三相电动机双速2Y_接法调速电路设计
- 格式:doc
- 大小:113.50 KB
- 文档页数:2
三相双速异步电动机手动操控电路图三相双速异步电动机手动操控电路。
图中KM1为△接低速作业继电器,KM2、KM3为YY接高速作业继电器,SB1为△接低速主张作业按钮,SB2为YY接高速主张作业按钮。
电路的作业进程如下:
1.低速主张作业先合上电源开关QS,按下主张按钮SB1,触摸器KM1得电且自锁,并经过按钮SB1和触摸器KM1的常闭触点对触摸器KM2、KM3联锁,电动机定子绕组作△接,电动机低速主张作业。
假定再按下按钮SB2,则电动机由低速变为高速作业。
2.高速主张作业先合上电源开关QS,按下主张按钮SB2,触摸器KM2、KM3得电且自锁,并经过按钮SB2和触摸器KM2、KM3的常闭触点对触摸器KM1联锁,电动机定子绕组作YY接,电动机高速主张作业。
按下SB2,电动机变为低速作业。
1。
双速和三速电动机的起动及其自动调速控制线路双速和三速电动机的起动及其自动调速控制线路简单介绍如下:一、双速异步电动机的控制一〕双星形/三角形接法的双速电动机的控制线路。
1、双速电动机的定子绕组联接双星形/三角形接法的电动机共有六个出线端,改变这六个出线端与电源的连接方式,就可以得到两种不同的转速。
双速电动机六个引出端的新符号为:U1、V1、W1、U2、V2、W2;对应的旧符号为:D1、D2、D3、D4、D5、D6。
双星形/三角形双速电动机的定子绕组接线图如图2 1301所示由图21301可知,当电动机需要低速工作时,三相电源L1、L2、L3分别接U1、V1、W1,其余三个出线端空着不接。
此时电动机接成三角形,磁极为四极,电动机的实际转速大约每分钟1450转左右;当电动机需要高速运转时,三相电源分别接在U2、V2、W2三个出线端上,其余三个出线端短接。
磁极为二极,电动机转速为每分钟2900转左右。
2、双星形/三角形接法的双速电动机的控制线路双星形/三角形接法的双速电动机的控制线路如图21302所示。
双星形/三角形接法的双速电动机的控制线路与前面介绍的可逆控制线路根本一样。
所以图21302略去了接线图,对其原理也不作详细分析,只对其中比拟特殊的地方,作几点说明如下。
1〕在SB2常开按钮两端并联两个串联的常开触头KM2、KM3的目的是:使接触器KM2、KM3同时完好地工作,这两个接触器,其中如有一个接触器没有闭合,那么另一个接触器将因为不能自锁而断开。
2〕前面介绍的几种可逆控制线路,略加改动后均可用于:双星形/三角形接法的双速电动机,以及后面将要介绍的双三角形/星形,双星形/双星形接法的双速电动机。
有兴趣的读者,可自行试验。
3〕接线完毕并检查无误后,两种速度应分别试车,如果两种速度的旋转方向不一致,可将KM1或KM2中的任意两根电源线,进展对调既可。
这个过程一般称为“调相〞。
4〕图21302以及后面其余多速电动机的控制线路中,热继电器只画出一个。
项目六 双速电机控制电路安装一、工作场景某型号机床变速运行采用2Y /△接法双速电动机变极调速,请按照电气图纸完成双速电动机变极调速控制电路的安装与调试。
二、能力目标知识目标1.了解三项异步电动机变极调速原理; 2.掌握双速电机控制电路的原理。
技能目标1.学会正确安装调试双速电机控制电路; 2.学会排查双速电机控制电路的故障。
情感目标1.培养学生学习兴趣和探索精神; 2.培养学生的技能规范和专业素养。
三、项目描述根据三相异步电动机的转速公式n=(1-s)60f/p ,可知电动机的转速可通过改变极对数p 、转差率s 和电源频率f 三种范式实现。
双速电机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。
2Y /△接法双速电动机变极调速通过控制外部控制线路的切换来改变电机线圈的绕组连接方式来实现。
本项目采用继电-接触器控制方式即可实现变极调速运行控制。
双速电机的外形结构和绕组连接图如图6-1(a)、(b)所示。
U2U1V2U2W2W1L1V1L2L3V2L3L1U1V1W1W2(a) 外形结构 (b) 三角形(低速)与双星形(高速)接法图6-1 双速电动机的外形结构和绕组连接图四、使用材料、工具表6-1 工具、仪表及器材五、项目实施第一步熟悉双速电机控制电路(90分钟)双速电机控制电路如图6-2所示。
图中,按钮SB2和SB1分别控制电动机起动运行和停止,KM1、KM3控制电动机低速运行接触器,KM2 、KM3控制电动机高速运行接触器,KT为断电延时时间继电器,低压断路器QF为电源开关,熔断器FU和热继电器FR别作短路和过载保护用。
图6-2 双速电机调速控制电路原理图第二步选择安装元件(90分钟)选择元件1.按电气原理图6-1及电动机容量的大小选择电器元件。
2.将所用电器的符号、型号与规格及数量填入表6-1的实训器材表中。
安装固定元件按照电路图安装电器元件,元件必须横平竖直,所有元件的布置应整齐美观,元件间距符合电气安全要求。
三相交流异步电动机的调速控制电路由三相沟通异步电动机的转速公式可知,要转变异步电动机的转速,可采纳转变电源频率f 1 、转变磁极对数p 以及转变转差率s 等3 种基本方法。
1、变极调速原理转变异步电动机定子绕组的连接方式,可以转变磁极对数,从而得到不同的转速。
常见的沟通变极调速电动机有双速电动机和多速电动机。
双速电动机定子绕组常见的接法有Y/YY 和△ /YY 两种。
下图所示为4/2 极△ /YY 的双速电动机定子绕组接线图。
在制造时每相绕组就分为两个相同的绕组,中间抽头依次为U2 、V2 、W2 ,这两个绕组可以串联或并联。
依据变极调速原理“定子一半绕组中电流方向变化,磁极对数成倍变化”,下图(a) 将绕组的U1 、V1 、W1 三个端子接三相电源,将U2 、V2 、W2 三个端子悬空,三相定子绕组接成三角形(△)。
这时每相的两个绕组串联,电动机以4 极运行,为低速。
下图(b) 将U2 、V2 、W2 三个端子接三相电源,U1 、V1 、W1 连成星点,三相定子绕组连接成双星(YY )形。
这时每相两个绕组并联,电动机以 2 极运行,为高速。
依据变极调速理论,为保证变极前后电动机转动方向不变,要求变极的同时转变电源相序。
(a) 低速△形接法(b) 高速YY 形接法图4/2 极△ /YY 形的双速电动机定子绕组接线图2、变极调速掌握电路4/2 极的双速沟通异步电动机掌握电路如下图所示。
图4/2 极的双速沟通异步电动机掌握电路上图中,合上电源开关QS ,按下SB2 低速起动按钮,接触器KM1 线圈得电并自锁,KM1 的主触点闭合,电动机M 的绕组连接成△形并以低速运转。
由于SB2 的动断触点断开,时间继电器线圈KT 不得电。
按下高速起动按钮SB3 ,接触器KM1 线圈得电并自锁,电动机M 连接成△形低速起动;由于SB3 是复合按钮,时间继电器KT 线圈同时得电吸合,KT 瞬时动合触点闭合自锁,经过肯定时间后,KT 延时动断触点分断,接触器KM1 线圈失电释放,KM1 主触点断开,KT 延时动合触点闭合,接触器KM2 、KM3 线圈得电并自锁,KM2 、KM3 主触点同时闭合,电动机M 的绕组连接成YY 形并以高速运行。
双速电机接线图及控制原理分析一、双速电机控制原理调速原理根据三相异步电动机的转速公式:n1=60f/p三相异步电动机要实现调速有多种方法,如采用变频调速(YVP变频调速电机配合变频器使用),改变励磁电流调速(使用YCT电磁调速电机配合控制器使用,可实现无极调速),也可通过改变电动机变极调速,即是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。
根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的(这也是常见的2极电机同步转速为3000rpm,4极电机同步转速1500rpm,6极电机同步转速1000rpm等).这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机,这就是双速电机的调速原理.下图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。
∴转速比=2/1=2二、控制电路分析(双速电机接线图如下图)1、合上空气开关QF引入三相电源2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空.电动机在△接法下运行,此时电动机p=2、n1=1500转/分.3、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。
4、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。
其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。
同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。
电机调速原理及控制线路图解图1一、双速电机(鼠笼式三相交流异步电动机)1、双速电机的变极方法U1V1W1端接电源,U2V2W2开路,电动机为△接法(低速);U1V1W1端短接,U2V2W2端接电源为YY接法(高速)注意,变极时,调换相序,以保证变极调速以后,电动机转动方向不变。
图22、主电路: KM1主触点构成△接的低速接法。
KM2、KM3用于将U1V1W1端短接,并在U2V2W2端通入三相交流电源,构成YY接的高速接法。
3、控制电路图a电路中,按钮SB1实现低速起动和运行。
按钮SB2使KM2、KM3线圈通电自锁,用于实现YY变速起动和运行。
图b 电路在高速运行时,先低速起动,后高速(YY)运行,以减少启动电流。
双速电机控制电路图B分析1、选择开关SA合向高速→时间继电器KT线圈通电延时→KM1线圈通电,电动机M作低速启动。
KT延时时间到→KM1线圈断电复位→KM2、KM3线圈通电→电动机M作YY接法高速运行。
2、选择开关SA合向低速→KM1线圈通电,电动机M作低速转动。
3、选择开关SA合向0位时,电动机停止运行。
(二)、三速电机控制图41、变极原理三速电机定子有2套绕组,1套可作为△接法和YY接法的双速绕组,另1套为Y型接法的中速绕组。
2、主电路KM1主触点(4个)构成低速连接,其中W1U3接到W1点。
KM2主触点构成中速Y连接,此时U3W1断开以避免交流。
KM3、KM4主触点构成高建双星形连接(KM3构成Y点)控制电路SB1用于KM1的起停控制,SB2用于KM2的起停控制,SB3用于KM3和KM4的起停控制。
电机。
双速电机接线图及控制原理分析
双速电机接线图及控制原理分析
一、双速电机控制原理调速原理
根据三相异步电动机的转速公式:n1=60f/p
三相异步电动机要实现调速有多种方法,如采用变频调速(YVP变频调速电机配合变频器使用),改变励磁电流调速(使用YCT电磁调速电机配合控制器使用,可实现无极调速),也可通过改变电动机变极调速,即是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。
根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的(这也是常见的2极电机同步转速为3000rpm,4极电机同步转速1500rpm,6极电机同步转速1000rpm等)。
这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机,这就是双速电机的调速原理。
下图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。
∴转速比=2/1=2
二、控制电路分析(双速电机接线图如下图)。
三相电动机双速2Y/△接法调速电路设计
1.三相电动机双速2Y/△接法调速电路(一)
双速2Y/△接法调速电路常用于三相电动机,其接法如图1所示。
电路共用三只交流接触器。
按钮STH为高速控制按钮,按下它,交流接触器1KMH和2KMH同时吸合,电动机M作高速(2Y)运转。
按钮STL为低速控制按钮,按下它,交流接触器KML吸合,电
动机M作低速(△)运行。
按下STP,电动机停止。
FT为热继电器,作过载保护之用。
图1 三相电动机双速2Y/△接法调速电路(一)
2.三相电动机双速2Y/△接法调速电路(二)
本例电路与上例电路基本相同。
所不同的是,充分利用1KMH、2KMH和KML的辅助触点,实现互锁,在避免三只交流接触器同时吸合、造成短路故障方面起了较好的作用。
图2 三相电动双速2Y/△接法调速电路(二)
3.三相电动机双速2Y/△接法带指示灯调速电路
电路如图3所示。
控制线路基本与图2相似,所不同的是增加了低速运行指示灯H△和高速运行指示灯H2Y。
电动机停止时,这两灯都不亮。
图3 三相电动机双速2Y/△接法带指示灯调速电路
4.三相电动机双速2Y/△接法自动控制调速电路
电路见图4。
图中,KT为时间继电器,此例中用了它三个触点,即KT-1、KT-2、KT-3。
SA为转换开关,分两挡:△(低速)、2Y(高速)。
当SA拨在“△”时,电动机M只能作低速运行;拨到“2Y”时,KT得电,KT-1吸合,电动机M作低速运行,经过一定时限后,KT-2释放,KT-3吸合,2KMH、1KMH吸合,电动机M高速运行;再经过一定时限后,KT-3断开,KT-2恢复常闭,2KMH、1KMH失电,KML得电,电动机M又进入△运行。
以后过程又同前述。
图4 三相电动机双速2Y/△接法自动控制调速电路。