十进制计数器,其异步清零信号CR是高电平有效。
9.4 数字钟数字钟电路是一个典型的数字电路系统,其由时,分,秒计数器以及校时和显示电路组成.下面介绍利用集成十进制递增计数器(74160)和带译码器的七段显示数码管组成的数字钟电路.计数器74160和七段显示数码管的功能及使用方法在8.4节已有叙述.1. 利用两片74160组成60进制递增计数器利用两片74160组成的同步60进制递增计数器如图9.4-1所示,其中个位计数器(C1)接成十进制形式。
十位计数器(C2)选择QC与QB做反馈端,经与非门输出控制清零端(CLR’),接成六进制计数形式。
个位与十位计数器之间采用同步级连方式,将个位计数器的进位输出控制端(RCO)接至十位计数器容许端(ENT),完成个位对十位计数器的进位控制。
将个位计数器的RCO 端和十位计数器的QC、QA端经与们由CO端输出,作进位输出控制信号。
当计数器状态为59时,CO端输出高电平,在同步级联方式下,容许高位计数器计数。
选择信号源库中的1HZ方波信号作为计数器的测试时钟源。
因为秒与分计数均由60进制递增计数器来完成,为在构成数字钟系统时使电路得到简化,我们将图9.4-1虚线框内建立部分用子电路表示。
具体操作过程如下:在EWB主界面内建立图9.4-1所示60进制计数器,闭合仿真电源,经过功能测试,确保计数器工作正常。
选中虚线框内所示部分电路(C ircuit)菜单中的创建子电路(Creat Subcircuit……)项,主界面内出现子电路设置对话框,在对话框内添入电路名称(60C)后,选择在电路中置换(Replace in Circuit)项,得用子电路表示的60进制递增计数器如图9.4-3所示。
2、用两片74160组成24/12进制递增计数器图9.4-4所示电路是由两片74160组成的能实现12和24进制转换的同步递增计数器。
图中个位与十位计数器均接成十进制计数形式,采用同步级连方式。
选择十位计数器的输出端QB和个位计数器的输出端QC通过与非门NAND2控制两片计数器的清零端(CLR’),利用状态24反馈清零,可实现24进制递增计数。
数字电子钟的设计(由数字IC构成)一、设计目的1. 熟悉集成电路的引脚安排。
2. 掌握各芯片的逻辑功能及使用方法。
3. 了解面包板结构及其接线方法。
4. 了解数字钟的组成及工作原理。
5. 熟悉数字钟的设计与制作。
二、设计要求1.设计指标时间以24小时为一个周期;显示时、分、秒;有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间;计时过程具有报时功能,当时间到达整点前5秒进行蜂鸣报时;为了保证计时的稳定及准确须由晶体振荡器提供表针时间基准信号。
2.设计要求画出电路原理图(或仿真电路图);元器件及参数选择;电路仿真与调试;PCB文件生成与打印输出。
3.制作要求自行装配和调试,并能发现问题和解决问题。
4.编写设计报告写出设计与制作的全过程,附上有关资料和图纸,有心得体会。
三、设计原理及其框图1.数字钟的构成数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。
由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定。
通常使用石英晶体振荡器电路构成数字钟。
图3-1所示为数字钟的一般构成框图。
图3-1 数字钟的组成框图⑴晶体振荡器电路晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz的方波信号,可保证数字钟的走时准确及稳定。
不管是指针式的电子钟还是数字显示的电子钟都使用了晶体振荡器电路。
⑵分频器电路分频器电路将32768Hz的高频方波信号经32768()次分频后得到1Hz的方波信号供秒计数器进行计数。
分频器实际上也就是计数器。
⑶时间计数器电路时间计数电路由秒个位和秒十位计数器、分个位和分十位计数器及时个位和时十位计数器电路构成,其中秒个位和秒十位计数器、分个位和分十位计数器为60进制计数器,而根据设计要求,时个位和时十位计数器为12进制计数器。
⑷译码驱动电路译码驱动电路将计数器输出的8421BCD码转换为数码管需要的逻辑状态,并且为保证数码管正常工作提供足够的工作电流。
LED数字钟整点报时电路图本设计是一个显示时间的系统,所以三个计数器分别为60、60、12进制。
用拨码开关不同的组合分别控制调时、调分、正常计时三种不同的状态。
在调时、调分的过程中计数器间的CP脉冲被屏蔽掉,由单步脉冲代替CP输入;相反正常计时的时候,单步脉冲被屏蔽掉。
报时电路中,用减法计数器就可以实现报时的功能。
数字电子钟的设计一、绪论(一)引言20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。
时间对人们来说总是那么宝贵,工作的忙碌性和繁杂性容易使人忘记当前的时间。
忘记了要做的事情,当事情不是很重要的时候,这种遗忘无伤大雅。
但是,一旦重要事情,一时的耽误可能酿成大祸。
例如,许多火灾都是由于人们一时忘记了关闭煤气或是忘记充电时间。
尤其在医院,每次护士都会给病人作皮试,测试病人是否对药物过敏。
注射后,一般等待5分钟,一旦超时,所作的皮试试验就会无效。
手表当然是一个好的选择,但是,随着接受皮试的人数增加,到底是哪个人的皮试到时间却难以判断。
所以,要制作一个定时系统。
随时提醒这些容易忘记时间的人。
钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。
诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、定时启闭电路、定时开关烘箱、通断动力设备,甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。
因此,研究数字钟及扩大其应用,有着非常现实的意义。
(二)论文的研究内容和结构安排本系统采用石英晶体振荡器、分频器、计数器、显示器和校时电路组成。
由LED 数码管来显示译码器所输出的信号。
采用了74LS系列中小规模集成芯片。
使用了RS触发器的校时电路。
总体方案设计由主体电路和扩展电路两大部分组成。
其中主体电路完成数字钟的基本功能,扩展电路完成数字钟的扩展功能。
数字电子钟制作本数字电子钟采用最基本的4000系列数字IC,根据数字电路基础理论设计而成。
本电子钟采用全数字元件,与中职的数字电子技术课程相符,充分考虑了它的实用性,使学生完成制作同时,可以提高动作能力和巩固所学数字电路知识,同时制成一个实用的数字电子钟“产品”。
本电路采用高精度感性晶体振荡电路,天误差小于2秒。
二:电路原理图:工作原理:由4060与晶体组成的振荡电路输出精确的2HZ脉冲,此时脉冲一路用于调时,另一路给4013二分频通过微分电路送入4518计数,3个4518共计6个10进制计数器与分立元件与门及进位延时电路共同组成“24:60:60”计数列,每位输出的BCD码经4511显示译码驱动数码管显示出当前时间。
按下S1调秒,S2调分、S3调时。
三、元件清单:序号元件标号封装数量61 共阴七段数码管数码管LED1、LED2、LED3、LED4、LED5、LED6DIP16 62 CD4511芯片IC1、IC2、IC3、IC4、IC5、IC63 CD4518芯片IC6、IC7、IC8 DIP16 34 CD4060芯片IC10 DIP16 15 CD4081芯片IC12 DIP14 16 CD4013芯片IC13 DIP14 17 轻触按键S1、S2、S3 38 直插电阻100K R1、R4、R5、R6、R8、6R119 直插电阻470K R2、R9、R10 310 直插电阻10K R7 111 直插电阻10M R3 112 直插瓷片电容20P C1、C2、C3、C7 413 直插瓷片电容103 C4、C5、C6、C8 414 圆柱晶振32.768K Y1 115 电源座J1 1Welcome !!! 欢迎您的下载,资料仅供参考!。
数字电子钟制作
本数字电子钟采用最基本的4000系列数字IC,根据数字电路基础理论设计而成。
本电子钟采用全数字元件,与中职的数字电子技术课程相符,充分考虑了它的实用性,使学生完成制作同时,可以提高动作能力和巩固所学数字电路知识,同时制成一个实用的数字电子钟“产品”。
本电路采用高精度感性晶体振荡电路,天误差小于2秒。
二:电路原理图:
工作原理:由4060与晶体组成的振荡电路输出精确的2HZ脉冲,此时脉冲一路用于调时,另一路给4013二分频通过微分电路送入4518计数,3个4518共计6个10进制计数器与分立元件与门及进位延时电路共同组成“24:60:60”计数列,每位输出的BCD码经4511显示译码驱动数码管显示出当前时间。
按下S1调秒,S2调分、S3调时。
三、元件清单:
序号元件标号封装数量
1 共阴七段数码管数码管LED1、LED2、LED3、
6
LED4、LED5、LED6
DIP16 6
2 CD4511芯片IC1、IC2、IC3、IC4、
IC5、IC6
3 CD4518芯片IC6、IC7、IC8 DIP16 3
4 CD4060芯片IC10 DIP16 1
5 CD4081芯片IC12 DIP14 1
6 CD4013芯片IC13 DIP14 1
7 轻触按键S1、S2、S3 3。