第六讲一元一次方程与二元一次方程组
- 格式:doc
- 大小:82.50 KB
- 文档页数:7
第六讲 一元一次方程与二元一次方程组1.方程5x +2y =-9与下列方程构成的方程组的解为⎩⎪⎨⎪⎧x =-2,y =12的是( D )A .x +2y =1B .3x +2y =-8C .5x +4y =-3D .3x -4y =-82.对方程组⎩⎪⎨⎪⎧4x +7y =-19,4x -5y =17用加减法消去x ,得到的方程为(D )A .2y =-2B .2y =-36C .12y =-2D .12y =-363.若方程mx +ny =6的两个解是⎩⎪⎨⎪⎧x =1,y =1和⎩⎪⎨⎪⎧x =2,y =-1则m ,n 的值为( A )A .4,2B .2,4C .-4,-2D .-2,-44.(2017天津中考)方程组⎩⎪⎨⎪⎧y =2x ,3x +y =15的解是(D )A .⎩⎪⎨⎪⎧x =2,y =3B .⎩⎪⎨⎪⎧x =4,y =3 C .⎩⎪⎨⎪⎧x =4,y =8 D .⎩⎪⎨⎪⎧x =3,y =6 5.若a +b =3,a -b =7,则ab =( A )A .-10B .-40C .10D .406.一等腰三角形的两边长为x ,y ,满足方程组⎩⎪⎨⎪⎧2x -y =3,3x +2y =8,则此等腰三角形的周长为( B )A .4B .5C .3D .5或47.若2(a +3)的值与4互为相反数,则a 的值为( C )A .1B .-72C .-5D .128.若代数式x +2的值为1,则x 等于( B )A .1B .-1C .3D .-39.已知关于x ,y 的方程x2m -n -2+4ym +n +1=6是二元一次方程,则m ,n 的值为( A )A .m =1,n =-1B .m =-1,n =1C .m =13,n =-43D .m =-13,n =4310.如图,直线y =ax +b 过点A(0,2)和点B(-3,0),则方程ax +b =0的解是( D )A .x =2B .x =0C .x =-1D .x =-311.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( A )A .0.8x -10=90B .0.08x -10=90C .90-0.8x =10D .x -0.8x -10=9012.已知(a -2)xa 2-3-5=0为关于x 的一元一次方程,则a 的值为 __-2__. 13.(2017武汉中考改编)方程4x -3=2(x -1)的解为__x =12__.14.已知一个正数的两个平方根分别是2a -2和4,则a 的值是__-1__.15.(2017新疆中考)一台空调标价2 000元,若按六折销售仍可获利20%,则这台空调的进价是__1__000__元.16.(2017广西北部湾经济区中考)已知⎩⎪⎨⎪⎧x =a ,y =b 是方程组⎩⎪⎨⎪⎧x -2y =0,2x +y =5的解,则3a -b =__5__.17.(2017北京中考)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为__⎩⎪⎨⎪⎧x -y =3,4x +5y =435__. 18.(贺州中考)解方程:x 6-30-x 4=5.解:去分母,得2x -3(30-x)=60, 去括号,得2x -90+3x =60, 解得x =30.19.解方程组:⎩⎪⎨⎪⎧3x -y =7,x +3y =-1.解:⎩⎪⎨⎪⎧3x -y =7①,x +3y =-1②,由②×3-①,得y =-1,把y =-1代入①,得x =2,∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =-1.20.(2017徐州中考) 4月9日上午8时,2017 徐州国际马拉松赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄. 解:设今年妹妹的年龄为x 岁,哥哥的年龄为y 岁.根据题意,得⎩⎪⎨⎪⎧x +y =163(x +2)+(y +2)=34+2,解得⎩⎪⎨⎪⎧x =6,y =10.答:今年妹妹的年龄为6岁,哥哥的年龄为10岁.21.(2017呼和浩特中考)某专卖店有A ,B 两种商品.已知在打折前,买60件A 商品和30件B 商品用了1 080元,买50件A 商品和10件B 商品用了840元;A ,B 两种商品打相同折以后,某人买500件A 商品和450件B 商品一共比不打折少花1 960元,计算打了多少折?解:设打折前A 商品的单价为x 元/件,B 商品的单价为y 元/件.根据题意,得⎩⎪⎨⎪⎧60x +30y =1 080,50x +10y =840,解得⎩⎪⎨⎪⎧x =16,y =4,500×16+450×4=9 800(元), 9 800-1 9609 800=0.8.答:打了八折.22.(2017百色中考)某校九年级10个班级师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少4个.(1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5 min 、6 min 、8 min ,预计所有演出节目交接用时共花15 min .若从20:00开始,22:30之前演出结束,则参与的小品类节目最多能有多少个?解:(1)设九年级师生表演的歌唱类节目有x 个,舞蹈类节目有y 个.根据题意,得⎩⎪⎨⎪⎧x +y =10×2,x =2y -4,解得⎩⎪⎨⎪⎧x =12,y =8.答:九年级师生表演的歌唱类节目有12个,舞蹈类节目有8个; (2)设参与的小品类节目有a 个.根据题意,得12×5+8×6+8a +15<150, 解得a <278,∵a 为整数, ∴a =3.答:参与的小品类节目最多能有3个.23.(2017海南中考)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64 m 3,3辆甲种车和1辆乙种车一次共可运土36 m 3,则甲、乙两种车每辆一次分别可运土多少立方米?解:设甲种车每辆一次运土x m 3,乙种车每辆一次运土y m 3.由题意,得⎩⎪⎨⎪⎧5x +2y =64,3x +y =36,解得⎩⎪⎨⎪⎧x =8,y =12.答:甲种车每辆一次运土8 m 3,乙种车每辆一次运土12 m 3.24.(2017益阳中考)我市南县大力发展农村旅游事业,全力打造“洞庭之心湿地公园”,其中罗文村的“花海、涂鸦、美食”特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮利润是住宿利润的2倍还多1万元.(1)求去年该农家乐餐饮和住宿的利润各为多少万元;(2)今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:“我预计今年餐饮和住宿的利润比去年会有10%的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于10万元的纯利润.”请问今年土特产销售至少有多少万元的利润?解:(1)设去年餐饮利润为x 万元,住宿利润为y 万元.依题意,得⎩⎪⎨⎪⎧x +y =20×80%,x =2y +1,解得⎩⎪⎨⎪⎧x =11,y =5.答:去年餐饮利润为11万元,住宿利润为5万元; (2)设今年土特产利润m 万元.依题意,得16+16×(1+10%)+m -20-11≥10, 解得m≥7.4.答:今年土特产销售至少有7.4万元的利润.25.(2017台州中考)滴滴快车是一种便捷的出行工具,计价规则如表:计费项目里程费 时长费 远途费 单价1.8元/公里 0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算:远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里和8.5公里.如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( D )A .10 minB .13 minC .15 minD .19 min26.(2017呼和浩特中考)下面三个命题:①若⎩⎪⎨⎪⎧x =a ,y =b 是方程组⎩⎪⎨⎪⎧|x|=2,2x -y =3的解,则a +b =1或a +b =0;②函数y =-2x 2+4x +1通过配方可化为y =-2(x -1)2+3;③最小角等于50°的三角形是锐角三角形.其中正确的序号为__②③__.27.(2017荆门中考)已知:派派的妈妈和派派今年共36岁,再过5年,派派的妈妈的年龄是派派年龄的4倍大1岁,当派派的妈妈40岁时,则派派的年龄为__12__岁.28.(2017济宁中考)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的23,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x 文钱,乙原有y 文钱,可列方程组是__⎩⎪⎨⎪⎧x +12y =48,23x +y =48__.29.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =-3m +2,x +2y =4的解满足x +y >-32,求出满足条件的m 的所有正整数值.解:⎩⎪⎨⎪⎧2x +y =-3m +2①,x +2y =4②,由①+②,得3(x +y)=-3m +6, 即x +y =-m +2.∵x +y >-32,∴-m +2>-32,解得m <72,则满足条件m 的所有正整数值为1,2,3.30.(2017绵阳中考)江南农场收割小麦,已知1台大型收割机和3台小型收割机1 h 可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1 h 可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1 h 收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2 h 完成8公顷小麦的收割任务,且总费用不超过5 400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.解:(1)设每台大型收割机1 h 收割小麦x 公顷,每台小型收割机1 h 收割小麦y 公顷.根据题意,得⎩⎪⎨⎪⎧x +3y =1.4,2x +5y =2.5,解得⎩⎪⎨⎪⎧x =0.5,y =0.3. 答:每台大型收割机1 h 收割小麦0.5公顷,每台小型收割机1 h 收割小麦0.3公顷;(2) 设大型收割机有m 台,总费用为w 元,则小型收割机有(10-m)台.根据题意,得w =300×2m+200×2(10-m)=200m +4 000.∵2 h 完成8公顷小麦的收割任务,且总费用不超过5 400元,∴⎩⎪⎨⎪⎧2×0.5m +2×0.3(10-m )≥8,200m +4 000≤5 400,解得5≤m≤7, ∴有三种不同方案,∵w =200m +4 000中,k =200>0, ∴w 值随着m 的值增大而增大,∴当m =5时,总费用取最小值,最小值为5 000元.答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5 000元.31. 解方程组:⎩⎪⎨⎪⎧(x 2+3x )(x +y )=40,x 2+4x +y =14.解:原方程组可化为⎩⎪⎨⎪⎧(x 2+3x )(x +y )=40,(x 2+3x )+(x +y )=14, 令x 2+3x =a ,x +y =b ,则ab =40,a +b =14, ∴a ,b 是方程t 2-14t +40=0的两根,解得⎩⎪⎨⎪⎧a =10,b =4,或⎩⎪⎨⎪⎧a =4,b =10,∴⎩⎪⎨⎪⎧x 2+3x =10,x +y =4或⎩⎪⎨⎪⎧x 2+3x =4,x +y =10, 解得⎩⎪⎨⎪⎧x 1=2,y 1=2,⎩⎪⎨⎪⎧x 2=-5,y 2=9,⎩⎪⎨⎪⎧x 3=1,y 3=9,⎩⎪⎨⎪⎧x 4=-4,y 4=14.。
优佳文化教育一元一次方程和二元一次方程组课前知识点突破【考点1】基本概念1.一元一次方程:只含有 未知数,且未知数的次数都是 的方程,形如()0≠=a b ax .2.方程的解:能使方程等号两边相等的 的值.3.二元一次方程:方程中含有 未知数,并且 的次数都是 的方程,如()0,0≠≠=+b a c by ax4.二元一次方程组:把具有 的 二元一次方程合在一起,就组成了一个二元一次方程组.5.二元一次方程的解:一般地,使二元一次方程两边的值相等 未知数的值,叫做二元一次方程的解.二元一次方程有 组解.6.二元一次方程组的解:一般地,二元一次方程组的两个方程的 ,叫做二元一次方程组的解.二元一次方程组有 组解(两个方程的未知数的系数不成正比).【考点2】等式的性质等式性质1:等式两边加上(或减去)同一个数(或式子),结果仍相等.即如果b a =,那么 = .等式性质2:等式的两边乘同一个数,或除以同一个不为0的数,所得的结果仍相等.即如果b a =,那么 = ;如果b a =(0≠c ),那么 = .【考点3】一元一次方程和二元一次方程组的解法1.一元一次方程的解题过程:① ;② ;③ ;④ .2.解二元一次方程组的基本方法: 和 .课中方法突破【重点1】解二元一次方程组[例1] 解方程组.1123,12⎩⎨⎧=-=+y x y x解析:两个方程的未知数y 的系数互为相反数,可用加减消元法.答案:.112312⎩⎨⎧=-=+②①y x y x①+②,得4x =12,解得:x =3.将x =3代入①,得9-2y =11,解得y =-1.所以方程组的解是⎩⎨⎧-==13y x . 点拨:解二元一次方程组,消元是关键.代入消元法须将其中的一个未知数表示成另一个未知数的代数式,代入另一个方程,从而将两个未知数消元成一个未知数;加减消元法中若两个方程的系数相同(或互为相反数),则可以直接相减(或相加),若两个方程的未知数系数不相同也不互为相反数,可选一个恰当的乘方程的两边,是其中的一个未知数的系数相等(或互为相反数)再把方程两边分别相减(或相加),从而消元成一个未知数.△高○分◇秘□笈→解二元一次方程组需一定的计算能力,突出基础性性,题目一般不难,系数比较简单,主要考查消元法法的掌握情况.<<< 迁移拓展 <<<1.解方程组:34194x y x y +=⎧⎨-=⎩【重点2】列一元一次方程解应用题[例2] 儿子今年13岁,父亲今年40岁,是否有哪一年父亲年龄恰好是儿子的4倍?解析:直接设出未知数,充分利用某年父亲的年龄是儿子年龄的4倍,则有40+x=4(13+x ),解得x=-4.即4年前父亲年龄恰好是儿子的4倍. 点拨:对于一元一次方程的应用题,题目中涉及的关系并不是很多.首先是审题,理解题意是寻找相等关系的前提,同时渗透列方程解决实际问题的思考程序.△高○分◇秘□笈→方程是解决现实问题的一种重要工具.通过确立相等关系,列出方程,分析方程解得合理性的过程,加强对于用方程解决问题的模型化的认识.实战演练1. 方程组125x y x y +=⎧⎨-=⎩,的解是A .12.x y =-⎧⎨=⎩,B .23.x y =-⎧⎨=⎩,C .21.x y =⎧⎨=⎩,D .21.x y =⎧⎨=-⎩,2. 解二元一次联立方程式⎩⎨⎧=-=+546368y x y x ,得y =? A. -211 B. -172 C. -342 D. -3411. 3. 方程组51x y x y +=⎧⎨-=⎩的解是( ) A .23x y =⎧⎨=⎩ B .32x y =⎧⎨=⎩ C .14x y =⎧⎨=⎩ D .41x y =⎧⎨=⎩4. 某校春季运动会比赛中,八年级(1)班、(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x 分,(5)班得y 分,根据题意所列的方程组应为( )A .65,240x y x y =⎧⎨=-⎩B .65,240x y x y =⎧⎨=+⎩C .56,240x y x y =⎧⎨=+⎩D .56,240x y x y =⎧⎨=-⎩ 5. 某商场的老板销售一种商品,他要以不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售( )A .80元B .100元C .120元D .160元6. 方程组⎩⎨⎧=-=+7211y x y x 的解是 . 7. 学校组织一次有关世博的知识竞赛共有20道题,每小题答对得5分,答错或不答都倒扣..1分,小明最终得76分,那么他答对 题.8. 解方程组2425x y x y +=⎧⎨+=⎩9. 解方程组:2241x y x y +=⎧⎨-=⎩10. 解方程组 ⎩⎨⎧=-=-;1383,32y x y x 11. 我市某企业向玉树地震灾区捐助价值26万元的甲、乙两种帐篷共300顶.已知甲种帐篷每项800元,乙种帐篷每项1000元,问甲、乙两种帐篷各多少顶?12. 2008 年北京奥运会,中国运动员获得金、银、铜牌共 100 枚,金牌数位列世界第一.其中金牌比银牌与铜牌之和多 2 枚,银牌比铜牌少 7 枚.问金、银、铜牌各多少枚?学习心得。
一元一次方程一、知识点:1.一元一次方程的定义、方程的解;2.一元一次方程的解法;3.一元一次方程的应用。
二、中考知识梳理1.会对方程进行适当的变形解一元一次方程解方程的基本思想就是转化,即对方程进行变形,变形时要注意两点,一是方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程的解可能不同;二是去分母时,不要漏乘没有分母的项,一元一次方程是学习二元一次方程组、一元二次方程、一元一次不等式及函数问题的基本内容。
2.正确理解方程解的定义,并能应用等式性质巧解考题方程的解应理解为,把它代入原方程是适合的,其方法就是把方程的解代入原方程,使问题得到了转化。
3.理解方程ax=b在不同条件下解的各种情况,并能进行简单应用方程ax=b:(1)a≠0时,方程有唯一解x=ba;(2)a=0,b=0时,方程有无数个解;(3)a=0,b≠0时,方程无解。
4.正确列一元一次方程解应用题列方程解应用题,关键是寻找题中的等量关系,可采用图示、列表等方法,根据近几年的考试题目分析,要多关注社会热点,密切联系实际,多收集和处理信息,解应用题时还要注意检查结果是否符合实际意义。
三、中考题型例析题型一方程解的应用例1(芜湖)已知方程32x-9x+m=0的一个根是1,则m的值是。
题型二巧解一元一次方程例2(江苏)解方程:341138 43242x x ⎡⎤⎛⎫--=⎪⎢⎥⎝⎭⎣⎦题型三根据方程ax=b解的情况,求待定系数的值例3已知关于x 的方程1(6)326x x a x +=--无解,则a 的值是( )A.1B.-1C.±1D.不等于1的数 题型四 一元一次方程的应用例4(福州)某班学生为希望工程共捐款131元,比每人平均2 元还多35元,设这个班的学生有x 人,根据题意列方程为_________________。
基础达标验收卷一、选择题1.(安徽)购某种三年期国债x 元,到期后可得本息和y 元,已知y=kx ,则这种国债的年利率为( ) A.k B.3k C.k-1 D.13k -2.(陕西)如果2(x+3)的值与3(1-x )的值互为相反数,那么x 等于( ) A.-8 B.8 C.-9 D.93.在公式P=F S t⋅中,已知P 、F 、t 都是正常数,则S 等于( )A.P t FB.F t PC.F P tD.PFt4.(山西)有一种足球是由32块黑白相间的牛皮缝制而成的,如图所示,黑皮可看做正五边形,白皮可看做正六边形,设白皮有x 块, 则黑皮有(32-x )块,每块白皮有六条边,共6x 条边,因每块白皮有三条边和黑皮连在一起, 故黑皮共有3x 条边,要求白皮、黑皮的块数,列出的方程正确的是( )A.3x=32-xB.3x=5(32-x )C.5x=3(32-x )D.6x=32-x 二、填空题1.(玉林)若-m=4,则m=____________。
第二单元 方程(组)与不等式(组) 第六讲 一元一次方程与二元一次方程组一、目标要求:1.了解等式、方程、一元一次方程和二元一次方程(组)的概念,掌握等式的基本性质. 2.掌握一元一次方程的标准形式,熟练掌握一元一次方程和二元一次方程组的解法. 3.会列方程(组)解决实际问题.二、课前热身1.方程2x-5=3的解是( )A .x=4B .x=-4C .x=1D .x=-12.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x 支,则依题意可列得的一元一次方程为( ) A.1.2×0.8x+2×0.9(60+x )=87 B.1.2×0.8x+2×0.9(60﹣x )=87 C.2×0.9x+1.2×0.8(60+x )=87 D.2×0.9x+1.2×0.8(60﹣x )=873.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人.下面所列的方程组正确的是( )A .3412x y x y +=⎧⎨+=⎩B .3421x y x y +=⎧⎨=+⎩C .3421x y x y +=⎧⎨=+⎩D .23421x y x y +=⎧⎨=+⎩4.方程组525x y x y =+⎧⎨-=⎩的解满足方程x +y -a=0,那么a 的值是( )A .5B .-5C .3D .-35.方程组x y 60x 2y 30+=⎧⎨-=⎩的解是( )A .x 70y 10=⎧⎨=-⎩B .x 90y 30=⎧⎨=-⎩C .x 50y 10=⎧⎨=⎩D .x 30y 30=⎧⎨=⎩三、【基础知识重温】1.等式及其性质 ⑴ 等式:用等号“=”来表示 关系的式子叫等式.⑵ 性质:① 如果b a =,那么=±c a ;② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=ca. 2. 方程、一元一次方程的概念⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为()0≠a .3. 解一元一次方程的步骤:①去 ;②去 ;③移 ;④合并 ;⑤系数化为1.4.二元一次方程:含有 未知数(元)并且未知数的次数是 的整式方程.5. 二元一次方程组:把具有相同未知数的两个 合在一起,就组成了一个二元一次方程组.6.二元一次方程的解: 适合一个二元一次方程的 未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有 个解. 7.二元一次方程组的解: 二元一次方程组的两个方程的 ,叫做二元一次方程组的解. 8. 解二元一次方程的方法:消元是解二元一次方程组的基本思路,方法有 消元和 消元法两种.四、例题分析题型一 一元一次方程的解法例1. (2015·辽宁大连)方程3x+2(1-x)=4的解是( ) A.x=52 B.x=65C.x=2D.x=1 【趁热打铁】1.已知关于x 的方程3a-x=4的解为2,求代数式(-a)2-2a+1的值. 2.解方程:(1)53(2)8x x +-= (2)212143x x -+=-3.解方程:)21(25)2(34y y y --=+- 题型二 二元一次方程组的解法 例2. 如果实数x ,y 满足方程组,则x 2﹣y 2的值为 .例3. (2015•泉州)方程组的解是 .【趁热打铁】1.已知x 2y 1==⎧⎨⎩是方程组ax by 5bx ay 1+=+=⎧⎨⎩的解,则a ﹣b 的值是( )A.1-B.2C.3D.42.方程组⎩⎨⎧=-=+32y x a y x 的解为⎩⎨⎧==b y x 5,则a 、b 分别为 ( )A .a =8,b =-2B .a =8,b =2C .a =12,b =2D .a =18,b =8 3.方程组13x y x y -=⎧⎨+=⎩的解是4.解下列方程组:131,222;x y x y ⎧-=⎪⎨⎪+=⎩ 5.解方程组x 2y 4 2x y 30-=⎧⎨+-=⎩ ①②.6.解二元一次方程组:3x 2y 192x y 1+=⎧⎨-=⎩题型三 列方程(组)解决实际问题例4. (2015·辽宁朝阳)为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如表中是某省的电价标准(每月).例如:方女士家5月份用电500度,电费=180×0.6+220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交费316元,请问表中二档电价、三档电价各是多少?【趁热打铁】1.某汽车专卖店销售A ,B 两种型号的新能源汽车.上周售出1辆A 型车和3辆B 型车,销售额为96万元;本周已售2辆A 型车和1辆B 型车,销售额为62万元. (1)求每辆A 型车和B 型车的售价各多少万元.(2)甲公司拟向该店购买A ,B 两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?2.某商店经营甲、乙两种商品,其进价和售价如下表: 已知该商店购进了甲、乙两种商品共160件.(1)若商店在销售完这批商品后要获利1000元,则应分别购进甲、乙两种商品各多少件?(2)若商店的投入资金少于4300元,且要在售完这批商品后获利不少于1250元,则共有几种购货的方案?其中,哪种购货方案获得的利润最大?3.我州某校计划购买甲、乙两种树苗共1000株用以绿化校园,甲种树苗每株25元,乙种树苗每株30元,通过调查了解,甲,乙两种树苗成活率分别是90%和95%. (1)若购买这种树苗共用去28000元,则甲、乙两种树苗各购买多少株? (2)要使这批树苗的总成活率不低于92%,则甲种树苗最多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用. 4.海南五月瓜果飘香,某超市出售的“无核荔枝”和“鸡蛋芒果”单价分别为每千克26元和22元.李叔叔购买这两种水果共30千克,共花了708元.请问李叔叔购买这两种水果各多少千克?五、牛刀小试1、【题源】2015·湖北荆门王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了 千克. 2、【题源】2015·湖北黄冈已知A ,B 两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130 元,问A ,B 两件服装的成本各是多少元? 3、【题源】2015·湖南常德某物流公 司承接A 、B 两种货物运输业务,已知5月份A 货物运费单价为50元/吨,B 货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A 货物70元/吨,B 货物40元/吨;该物流公司6月承接的A 种货物和B 种数量与5月份相同,6月份共收取运费13000元。
第六讲 一元一次方程与二元一次方程组1.方程5x +2y =-9与下列方程构成的方程组的解为⎩⎪⎨⎪⎧x =-2,y =12的是( D )A .x +2y =1B .3x +2y =-8C .5x +4y =-3D .3x -4y =-82.对方程组⎩⎪⎨⎪⎧4x +7y =-19,4x -5y =17用加减法消去x ,得到的方程为(D )A .2y =-2B .2y =-36C .12y =-2D .12y =-363.若方程mx +ny =6的两个解是⎩⎪⎨⎪⎧x =1,y =1和⎩⎪⎨⎪⎧x =2,y =-1则m ,n 的值为(A )A .4,2B .2,4C .-4,-2D .-2,-44.(2017天津中考)方程组⎩⎪⎨⎪⎧y =2x ,3x +y =15的解是(D )5.若a +b =3,a -b =7,则ab =( A )A .-10B .-40C .10D .406.一等腰三角形的两边长为x ,y ,满足方程组⎩⎪⎨⎪⎧2x -y =3,3x +2y =8,则此等腰三角形的周长为(B )A .4B .5C .3D .5或47.若2(a +3)的值与4互为相反数,则a 的值为( C )A .1B .-72C .-58.若代数式x +2的值为1,则x 等于( B )A .1B .-1C .3D .-39.已知关于x ,y 的方程x2m -n -2+4ym +n +1=6是二元一次方程,则m ,n 的值为( A )A .m =1,n =-1B .m =-1,n =1C .m =13,n =-43D .m =-13,n =4310.如图,直线y =ax +b 过点A(0,2)和点B(-3,0),则方程ax +b =0的解是( D )A .x =2B .x =0C .x =-1D .x =-311.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( A )A .-10=90B .-10=90C .90-=10D .x --10=9012.已知(a -2)xa 2-3-5=0为关于x 的一元一次方程,则a 的值为 __-2__. 13.(2017武汉中考改编)方程4x -3=2(x -1)的解为__x =12__.14.已知一个正数的两个平方根分别是2a -2和4,则a 的值是__-1__.15.(2017新疆中考)一台空调标价2 000元,若按六折销售仍可获利20%,则这台空调的进价是__1__000__元.16.(2017广西北部湾经济区中考)已知⎩⎪⎨⎪⎧x =a ,y =b 是方程组⎩⎪⎨⎪⎧x -2y =0,2x +y =5的解,则3a -b =__5__.17.(2017北京中考)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为__⎩⎪⎨⎪⎧x -y =3,4x +5y =435__.18.(贺州中考)解方程:x 6-30-x4=5.解:去分母,得2x -3(30-x)=60, 去括号,得2x -90+3x =60, 解得x =30.19.解方程组:⎩⎪⎨⎪⎧3x -y =7,x +3y =-1.解:⎩⎪⎨⎪⎧3x -y =7①,x +3y =-1②,由②×3-①,得y =-1,把y =-1代入①,得x =2,∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =-1.20.(2017徐州中考) 4月9日上午8时,2017 徐州国际马拉松赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄. 解:设今年妹妹的年龄为x 岁,哥哥的年龄为y 岁.根据题意,得⎩⎪⎨⎪⎧x +y =163(x +2)+(y +2)=34+2,解得⎩⎪⎨⎪⎧x =6,y =10.答:今年妹妹的年龄为6岁,哥哥的年龄为10岁.21.(2017呼和浩特中考)某专卖店有A ,B 两种商品.已知在打折前,买60件A 商品和30件B 商品用了1 080元,买50件A 商品和10件B 商品用了840元;A ,B 两种商品打相同折以后,某人买500件A 商品和450件B 商品一共比不打折少花1 960元,计算打了多少折解:设打折前A 商品的单价为x 元/件,B 商品的单价为y 元/件.根据题意,得⎩⎪⎨⎪⎧60x +30y =1 080,50x +10y =840,解得⎩⎪⎨⎪⎧x =16,y =4, 500×16+450×4=9 800(元),9 800-1 9609 800=.答:打了八折.22.(2017百色中考)某校九年级10个班级师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少4个.(1)九年级师生表演的歌唱与舞蹈类节目数各有多少个(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5 min 、6 min 、8 min ,预计所有演出节目交接用时共花15 min .若从20:00开始,22:30之前演出结束,则参与的小品类节目最多能有多少个解:(1)设九年级师生表演的歌唱类节目有x 个,舞蹈类节目有y 个.根据题意,得⎩⎪⎨⎪⎧x +y =10×2,x =2y -4,解得⎩⎪⎨⎪⎧x =12,y =8.答:九年级师生表演的歌唱类节目有12个,舞蹈类节目有8个; (2)设参与的小品类节目有a 个.根据题意,得12×5+8×6+8a +15<150, 解得a <278,∵a 为整数, ∴a =3.答:参与的小品类节目最多能有3个.23.(2017海南中考)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64 m 3,3辆甲种车和1辆乙种车一次共可运土36 m 3,则甲、乙两种车每辆一次分别可运土多少立方米解:设甲种车每辆一次运土x m 3,乙种车每辆一次运土y m 3.由题意,得⎩⎪⎨⎪⎧5x +2y =64,3x +y =36,解得⎩⎪⎨⎪⎧x =8,y =12.答:甲种车每辆一次运土8 m 3,乙种车每辆一次运土12 m 3.24.(2017益阳中考)我市南县大力发展农村旅游事业,全力打造“洞庭之心湿地公园”,其中罗文村的“花海、涂鸦、美食”特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮利润是住宿利润的2倍还多1万元.(1)求去年该农家乐餐饮和住宿的利润各为多少万元;(2)今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:“我预计今年餐饮和住宿的利润比去年会有10%的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于10万元的纯利润.”请问今年土特产销售至少有多少万元的利润解:(1)设去年餐饮利润为x 万元,住宿利润为y 万元.依题意,得⎩⎪⎨⎪⎧x +y =20×80%,x =2y +1,解得⎩⎪⎨⎪⎧x =11,y =5.答:去年餐饮利润为11万元,住宿利润为5万元; (2)设今年土特产利润m 万元.依题意,得16+16×(1+10%)+m -20-11≥10, 解得m≥.答:今年土特产销售至少有万元的利润.25.(2017台州中考)滴滴快车是一种便捷的出行工具,计价规则如表:计费项目 里程费 时长费 远途费 单价元/公里元/分钟元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算:远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里和8.5公里.如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( D )A .10 minB .13 minC .15 minD .19 min26.(2017呼和浩特中考)下面三个命题:①若⎩⎪⎨⎪⎧x =a ,y =b 是方程组⎩⎪⎨⎪⎧|x|=2,2x -y =3的解,则a +b =1或a +b =0;②函数y =-2x 2+4x +1通过配方可化为y =-2(x -1)2+3;③最小角等于50°的三角形是锐角三角形.其中正确的序号为__②③__.27.(2017荆门中考)已知:派派的妈妈和派派今年共36岁,再过5年,派派的妈妈的年龄是派派年龄的4倍大1岁,当派派的妈妈40岁时,则派派的年龄为__12__岁.28.(2017济宁中考)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的23,那么乙也共有钱48文,甲、乙两人原来各有多少钱设甲原有x 文钱,乙原有y 文钱,可列方程组是__⎩⎪⎨⎪⎧x +12y =48,23x +y =48__.29.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =-3m +2,x +2y =4的解满足x +y >-32,求出满足条件的m 的所有正整数值.解:⎩⎪⎨⎪⎧2x +y =-3m +2①,x +2y =4②,由①+②,得3(x +y)=-3m +6, 即x +y =-m +2.∵x +y >-32,∴-m +2>-32,解得m <72,则满足条件m 的所有正整数值为1,2,3.30.(2017绵阳中考)江南农场收割小麦,已知1台大型收割机和3台小型收割机1 h 可以收割小麦公顷,2台大型收割机和5台小型收割机1 h 可以收割小麦公顷.(1)每台大型收割机和每台小型收割机1 h 收割小麦各多少公顷(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2 h 完成8公顷小麦的收割任务,且总费用不超过5 400元,有几种方案请指出费用最低的一种方案,并求出相应的费用.解:(1)设每台大型收割机1 h 收割小麦x 公顷,每台小型收割机1 h 收割小麦y 公顷.根据题意,得⎩⎪⎨⎪⎧x +3y =,2x +5y =,解得⎩⎪⎨⎪⎧x =,y =.答:每台大型收割机1 h 收割小麦0.5公顷,每台小型收割机1 h 收割小麦0.3公顷;(2) 设大型收割机有m 台,总费用为w 元,则小型收割机有(10-m)台.根据题意,得w =300×2m+200×2(10-m)=200m +4 000.∵2 h 完成8公顷小麦的收割任务,且总费用不超过5 400元,∴⎩⎪⎨⎪⎧2×+2×(10-m )≥8,200m +4 000≤5 400,解得5≤m≤7, ∴有三种不同方案,∵w =200m +4 000中,k =200>0, ∴w 值随着m 的值增大而增大,∴当m =5时,总费用取最小值,最小值为5 000元.答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5 000元.31. 解方程组:⎩⎪⎨⎪⎧(x 2+3x )(x +y )=40,x 2+4x +y =14.解:原方程组可化为⎩⎪⎨⎪⎧(x 2+3x )(x +y )=40,(x 2+3x )+(x +y )=14, 令x 2+3x =a ,x +y =b ,则ab =40,a +b =14, ∴a ,b 是方程t 2-14t +40=0的两根,解得⎩⎪⎨⎪⎧a =10,b =4,或⎩⎪⎨⎪⎧a =4,b =10, ∴⎩⎪⎨⎪⎧x 2+3x =10,x +y =4或⎩⎪⎨⎪⎧x 2+3x =4,x +y =10, 解得⎩⎪⎨⎪⎧x 1=2,y 1=2,⎩⎪⎨⎪⎧x 2=-5,y 2=9,⎩⎪⎨⎪⎧x 3=1,y 3=9,⎩⎪⎨⎪⎧x 4=-4,y 4=14.。