决定光纤特性的拉丝张力
- 格式:doc
- 大小:55.50 KB
- 文档页数:2
拉丝工艺对光纤性能的影响一、拉丝工艺的基本原理拉丝工艺是指将玻璃棒料通过一系列的加热、拉伸、冷却等工艺进行加工,最终得到光纤的过程。
其主要原理是将玻璃棒料在高温下拉伸成细的光纤,并在拉伸的同时控制其直径和形状,以及控制拉伸的速度和温度,从而得到符合要求的光纤产品。
二、拉丝工艺对光纤性能的影响因素1. 温度控制:拉丝过程中的温度是一个非常关键的因素。
过高或过低的温度都会导致玻璃的形变或者结晶,从而影响光纤的机械性能和光学性能。
2. 拉伸速度:拉伸速度直接影响着光纤的直径和形状。
如果拉伸速度过快,会导致光纤直径不均匀,从而影响其光学性能。
3. 真空度:在拉伸过程中,保持一定的真空度可以防止氧化发生,保证玻璃的纯度,从而保证光纤的光学性能。
4. 玻璃成分:不同的玻璃成分对拉丝工艺的影响也不同。
一些特殊的玻璃成分可以使光纤具有特殊的性能,比如增加抗拉强度或者增加光纤的耐高温性能。
三、拉丝工艺对光纤性能的影响1. 光损耗:拉丝工艺影响着光纤的表面平整度和质量,进而影响光的传输损耗。
通过优化拉丝工艺可以降低光纤的光传输损耗,提高光纤的传输效率。
2. 机械性能:拉丝工艺影响着光纤的拉伸强度和弯曲性能,通过合理的拉丝工艺可以提高光纤的机械性能,增加其使用寿命。
3. 调制带宽:拉丝工艺影响着光纤的直径和表面质量,进而影响着光的调制带宽。
通过优化拉丝工艺可以提高光纤的调制带宽,使其更适用于高速通信应用。
拉丝工艺对于光纤的性能有着重要的影响,通过优化拉丝工艺可以有效提高光纤的性能,使其更符合现代通信的要求。
在未来的研究中,可以进一步探讨新材料的应用和新工艺的创新,从而推动光纤通信技术的发展。
拉丝工艺对光纤性能的影响
光纤的拉丝工艺对其性能有很大影响。
光纤是一种细长的、柔软的、透明的纤维,用来传输光信号。
光纤通常由两个主要部分组成:纤芯和包层。
纤芯是光信号传输的核心区域,包层则用来保护纤芯并提供光线的反射和折射。
光纤的拉丝工艺是将光纤前驱材料(通常为二氧化硅)通过高温熔融,然后在拉伸机上拉制成长纤维的过程。
拉丝工艺对光纤的直径、形状和性能都有显著影响。
拉丝工艺对光纤的直径有重要影响。
光纤的直径直接影响着光的传输效率和损耗。
通过控制拉丝的机械参数如拉伸率、拉丝温度和拉丝速度,可以控制光纤的直径。
通常,通过减小拉丝速度和增加拉丝温度可以制备出较细直径的光纤,从而减小传输损耗。
拉丝工艺对光纤的形状也有重要影响。
光纤的形状指的是纤芯和包层的相对位置和几何形状。
通过控制拉丝工艺参数,可以调节纤芯和包层的相对位置以及纤芯和包层的直径比例,从而控制光线的传播特性。
可以通过调节拉丝温度来改变纤芯和包层的相对位置,从而实现单模光纤或多模光纤的制备。
拉丝工艺还对光纤的性能指标如损耗、带宽等有影响。
拉丝工艺中的拉丝温度、拉丝速度和拉伸率会影响光纤的材料结构和微观组织,从而影响光纤的性能。
适当的拉伸可以改善光纤的结晶度和晶界状态,从而提高光纤的光学性能和机械强度。
光纤的拉丝工艺对其性能具有决定性影响。
通过合理地控制拉丝工艺参数,可以制备出优质的光纤产品,以满足不同应用领域对光纤性能的需求。
光纤拉丝工艺张力研究
一.拉丝工艺的背景
随着工业结构的变化,纤维产业进行自身发展,拉长、拉丝成为关键工艺。
拉长分为多种,最常用的是单轴拉长双轴拉长,而拉长分为热拉长、光纤拉长、化学拉长等。
其中光纤拉长最为常用,是在加热的条件下作用于纤维表面,使其附着力增强,起拉长作用。
二.光纤拉丝工艺的特点
1、快速拉长,可在短时间内完成拉长作业,拉长效率高,塑料纤维拉伸能达到四倍于普通拉伸效果;
2、拉长长度可调,拉丝线的拉长长度可以根据需要进行调节;
3、质量有保证,拉丝机可以保证纤维的表面质量达到一定标准;
4、结构可靠,拉丝机的结构紧凑,可满足高效率拉丝要求;
5、占用面积小,拉丝机的外形小巧,可灵活放置。
三.光纤拉丝工艺的研究
1、研究光纤拉丝工艺的技术指标,如拉丝速度,拉丝力,拉丝温度等;
2、对光纤拉丝机的运行参数进行调整,确保生产过程中的各项参数稳定;
3、制定可靠的监测机制,及时发现异常情况,以便及时处理;
4、研究光纤拉丝工艺对纤维性能的影响,分析影响因素,提出优化解决方案;
5、研究光纤拉丝工艺的安全作业规程,以及拉丝机的安保措施。
光纤拉丝过程中张力的控制陈明 贺作为摘 要:光纤拉丝过程中,光纤形成区粘度和光纤涂覆工艺决定了光纤张力 。
本文介绍了裸光纤张力和光纤涂覆张力的理论及测量。
并探讨光纤张力对光纤的截止波长、模场直径和衰减性能参数的影响。
关键词:光纤涂覆,光纤张力,截止波长,衰减Abstract: The fiber tension is decided by the viscosity of the fiber-forming regions and the fiber coating technology in the process of the fiber drawing. This paper presents the theories and the measurement of the bare fiber tension and the fiber coating tension, investigates the relation of the fiber tension with the cutoff wavelength, the mode field diameter and the attenuation. Keyword: fiber coating, fiber tension, cutoff wavelength, attenuation0 引言在光纤的拉丝工艺中,拉丝张力是一个重要的工艺参数。
通过调节拉丝张力来确定光纤的一些主要性能参数,比如:截止波长,模场直径和衰减等。
而拉丝的张力主要受拉丝速度和加热炉温度的影响,通过在张力轮附近安装传感装置,把收集到张力信号传递到控制面板上。
张力的显示数值再通过相关的系统来调节拉丝速度和加热炉温度,使得张力在设定值附近进行微小的调节,从而保证光纤上述性能参数的合格。
下面就实际生产过程中,拉丝张力的组成和影响因素,拉丝张力的测量以及拉丝张力如何调节光纤性能参数进行论述。
拉丝工艺对光纤性能的影响1. 引言1.1 拉丝工艺对光纤性能的影响拉丝工艺是光纤制备过程中的关键环节,对光纤的性能具有重要影响。
通过不同的拉丝工艺参数的调控,可以调整光纤的力学性能、传输特性以及光学性能。
具体来说,拉丝工艺对光纤的拉伸强度影响主要体现在拉拔过程中拉伸的力度和速度,这会直接影响光纤的强度和耐力。
而对光纤的抗弯性能影响则是通过控制拉丝工艺中的拉拔方式和温度等参数来实现的,这会影响光纤在安装和使用中的稳定性和可靠性。
拉丝工艺还会影响光纤的传输损耗、色散特性和光学非线性效应,这些参数的控制需要在拉丝工艺中精心设计和调整。
拉丝工艺是影响光纤性能的重要因素,对光纤的性能表现有着直接而重要的影响。
通过不断优化和改进拉丝工艺,可以提高光纤的性能表现,满足不同领域对光纤性能的要求。
2. 正文2.1 拉丝工艺对光纤的拉伸强度影响拉丝工艺是影响光纤性能的重要因素之一,其中对光纤的拉伸强度影响尤为重要。
在光纤的制作过程中,拉丝工艺可以直接影响到光纤的拉伸强度。
拉丝工艺的优化可以提高光纤的拉伸强度,从而延长光纤的使用寿命并提高其可靠性。
首先,拉丝工艺会影响光纤的内部结构。
通过控制拉丝过程中的拉伸速度和温度,可以使光纤内部的晶格结构更加均匀和致密。
这样的内部结构可以提高光纤的抗拉伸性能,使其能够承受更大的拉力而不容易断裂。
其次,拉丝工艺还会影响光纤的表面光滑度。
拉丝过程中,如果拉伸速度过快或拉丝机器不稳定,可能导致光纤表面出现凹凸不平或者表面裂纹,从而降低光纤的拉伸强度。
因此,在拉丝工艺中需要注意控制拉伸速度和保持设备稳定,以保证光纤表面的光滑度。
总的来说,拉丝工艺对光纤的拉伸强度影响是非常显著的。
通过优化拉丝工艺,可以提高光纤的拉伸强度,进而提高其使用性能和可靠性。
因此,在光纤制作过程中,拉丝工艺的重要性不可忽视。
2.2 拉丝工艺对光纤的抗弯性能影响拉丝工艺是光纤制备过程中至关重要的一环,对光纤的性能有着直接的影响。
拉丝工艺对光纤性能的影响
拉丝工艺是光纤制造过程中至关重要的一环,对光纤品质和性能有着直接影响。
拉丝工艺主要包括熔胶法拉丝和气相法拉丝两种方法。
不同的拉丝工艺会对光纤的直径、折射率、损耗等性能产生不同程度的影响。
首先,熔胶法拉丝是一种比较古老的光纤拉丝方法,其工艺流程主要包括预制棒材、垂直拉丝和涂胶三个步骤。
熔胶法拉丝在制造粗直径光纤时效果较好,但是制造细直径光纤的时候会产生很多的损耗,因为拉丝的过程中,由于熔胶涂层的厚度对光束。
折射有巨大影响,使得细直径光纤无法有效地传输信号。
其次,气相法拉丝是目前最常用的光纤拉丝工艺,其主要步骤包括气相沉积、拉丝和退火。
相比于熔胶法拉丝,气相法拉丝制造的光纤在直径控制、折射率均匀性、损耗和力学性能等方面都表现出更远优异的品质。
由于气相法拉丝采用的是化学气相沉积技术,可以更好地控制光纤的形态,减缓热应力对光纤性能的影响,从而提高光纤的耐热性、抗拉强度和机械刚性等性能。
最后,光纤的直径对光纤的性能产生着非常重要的影响。
在拉丝过程中,通过优化拉丝温度、拉伸率等因素来调节光纤的直径,从而确保光纤的折射萎缩和带通损耗都能达到最佳水平。
此外,光纤的折射率也会受到光纤直径的影响,对于光分路器和其他器件的性能也产生着重要的影响。
总之,拉丝工艺是光纤制造工艺中的关键步骤,不同的拉丝方法能够产生不同的光纤性能和品质。
通过控制光纤直径、折射率、损耗等性能,可以获得更为优异的光纤品质和性能,为光通信系统提供更高的速度和更可靠的连接保障。
拉丝工艺对光纤性能的影响光纤是一种新型的通信线路,具有稳定性好、容量大、传输距离远等优点。
光纤主要由光纤芯和包层两部分组成。
光纤芯是光纤传递光信号的关键部分,与其他材料不同之处在于它不会发生光电转换,抗电磁干扰能力强。
因此,光纤的性能主要取决于光纤芯的质量以及光纤的制造工艺。
光纤的拉丝工艺是光纤制造的重要环节之一,对光纤的性能有着直接的影响。
本文将详细阐述拉丝工艺对光纤性能的影响。
光纤的拉丝工艺是将光纤芯预制棒通过一组或多组的钢丝拉丝机构的拉丝加工过程,将其一步步拉成光纤。
其中,光纤的预制棒是指光纤芯和包层材料按照一定比例混合后制成的条状材料。
拉丝的过程主要分为三个阶段:初拉丝、中拉丝和终拉丝。
拉丝前,需要对预制棒进行一些准备工作,如清洗、热处理等。
在制造光纤时,光纤芯的尺寸是非常关键的参数,它决定了光纤的传输性能。
在拉丝过程中,对于不同材料的预制棒,需要通过钢丝的拉伸和挤压使其变形,从而达到光纤芯的设定尺寸。
拉丝时所用的钢丝数量、直径及角度等参数不同,会对光纤芯的尺寸产生影响。
光纤的损伤程度也是光纤性能的重要参数之一。
在拉丝过程中,光纤预制棒受到极高的拉伸和挤压力,会产生高温、高压等因素,这些因素会对光纤的物理性质产生损伤。
如预制棒中的气泡、夹杂物等在拉伸过程中会被拉长成缺陷,若脱落或留下,则会成为光纤的隐患点。
因此,在拉丝加工过程中需要合理控制钢丝的张力,使其满足安全要求,同时通过降温或压扁等方法,减小预制棒受到的损伤程度。
4. 拉丝工艺对光纤的抗拉强度和断裂伸长率的影响拉丝过程中,光纤预制棒经过拉伸变形,其结构和应力分布发生变化,直接影响光纤的机械性能,如抗拉强度和断裂伸长率。
在拉丝过程中,需要合理控制预制棒拉伸速度、张力大小,以及控制预制棒与钢丝的接触磨损等影响因素,从而保证光纤的机械强度和稳定性。
5. 拉丝工艺对光纤的质量控制拉丝工艺是光纤生产过程中的关键环节,严格控制拉丝过程中的各项工艺参数,减少质量变差因素的影响,保证光纤产品的质量稳定性和一致性。
拉丝工艺对光纤性能的影响光纤是一种用于传输光信号的细长玻璃纤维或塑料纤维,它具有高传输速度、大带宽和抗干扰能力强等优点,因此在通信、医疗、军事等领域得到广泛应用。
而光纤的性能受到拉丝工艺的影响,拉丝工艺对光纤性能的影响是十分重要的。
拉丝工艺是光纤制造的关键环节之一,其质量直接影响光纤的性能和品质。
光纤制造的一般工艺为:原材料预处理、预成型、拉丝、包覆、涂层、复合、割断、烤焙等。
在整个工艺中,拉丝工艺是至关重要的步骤,影响着光纤的质量和性能。
拉丝工艺对光纤的几何尺寸和光学性能有着直接的影响。
通过拉丝工艺能够控制光纤的直径、圆整度、粗糙度等几何参数。
拉丝过程中,拉力和温度的控制可以调节光纤的拉丝速度和拉丝倍数,从而控制光纤的直径。
而光纤的直径和圆整度对其的传输损耗和带宽有着直接的影响。
拉丝工艺还能影响光纤的纤芯折射率、色散等光学参数,进而影响其传输性能和光学性能。
拉丝工艺对光纤的机械性能也有着重要的影响。
光纤在使用过程中会受到一定的拉伸、弯曲和挤压等力,因此其机械强度和耐久性是十分重要的。
拉丝工艺中拉力和温度的控制可以影响光纤的拉伸性能、弯曲性能和挤压性能。
通过拉丝工艺的调节,可以实现光纤的高强度、高韧性和高抗压性,提高其在使用过程中的稳定性和可靠性。
拉丝工艺还对光纤的表面质量和包覆质量有着直接的影响。
拉丝工艺中的涂层和封闭工艺不仅能保护光纤,还能影响其的表面粗糙度、清洁度和润湿性。
通过控制涂层工艺可以实现光纤表面的附着力和耐磨性,保证光纤在使用过程中不易受到外界环境的影响。
拉丝工艺还对光纤的色散和非线性度有着一定的影响。
拉丝工艺中纤芯的抽拉过程会影响纤芯的非均匀性,进而影响其色散和非线性度。
通过拉丝工艺的调节可以改善光纤的色散特性和非线性特性,提高其在长距离和高速传输中的性能表现。
拉丝工艺对光纤的性能有着多方面的影响,包括几何尺寸、光学性能、机械性能、表面质量、色散和非线性度等方面。
通过优化拉丝工艺,可以提高光纤的质量和性能,满足不同领域对光纤的不同需求。
拉丝工艺对光纤性能的影响1. 引言1.1 光纤的重要性光纤作为信息传输的重要载体,在现代通信、医疗、科研等领域发挥着至关重要的作用。
光纤具有传输速度快、带宽大、信号稳定等优点,广泛应用于电话、互联网、电视等通信领域。
在医疗领域,光纤的应用使得医学影像的传输更加精准和高效,为医生提供了更多的诊断和治疗手段。
在科研领域,光纤被广泛用于激光、光谱分析等领域,推动了科学研究的进步。
由于光纤的重要性日益凸显,不断提高光纤的性能和品质是当前研究的热点之一。
拉丝工艺作为光纤制备的关键环节,对光纤的性能有着重要影响,因此对拉丝工艺对光纤性能的影响进行研究,对提高光纤质量、改善传输性能具有重要意义。
通过对拉丝工艺的研究和优化,可以不断提升光纤的性能,推动光纤技术的发展,促进信息时代的进步和发展。
1.2 拉丝工艺的介绍光纤是一种重要的通信传输媒介,其在现代通信、网络和数据传输领域发挥着至关重要的作用。
光纤的性能直接影响着通信质量和传输效果,因此对光纤的制备工艺进行研究和优化具有重要意义。
拉丝工艺是光纤制备过程中至关重要的环节,是将预制的光纤芯棒通过高温熔融并拉伸成细长的光纤的过程。
拉丝工艺直接影响着光纤的结构和性能,包括抗拉性能、色散性能、损耗性能、弯曲性能以及传输性能等方面。
在拉丝工艺中,熔融拉伸的温度、速度和拉伸比等参数对光纤的性能有着重要影响。
通过合理控制这些参数,可以调控光纤的结构和性能,从而实现光纤性能的优化和提升。
深入研究拉丝工艺对光纤性能的影响具有重要的理论意义和实际应用价值。
通过对光纤拉丝工艺的深入研究,可以为光纤通信技术的发展提供有力支持,并进一步推动光纤通信领域的不断创新和进步。
【共240字】1.3 研究背景和意义光纤作为信息传输和通信领域中不可或缺的重要元件,其性能直接影响着信息传输的质量和速度。
拉丝工艺作为影响光纤性能的关键加工工艺之一,对光纤的抗拉性能、色散性能、损耗性能、弯曲性能和传输性能等方面均有显著影响。
拉丝工艺对光纤性能的影响
光纤作为现代通信的基础,对其性能的要求也越来越高。
而拉丝工艺是光纤制备过程中至关重要的一环,它直接影响到光纤的质量和性能。
本文将讨论拉丝工艺对光纤性能的影响。
1. 技术参数对光纤带宽和损耗的影响
拉丝工艺中的技术参数包括拉拔速度、拉丝温度、尺寸比、拉伸力等。
这些参数的选择决定了光纤的结构和性能。
拉拔速度是指光纤拉丝时光纤在拉丝机上通过的速度,它对光纤带宽和损耗有着重要的影响。
一般来说,拉拔速度越快,光纤的损耗也越大,而带宽则相对较小。
拉丝温度是指拉丝过程中光纤被加热的温度。
拉丝温度对光纤的带宽和损耗同样有着重要的影响。
适当调节拉丝温度可以获得更高的带宽和更低的损耗。
若拉丝温度过高,则会影响光纤的抗拉强度,进而降低光纤的可靠性。
光纤的纤芯直径是影响光纤性能的重要因素之一。
纤芯直径越小,光纤的带宽越高,损耗也会相应减小。
但同时纤芯直径也会影响光纤的耦合效率,若纤芯直径过小,则会导致耦合效率降低。
3. 优化后的拉丝工艺对性能的提升
优化的拉丝工艺对光纤性能有着重要的影响。
优化的拉丝工艺通过精细的参数调节和工艺控制,可以制备出更高带宽、更低损耗、更高强度、更好稳定性的光纤。
同时,优化的拉丝工艺也可以降低制备成本,提高生产效率。
拉丝工艺对光纤性能的影响【摘要】光纤作为通信领域中不可或缺的重要组成部分,其性能受到拉丝工艺的影响。
拉丝工艺对光纤抗拉强度、色散特性、衰减特性、微结构和晶体结构、非线性特性等方面都有重要影响。
优化拉丝工艺可以提高光纤的性能和质量,进一步研究拉丝工艺对光纤性能的影响有利于推动光纤通信技术的发展。
拉丝工艺是影响光纤性能的关键因素。
通过深入研究和不断优化拉丝工艺,可以不断提升光纤的性能表现,从而更好地满足不断发展的通信需求。
【关键词】光纤、拉丝工艺、性能、抗拉强度、色散特性、衰减特性、微结构、晶体结构、非线性特性、优化、质量、研究、发展、通信技术1. 引言1.1 光纤在通信领域的重要性光纤通信具有传输速度快、容量大、抗干扰能力强等优势,可以满足现代通信领域对高速、稳定、高质量通信的需求。
与传统的铜线通信相比,光纤通信具有更高的传输带宽和更远的传输距离,能够实现极高的数据传输速度和传输质量。
光纤通信技术已广泛应用于互联网、电信、广播电视等领域,推动了信息社会的快速发展。
在现代数字化、信息化的时代,光纤通信更是成为了推动整个通信产业发展的重要引擎。
光纤在通信领域无疑是不可或缺的重要组成部分,其在提高通信速度、稳定性和质量方面发挥着不可替代的作用。
对光纤的性能进行优化和提升,可以更好地满足人们对通信的需求,推动通信技术不断向前发展。
1.2 拉丝工艺对光纤性能的关键影响光纤作为通信领域中不可或缺的重要元素,其性能直接影响着通信网络的稳定性和传输效率。
而光纤的性能又受到多种因素的影响,其中拉丝工艺是一个至关重要的因素。
拉丝工艺对光纤的抗拉强度具有重要影响。
通过不同的拉丝工艺,可以调控光纤的拉伸性能,提高其抗拉强度,使光纤具有更好的耐用性和稳定性。
拉丝工艺还会对光纤的衰减特性、微结构和晶体结构、以及非线性特性产生影响。
通过优化拉丝工艺,可以改善光纤的这些性能指标,提高其在通信领域的应用效果。
拉丝工艺作为影响光纤性能的重要因素,其优化可以提高光纤的性能和质量,为光纤通信技术的发展提供更强有力的支持。
拉丝张力主要受拉丝炉温控制,因此拉丝张力(F)可用拉丝温度(T)表示为:F=A+B/T (1)
式中A和B分别为表面张力和粘滞流动常数。
但是玻璃是一种近程有序、远程无序的无定形“过冷液体”。
玻璃的粘度、离子扩散速度等一类性质,在高温熔体冷却过程中是逐渐变化的。
在转变温度以下主要取决于玻璃网络结构和网络外离子的配位状态的统计规则。
光纤以非常高的冷却速度(2000-8000℃/s)迅速从2000℃左右冷却至室温,使其高温结构迅速冻结。
熔体在冷却过程中质点或原子团重新排列,玻璃结构也随外界条件而变化,这就是拉丝张力对光纤性能起重大作用的根本原因。
拉丝张力与光纤衰减的平衡点
由于拉丝张力的大小是通过拉丝炉温度来控制的,拉丝炉温度越高,玻璃软化程度越大,拉丝张力就越小。
从图1中可以看出,对于1310nm窗口衰减,随着拉丝张力的增加,光纤的衰减会发生先降后升,呈抛物线形,而1550nm窗口处衰减在一点的拉丝张力范围内并没有随拉丝张力发生明显变化的现象。
这是由于在高温下,容易诱发石英玻璃内部点缺陷的形成,造成光纤衰减的增大。
在高温下,石英内部容易发生下面的反应式(2):
Si‑O‑Si+H2→Si‑O‑H+H‑O‑Si (2)
Si‑O‑H的吸收峰正是在1380nm附近,这会带动光纤在1310nm窗口处衰减一同增大。
同时,拉丝过程是高温预制棒体积急剧变化的过程,预制棒在高温下经过拉伸,其本身的化
学键可能被破坏,且光纤又经过迅速冷却降温,更容易造成光纤本身缺陷的增加和原有缺陷的发展,而这些缺陷会造成光纤瑞利散射衰减增大,温度差越大,这种破坏越强。
而瑞利散射是与波长的四次方成反比的,所以在1550nm处衰减随温度的变化没有1310nm波长处明显。
随着温度的降低,上述两种作用机制共同作用,使得光纤的衰减变小,但是随着温度的进一步降低,光纤所受的张力越来越大,材料的粘度分布将逐渐由均匀分布到不均匀分布。
在此种条件下拉丝,会在石英材料中间形成不同程度的应力集中,这会抵消温度降低带来的光纤衰减减小的效果。
如果进一步降低拉丝温度,光纤中应力集中占到更重要因素,使得光纤的衰减重新增加。
单模光纤的两大重要性能
截止波长和模场直径是单模光纤的两个极为重要的性能参数,拉丝张力是拉丝工艺中重要的控制参数之一。
截止波长指的是, 单模光纤通常存在某一波长,当所传输的光波长超过该波长时,光纤只能传播一种模式基模的光,这一波长便称为截止波长。
截止波长大小由光棒的结构参数,如光纤的芯径以及芯、包层间的相对折射率差△决定。
模场直径,因为单模光纤中关能量并不是完全集中在纤芯中, 而是有相当部分的能量存在包层中,所以对单模光纤不宜用芯径作为其特征参数,而是用模场直径作为描述单模光纤中光能集中的范围,一般以光强分布最大值的1/e2所对应的光斑大小作为模场直径。
拉丝张力为光纤成形区因石英粘度所产生的阻力与光纤涂覆时所受的阻力之和。
拉丝张力是由加热炉工作温度和拉丝速度共同决定的。
温度是光纤特性改变的关键
截止波长的理论计算公式为:
λc=2πα(n12-n22)1/2 / 2.405 (3)
其中,α为纤芯半径,n1为芯层折射率,n2为包层折射率。
由公式可以看出,λc 由α、n1 和n2 决定,通常α和n2 在拉丝中是不会变化的。
然后当加热炉的工作温度变化时,光纤纤芯的折射率n1也会随之改变。
在拉丝生产中,通常根据拉丝张力来确定加热炉工作温度,从而改变纤芯折射率n1 的分布,使 n12-n22 在一定范围内变化,进而改变光纤截止波长和模场直径。
为增大拉丝张力,加热炉功率减小,炉内温度降低,同时拉丝过程中,光棒芯层中的GeO2存在以下热分解平衡:
GeO2=GeO+1/2O2 (4)
当温度降低时,以上化学反应向左移动,造成GeO2的浓度增加,由于GeO2的折射率大于GeO的折射率,所以芯层折射率n1增大,由截止波长计算公式(3)可知芯层折射率n1增大,截止波长增大。
同理,当拉丝张力减小时,加热炉内温度升高,以上分解反应向右移动,使GeO2的浓度减小,芯层折射率n1减小,故截止波长减小。
通过以上分析可知,在拉丝过程中张力增大,必须使加热炉内温度降低,从而使得光棒芯层中存在的热分解化学反应向左移动,造成GeO2的浓度增大,由于的GeO2折射率大于GeO的折射率,所以芯层折射率n1增大,同时由于包层折射率n2在拉丝中是不变量,所以芯层、包层折射率差Δn=n1-n2增大,因此折射至包层汇总的光能量减少,集中在纤芯中的光能量增强,纤芯中心所对应的光强最大值增大,即光斑的大小—模场直径减小。
反之,升高拉丝炉温使得拉丝张力减小,上面的反应式向右方向移动,芯层折射率就会变小,相对折射率差也变小,折射到包层中的光能量会增加,这样模场直径就会变大。