2017-2018武汉市新高三起点考试(文)试卷及答案
- 格式:docx
- 大小:2.91 MB
- 文档页数:8
2017-2018学年度市新高三起点调研测试语文【解析版】2017年9月7日龙猫(高映东)【说明】(一)市教育科学研究院命制,我根据网上复制版扒题,感谢行知王建鹏供稿;(二)原卷作文的顿号断句混乱,因此我无法弄清楚原题中名人前的区别定语,因此替换了一道新题;原题是这样的:(三)一家之言,请批判使用并指正。
序图:三江源公园(省)、拉普达措公园(香格里拉)一、现代文阅读(15分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
此题难度仅为全国II卷难度。
开被世界大部分和地区采用。
全世界已有100多个和地区建立了近万个公园,在保护本国自然生态系统和自然文化遗产资源中发挥着积极作用。
目前我国有9省市开展建立公园体制试点(第一题),其中普达措。
如何保护好这些集自然景观优美、生物多样性丰富、生态功能重要于一体的区城,是摆在地方政府面前的重要任务。
但几乎所有自然保护区都存在一个共同的问题,那就是资源保护与当地经齐发展之间存在冲突,以滇西北为例,滇西北拥有独特的自然景观和丰富的生物多样性资源,但同时也是最贫乏的少数民族边远地区之一,经济发展水平非常落后,特别是1999年天然森林禁伐后。
过去主要依靠以采伐林木为主的地方材政收入比禁伐前下降了60%~90%。
地方经济再度陷入困境。
农牧民人均收入受到严重影响。
苍翠的原始森林、丰富多彩的珍稀动植物,构成了滇西北“秀、幽、碧、灵、媚、秘”的湿地文化景观。
浓郁的藏乡游枚风情,多民族和谐聚居,文化互通共触,又令其成为其有世界级品牌的生态文化旅游胜地。
走生态文化旅游之路。
是滇西北发展的必然选择,建立公园是滇西北发展生态旅游的最佳途径。
我们可以学习国外先进经验。
但不能全盘复制,例知美国公园3600多公里“公园之路”恰与印第安人“血泪之路”重合。
这一点值得深思。
另外,大熊猫、三江源、东北虎约公园试人口密度也大很多。
我们要走出一条符合中国特色的公园建设道路,处理好人民福祉与自然生态保护的关系,实现重要自然生态系统和珍贵自然文化遗产资源所有、全民共享、世代传承的目标。
2017-2018学年度市新高三起点调研测试语文【解析版】2017年9月7日龙猫(高映东)【说明】(一)市教育科学研究院命制,我根据网上复制版扒题,感行知王建鹏供稿;(二)原卷作文的顿号断句混乱,因此我无法弄清楚原题中名人前的区别定语,因此替换了一道新题;原题是这样的:(三)一家之言,请批判使用并指正。
序图:三江源国家公园(省)、拉普达措国家公园(香格里拉)一、现代文阅读(15分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
此题难度仅为全国II卷难度。
开被世界大部分国家和地区采用。
全世界已有100多个国家和地区建立了近万个国家公园,在保护本国自然生态系统和自然文化遗产资源中发挥着积极作用。
目前我国有9省市开展建立国家公园体制试点(第一题),其中包括三江源、东北虎豹、大熊猫、神农架、武夷山、钱江源、南山、长城以及香格里拉普达措。
如何保护好这些集自然景观优美、生物多样性丰富、生态功能重要于一体的区城,是摆在地方政府面前的重要任务。
但几乎所有自然保护区都存在一个共同的问题,那就是资源保护与当地经齐发展之间存在冲突,以滇西北为例,滇西北拥有独特的自然景观和丰富的生物多样性资源,但同时也是最贫乏的少数民族边远地区之一,经济发展水平非常落后,特别是1999年天然森林禁伐后。
过去主要依靠以采伐林木为主的地方材政收入比禁伐前下降了60%~90%。
地方经济再度陷入困境。
农牧民人均收入受到严重影响。
苍翠的原始森林、丰富多彩的珍稀动植物,构成了滇西北“秀、幽、碧、灵、媚、秘”的湿地文化景观。
浓郁的藏乡游枚风情,多民族和谐聚居,文化互通共触,又令其成为其有世界级品牌的生态文化旅游胜地。
走生态文化旅游之路。
是滇西北发展的必然选择,建立国家公园是滇西北发展生态旅游的最佳途径。
我们可以学习国外先进经验。
但不能全盘复制,例知美国国家公园3600多公里“国家公园之路”恰与印第安人“血泪之路”重合。
这一点值得深思。
2017-2018学年度武汉市部分学校新高三起点调研测试文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合2{20}A x x x =-≥,{12}B x x =<≤,则AB =( )A .{2}B .{12}x x <<C .{12}x x <≤D .{01}x x <≤ 2. 设(1)1i x yi -=+,其中,x y 是实数,则x yi +在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.函数()sin(2)sin(2)33f x x x ππ=-++的最小正周期为( ) A .2π B .4π C .π D .2π4.设非零向量,a b 满足22a b a b +=-,则( )A .a b ⊥B .2a b = C. //a b D .a b <5.已知双曲线2222:1x y C m n-=(0,0m n >>)的离心率与椭圆2212516x y +=的离心率互为倒数,则双曲线C 的渐近线方程为( )A .430x y ±=B .340x y ±= C. 430x y ±=或340x y ±= D .450x y ±=或540x y ±= 6. 一个几何体的三视图如图,则它的表面积为( )A .28B .24+20+.20+7.设,x y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最大值是( )A .-15B .-9 C. 1 D .98.函数22()log (45)f x x x =--的单调递增区间是( )A .(,2)-∞-B .(,1)-∞- C. (2,)+∞ D .(5,)+∞ 9.给出下列四个结论:①命题“(0,2)x ∀∈,33xx >”的否定是“(0,2)x ∃∈,33xx ≤”;②“若3πθ=,则1cos 2θ=”的否命题是“若3πθ≠,则1cos 2θ≠”; ③p q ∨是真命题,则命题,p q 一真一假;④“函数21xy m =+-有零点”是“函数log a y x =在(0,)+∞上为减函数”的充要条件. 其中正确结论的个数为( )A .1B .2 C. 3 D .410. 执行下面的程序框图,如果输入的0x =,1y =,1n =,则输出,x y 的值满足( )A .2y x =B .3y x = C. 4y x = D .5y x =11.标有数字1,2,3,4,5的卡片各一张,从这5张卡片中随机抽取1张,不放回的再随机抽取1张,则抽取的第一张卡片上的数大于第二张卡片上的数的概率为( )A .12 B .15 C. 35 D .2512.过抛物线2:2C y px =(0p >)的焦点F ,C 于点M (M 在x轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,若4NF =,则M 到直线NF 的距离为( )A ..第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,2()2xf x x -=+,则(2)f = .14.函数()3sin 6cos f x x x =+取得最大值时sin x 的值是 .15.已知三棱锥A BCD -的三条棱,,AB BC CD 所在的直线两两垂直且长度分别为3,2,1,顶点,,,A B C D 都在球O 的表面上,则球O 的表面积为 .16.在钝角ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若4a =,3b =,则c 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11a =-,11b =,223a b +=.(1)若337a b +=,求{}n b 的通项公式; (2)若313T =,求n S .18. 已知函数()2cos 2f x x x a =++(a 为常数) (1)求()f x 的单调递增区间; (2)若()f x 在[0,]2π上有最小值1,求a 的值.19. 如图1,在矩形ABCD 中,4AB =,2AD =,E 是CD 的中点,将ADE ∆沿AE 折起,得到如图2所示的四棱锥1D ABCE -,其中平面1D AE ⊥平面ABCE .(1)证明:BE ⊥平面1D AE ;(2)设F 为1CD 的中点,在线段AB 上是否存在一点M ,使得//MF 平面1D AE ,若存在,求出AMAB的值;若不存在,请说明理由. 20. 海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ),其频率分布直方图如下:(1)估计旧养殖法的箱产量低于50kg 的概率并估计新养殖法的箱产量的平均值; (2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++参考数据:22899840.078525÷≈21. 设O 为坐标原点,动点M 在椭圆222:1x C y a+=(1a >,a R ∈)上,过O 的直线交椭圆C 于,A B 两点,F 为椭圆C 的左焦点.(1)若三角形FAB 的面积的最大值为1,求a 的值; (2)若直线,MA MB 的斜率乘积等于13-,求椭圆C 的离心率. 22.设函数2()(1)xf x x x e =+-( 2.71828e =…是自然数的底数). (1)讨论()f x 的单调性;(2)当0x ≥时,2()12f x ax x ≤++,求实数a 的取值范围.试卷答案一、选择题1-5:CDCAA 6-10: DDDBD 11、12:AB 二、填空题13.-8 14. 515. 14π 16. (5,7) 三、解答题17. (1)设{}n a 的公差为d ,{}n b 的公比为q ,则1(1)n a n d =-+-,1n n b q -=.由223a b +=,得4d q += ① 由227a b +=,得228d q += ②联立①和②解得0q =(舍去),或2q =,因此{}n b 的通项公式12n n b -=.(2)∵231(1)T b q q =++,∴2113q q ++=,3q =或4q =-,∴41d q =-=或8.∴21113(1)222n S na n n d n n =+-=-或245n n -.18.(1)1()2cos 2)22f x x x a =++ 2sin(2)6x a π=++222262k x k πππππ-≤+≤+,k Z ∈∴36k x k ππππ-≤≤+,k Z ∈∴()f x 单调增区间为[,]36k k ππππ-+,k Z ∈ (1)02x π≤≤时,72666x πππ≤+≤1sin(2)126x π-≤+≤ ∴当2x π=时,()f x 最小值为11a -=∴2a =19.(1)证明:连接BE ,∵A B C D为矩形且2AD DE EC BC ====,所以090AEB ∠=,即BE AE ⊥,又1D AE ⊥平面ABCE ,平面1D AE平面ABCE AE =∴BE ⊥平面1D AE (2)14AM AB =取1D E 中点L ,连接AL ,∵//FL EC ,//EC AB ,∴//FL AB且14FL AB =,所以,,,M F L A 共面,若//MF 平面1AD E ,则//MF AL . ∴AMFL 为平行四边形,所以14AM FL AB ==.20.(1)旧养殖法的箱产量低于50kg 的频率为(0.0120.0140.0240.0340.040)50.62++++⨯=所以概率估计值为0.62;新养殖法的箱产量的均值估计为1(750.02850.10950.221050.341150.231250.051350.04)52.352⨯+⨯+⨯+⨯+⨯+⨯+⨯=(2)根据箱产量的频率分布直方图得列联表22200(62663438)15.70510010096104K ⨯⨯-⨯=≈⨯⨯⨯由于15.705 6.635>,故有99%的把握认为箱产量与养殖方法有关. 21.(1)112FAB A B S OF y y OF ∆=∙-≤==,所以a =(2)由题意可设00(,)A x y ,00(,)B x y --,(,)M x y ,则2221x y a +=,220021x y a+=,2222022022200022222220000011(1)()1MA MBx x x x y y yy y y a a ak k x x xx x x x x x x a------+-∙=∙====--+--- 所以23a =,所以a =所以离心率3c e a ===22.(1)'2()(2)(2)(1)x xf x x x e x x e =--=-+-当2x <-或1x >时,'()0f x <,当21x -<<时,'()0f x > 所以()f x 在(,2)-∞-,(1,)+∞单调递减,在(2,1)-单调递增; (2)设2()()(12)F x f x ax x =-++,(0)0F ='2()(2)4x F x x x e x a =----,'(0)2F a =-当2a ≥时,'2()(2)4(2)(1)42(2)[(1)2]x x x F x x x e x a x x e x x x e =----≤-+---=-+-+设()(1)2xh x x e =-+,'()0xh x xe =≥,所以()(1)2(0)1xh x x e h =-+≥=即'()0F x ≤成立,所以2()12f x ax x ≤++成立;当2a <时,'(0)20F a =->,而函数'()F x 的图象在(0,)+∞连续不断且逐渐趋近负无穷,必存在正实数0x 使得'0()0F x =且在0(0,)x 上'0()0F x >,此时()(0)0F x F >=,不满足题意.综上,a 的取值范围[2,)+∞。
2017-2018学年度武汉市部分学校新高三起点调研测试文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合2{20}A x x x =-≥,{12}B x x =<≤,则AB =( )A .{2}B .{12}x x <<C .{12}x x <≤D .{01}x x <≤ 2. 设(1)1i x yi -=+,其中,x y 是实数,则x yi +在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.函数()sin(2)sin(2)33f x x x ππ=-++的最小正周期为( ) A .2π B .4π C .π D .2π4.设非零向量,a b 满足22a b a b +=-,则( )A .a b ⊥B .2a b = C. //a b D .a b <5.已知双曲线2222:1x y C m n -=(0,0m n >>)的离心率与椭圆2212516x y +=的离心率互为倒数,则双曲线C 的渐近线方程为( )A .430x y ±=B .340x y ±= C. 430x y ±=或340x y ±= D .450x y ±=或540x y ±= 6. 一个几何体的三视图如图,则它的表面积为( )A .28B .24+20+.20+7.设,x y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最大值是( )A .-15B .-9 C. 1 D .98.函数22()log (45)f x x x =--的单调递增区间是( )A .(,2)-∞-B .(,1)-∞- C. (2,)+∞ D .(5,)+∞ 9.给出下列四个结论:①命题“(0,2)x ∀∈,33xx >”的否定是“(0,2)x ∃∈,33xx ≤”;②“若3πθ=,则1cos 2θ=”的否命题是“若3πθ≠,则1cos 2θ≠”;③p q ∨是真命题,则命题,p q 一真一假;④“函数21xy m =+-有零点”是“函数log a y x =在(0,)+∞上为减函数”的充要条件. 其中正确结论的个数为( )A .1B .2 C. 3 D .410. 执行下面的程序框图,如果输入的0x =,1y =,1n =,则输出,x y 的值满足( )A .2y x =B .3y x = C. 4y x = D .5y x =11.标有数字1,2,3,4,5的卡片各一张,从这5张卡片中随机抽取1张,不放回的再随机抽取1张,则抽取的第一张卡片上的数大于第二张卡片上的数的概率为( )A .12 B .15 C. 35 D .2512.过抛物线2:2C y px =(0p >)的焦点F ,C 于点M (M 在x轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,若4NF =,则M 到直线NF 的距离为( )A ..第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,2()2xf x x -=+,则(2)f = .14.函数()3sin 6cos f x x x =+取得最大值时sin x 的值是 .15.已知三棱锥A BCD -的三条棱,,AB BC CD 所在的直线两两垂直且长度分别为3,2,1,顶点,,,A B C D 都在球O 的表面上,则球O 的表面积为 .16.在钝角ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若4a =,3b =,则c 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11a =-,11b =,223a b +=.(1)若337a b +=,求{}n b 的通项公式; (2)若313T =,求n S .18. 已知函数()2cos 2f x x x a =++(a 为常数) (1)求()f x 的单调递增区间; (2)若()f x 在[0,]2π上有最小值1,求a 的值.19. 如图1,在矩形ABCD 中,4AB =,2AD =,E 是CD 的中点,将ADE ∆沿AE 折起,得到如图2所示的四棱锥1D ABCE -,其中平面1D AE ⊥平面ABCE .(1)证明:BE ⊥平面1D AE ;(2)设F 为1CD 的中点,在线段AB 上是否存在一点M ,使得//MF 平面1D AE ,若存在,求出AMAB的值;若不存在,请说明理由. 20. 海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ),其频率分布直方图如下:(1)估计旧养殖法的箱产量低于50kg 的概率并估计新养殖法的箱产量的平均值; (2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++参考数据:22899840.078525÷≈21. 设O 为坐标原点,动点M 在椭圆222:1x C y a+=(1a >,a R ∈)上,过O 的直线交椭圆C 于,A B 两点,F 为椭圆C 的左焦点.(1)若三角形FAB 的面积的最大值为1,求a 的值; (2)若直线,MA MB 的斜率乘积等于13-,求椭圆C 的离心率. 22.设函数2()(1)xf x x x e =+-( 2.71828e =…是自然数的底数). (1)讨论()f x 的单调性;(2)当0x ≥时,2()12f x ax x ≤++,求实数a 的取值范围.试卷答案一、选择题1-5:CDCAA 6-10: DDDBD 11、12:AB 二、填空题13.-8 14. 515. 14π 16. (5,7) 三、解答题17. (1)设{}n a 的公差为d ,{}n b 的公比为q ,则1(1)n a n d =-+-,1n n b q -=.由223a b +=,得4d q += ①由227a b +=,得228d q += ②联立①和②解得0q =(舍去),或2q =,因此{}n b 的通项公式12n n b -=.(2)∵231(1)T b q q =++,∴2113q q ++=,3q =或4q =-,∴41d q =-=或8.∴21113(1)222n S na n n d n n =+-=-或245n n -.18.(1)1()2cos 2)2f x x x a =++ 2sin(2)6x a π=++222262k x k πππππ-≤+≤+,k Z ∈∴36k x k ππππ-≤≤+,k Z ∈∴()f x 单调增区间为[,]36k k ππππ-+,k Z ∈ (1)02x π≤≤时,72666x πππ≤+≤1sin(2)126x π-≤+≤ ∴当2x π=时,()f x 最小值为11a -=∴2a =19.(1)证明:连接BE ,∵A B C D为矩形且2AD DE EC BC ====,所以090AEB ∠=,即BE AE ⊥,又1D AE ⊥平面ABCE ,平面1D AE 平面ABCE AE =∴BE ⊥平面1D AE(2)14AM AB =取1D E 中点L ,连接AL ,∵//FL EC ,//EC AB ,∴//FL AB且14FL AB =,所以,,,M F L A 共面,若//MF 平面1AD E ,则//MF AL . ∴AMFL 为平行四边形,所以14AM FL AB ==.20.(1)旧养殖法的箱产量低于50kg 的频率为(0.0120.0140.0240.0340.040)50.62++++⨯=所以概率估计值为0.62;新养殖法的箱产量的均值估计为1(750.02850.10950.221050.341150.231250.051350.04)52.352⨯+⨯+⨯+⨯+⨯+⨯+⨯=(2)根据箱产量的频率分布直方图得列联表22200(62663438)15.70510010096104K ⨯⨯-⨯=≈⨯⨯⨯由于15.705 6.635>,故有99%的把握认为箱产量与养殖方法有关. 21.(1)112FAB A B S OF y y OF ∆=∙-≤==,所以a =(2)由题意可设00(,)A x y ,00(,)B x y --,(,)M x y ,则2221x y a +=,220021x y a+=,2222022022200022222220000011(1)()1MA MBx x x x y y y y y y a a a k k x x x x x x x x x x a ------+-∙=∙====--+--- 所以23a =,所以a =所以离心率3c e a ===22.(1)'2()(2)(2)(1)xxf x x x e x x e =--=-+-当2x <-或1x >时,'()0f x <,当21x -<<时,'()0f x > 所以()f x 在(,2)-∞-,(1,)+∞单调递减,在(2,1)-单调递增; (2)设2()()(12)F x f x ax x =-++,(0)0F ='2()(2)4x F x x x e x a =----,'(0)2F a =-当2a ≥时,'2()(2)4(2)(1)42(2)[(1)2]x x x F x x x e x a x x e x x x e =----≤-+---=-+-+设()(1)2x h x x e =-+,'()0x h x xe =≥,所以()(1)2(0)1xh x x e h =-+≥= 即'()0F x ≤成立,所以2()12f x ax x ≤++成立;当2a <时,'(0)20F a =->,而函数'()F x 的图象在(0,)+∞连续不断且逐渐趋近负无穷,必存在正实数0x 使得'0()0F x =且在0(0,)x 上'0()0F x >,此时()(0)0F x F >=,不满足题意.综上,a 的取值范围[2,)+∞。
2017-2018学年度武汉市部分学校新高三起点调研测试文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,则()A. B. C. D.2. 设,其中是实数,则在复平面内所对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 函数的最小正周期为()A. B. C. D.4. 设非零向量满足,则()A. B. C. D.5. 已知双曲线()的离心率与椭圆的离心率互为倒数,则双曲线的渐近线方程为()A. B.C. 或D. 或6. 一个几何体的三视图如图,则它的表面积为()A. 28B.C.D.7. 设满足约束条件,则的最大值是()A. -15B. -9C. 1D. 98. 函数的单调递增区间是()A. B. C. D.9. 给出下列四个结论:①命题“,”的否定是“,”;②“若,则”的否命题是“若,则”;③是真命题,则命题一真一假;④“函数有零点”是“函数在上为减函数”的充要条件.其中正确结论的个数为()A. 1B. 2C. 3D. 410. 执行下面的程序框图,如果输入的,,,则输出的值满足()A. B. C. D.11. 标有数字1,2,3,4,5的卡片各一张,从这5张卡片中随机抽取1张,不放回的再随机抽取1张,则抽取的第一张卡片上的数大于第二张卡片上的数的概率为()A. B. C. D.12. 过抛物线()的焦点,且斜率为的直线交于点(在轴上方),为的准线,点在上且,若,则到直线的距离为()A. B. C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知函数是定义在上的奇函数,当时,,则__________.14. 函数取得最大值时的值是__________.15. 已知三棱锥的三条棱所在的直线两两垂直且长度分别为3,2,1,顶点都在球的表面上,则球的表面积为__________.16. 在钝角中,内角的对边分别为,若,,则的取值范围是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等差数列的前项和为,等比数列的前项和为,,,.(1)若,求的通项公式;(2)若,求.18. 已知函数(为常数)(1)求的单调递增区间;(2)若在上有最小值1,求的值.19. 如图1,在矩形中,,,是的中点,将沿折起,得到如图2所示的四棱锥,其中平面平面.(1)证明:平面;(2)设为的中点,在线段上是否存在一点,使得平面,若存在,求出的值;若不存在,请说明理由.20. 海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:),其频率分布直方图如下:(1)估计旧养殖法的箱产量低于50的概率并估计新养殖法的箱产量的平均值;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量箱产量合计旧养殖法新养殖法合计附:,其中0.050 0.010 0.0013.841 6.635 10.828参考数据:21. 设为坐标原点,动点在椭圆(,)上,过的直线交椭圆于两点,为椭圆的左焦点.(1)若三角形的面积的最大值为1,求的值;(2)若直线的斜率乘积等于,求椭圆的离心率.22. 设函数(…是自然数的底数).(1)讨论的单调性;(2)当时,,求实数的取值范围.。
湖北省部分重点中学2017-2018学年度上学期新高三起点考试数学试题(文科)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集U=R,若集合A={>13|x x },B={>0log |3x x },A ∩C u B().A.{<0|x x }B. {>1|x x }C. {<10|x x ≤}D. {1<0|≤x x } 2.已知复数i iz 2310-+=(其中i 为虚数单位),则|z | = ( ). A. 33 B. 23 C. 32D. 223.在平面直角坐标xoy 中,已知四边形ABCD 是平行四边形,错误!未找到引用源。
=(3,1),错误!未找到引用源。
=(2,-2),则错误!未找到引用源。
•错误!未找到引用源。
= ( ). A.2 B. -2 C.-10D. 104. 己知P: >ax 5),3,2(2+∈∀x x 是假,则实数a 的取值范围是( ) A. [52,+∞)B.[29, +∞) C .[314, +∞) D.(-∞,52] 5.先后抛掷两颗质地均匀的骰子,则两次朝上的点数之积为奇数的概率为( ). A.121B.61 C.41D.316.过双曲线1322=-y x 的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于 A 、B 两点,则|AB|=( ). A.334 B. 32 C. 3π D. 125π7.函数x y 2cos =的图象向右平移)2<<0(πϕϕ 个单位后,与函数)62sin(π-=x y 的图象重合, 则ϕ=( ). A.12π B. 6π C.3πD.125π8. 己知等比数列{n a }满足14,25311=++=a a a a ,则=++321111a a a ( ).A.87 B. 47 C. 913 D. 18139.已知变量x,y 满足约束条件⎪⎩⎪⎨⎧≤+≤-≥4220y x t x x ,则13-+=x y z 的取值范围是( )A.(-∞,-3]∪[1,+∞)B. [-1,3]C. (-∞,-1]∪[3,+∞)D. [-3,1]10. 阅读如图所示的程序框图,则输出结果S 的值为( ).A.81 B. 21 C. 163 D. 16111.如图是某几何体的三视图,当xy 最大时,该几何体的体积为( ). A. 1215152π+B. 121π+ C.41515π+D.4151π+12. 若函数x a x x x f sin 2sin 31)(+-=在(-∞,+∞)上单调递增,则a 的取值范围是().A. [-1,1]B. [-1,31] C. [31-,31] D. [-1, 31-] 二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分。
2017-2018学年度武汉市部分学校新高三起点调研测试文科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合2{20}A x x x =-≥,{12}B x x =<≤,则AB =( )A .{2}B .{12}x x <<C .{12}x x <≤D .{01}x x <≤ 2. 设(1)1i x yi -=+,其中,x y 是实数,则x yi +在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.函数()sin(2)sin(2)33f x x x ππ=-++的最小正周期为( ) A .2π B .4π C .π D .2π4.设非零向量,a b 满足22a b a b +=-,则( )A .a b ⊥B .2a b = C. //a b D .a b <5.已知双曲线2222:1x y C m n -=(0,0m n >>)的离心率与椭圆2212516x y +=的离心率互为倒数,则双曲线C 的渐近线方程为( )A .430x y ±=B .340x y ±= C. 430x y ±=或340x y ±= D .450x y ±=或540x y ±=6. 一个几何体的三视图如图,则它的表面积为( )A .28B .24+20+.20+7.设,x y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最大值是( )A .-15B .-9 C. 1 D .98.函数22()log (45)f x x x =--的单调递增区间是( )A .(,2)-∞-B .(,1)-∞- C. (2,)+∞ D .(5,)+∞ 9.给出下列四个结论:①命题“(0,2)x ∀∈,33x x >”的否定是“(0,2)x ∃∈,33x x ≤”;②“若3πθ=,则1cos 2θ=”的否命题是“若3πθ≠,则1cos 2θ≠”;③p q ∨是真命题,则命题,p q 一真一假;④“函数21xy m =+-有零点”是“函数log a y x =在(0,)+∞上为减函数”的充要条件. 其中正确结论的个数为( )A .1B .2 C. 3 D .410. 执行下面的程序框图,如果输入的0x =,1y =,1n =,则输出,x y 的值满足( )A .2y x =B .3y x = C. 4y x = D .5y x =11.标有数字1,2,3,4,5的卡片各一张,从这5张卡片中随机抽取1张,不放回的再随机抽取1张,则抽取的第一张卡片上的数大于第二张卡片上的数的概率为( )A .12 B .15 C. 35 D .2512.过抛物线2:2C y px =(0p >)的焦点F ,C 于点M (M 在x轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,若4NF =,则M 到直线NF 的距离为( )A ..第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,2()2xf x x -=+,则(2)f = .14.函数()3sin 6cos f x x x =+取得最大值时sin x 的值是 .15.已知三棱锥A BCD -的三条棱,,AB BC CD 所在的直线两两垂直且长度分别为3,2,1,顶点,,,A B C D 都在球O 的表面上,则球O 的表面积为 .16.在钝角ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若4a =,3b =,则c 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11a =-,11b =,223a b +=.(1)若337a b +=,求{}n b 的通项公式; (2)若313T =,求n S .18. 已知函数()2cos 2f x x x a =++(a 为常数) (1)求()f x 的单调递增区间; (2)若()f x 在[0,]2π上有最小值1,求a 的值.19. 如图1,在矩形ABCD 中,4AB =,2AD =,E 是CD 的中点,将ADE ∆沿AE 折起,得到如图2所示的四棱锥1D ABCE -,其中平面1D AE ⊥平面ABCE .(1)证明:BE ⊥平面1D AE ;(2)设F 为1CD 的中点,在线段AB 上是否存在一点M ,使得//MF 平面1D AE ,若存在,求出AMAB的值;若不存在,请说明理由. 20. 海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ),其频率分布直方图如下:(1)估计旧养殖法的箱产量低于50kg 的概率并估计新养殖法的箱产量的平均值; (2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++参考数据:22899840.078525÷≈21. 设O 为坐标原点,动点M 在椭圆222:1x C y a+=(1a >,a R ∈)上,过O 的直线交椭圆C 于,A B 两点,F 为椭圆C 的左焦点.(1)若三角形FAB 的面积的最大值为1,求a 的值;(2)若直线,MA MB 的斜率乘积等于13-,求椭圆C 的离心率. 22.设函数2()(1)xf x x x e =+-( 2.71828e =…是自然数的底数). (1)讨论()f x 的单调性;(2)当0x ≥时,2()12f x ax x ≤++,求实数a 的取值范围.试卷答案一、选择题1-5:CDCAA 6-10: DDDBD 11、12:AB 二、填空题13.-8 14. 515. 14π 16. (5,7) 三、解答题17. (1)设{}n a 的公差为d ,{}n b 的公比为q ,则1(1)n a n d =-+-,1n n b q -=.由223a b +=,得4d q += ① 由227a b +=,得228d q += ②联立①和②解得0q =(舍去),或2q =,因此{}n b 的通项公式12n n b -=.(2)∵231(1)T b q q =++,∴2113q q ++=,3q =或4q =-,∴41d q =-=或8.∴21113(1)222n S na n n d n n =+-=-或245n n -.18.(1)1()2(2cos 2)22f x x x a =++ 2sin(2)6x a π=++222262k x k πππππ-≤+≤+,k Z ∈∴36k x k ππππ-≤≤+,k Z ∈∴()f x 单调增区间为[,]36k k ππππ-+,k Z ∈ (1)02x π≤≤时,72666x πππ≤+≤1sin(2)126x π-≤+≤ ∴当2x π=时,()f x 最小值为11a -=∴2a =19.(1)证明:连接BE ,∵A B C D为矩形且2AD DE EC BC ====,所以090AEB ∠=,即BE AE ⊥,又1D AE ⊥平面ABCE ,平面1D AE平面ABCE AE =∴BE ⊥平面1D AE (2)14AM AB =取1D E 中点L ,连接AL ,∵//FL EC ,//EC AB ,∴//FL AB且14FL AB =,所以,,,M F L A 共面,若//MF 平面1AD E ,则//MF AL . ∴AMFL 为平行四边形,所以14AM FL AB ==.20.(1)旧养殖法的箱产量低于50kg 的频率为(0.0120.0140.0240.0340.040)50.62++++⨯=所以概率估计值为0.62;新养殖法的箱产量的均值估计为1(750.02850.10950.221050.341150.231250.051350.04)52.352⨯+⨯+⨯+⨯+⨯+⨯+⨯=(2)根据箱产量的频率分布直方图得列联表22200(62663438)15.70510010096104K ⨯⨯-⨯=≈⨯⨯⨯由于15.705 6.635>,故有99%的把握认为箱产量与养殖方法有关. 21.(1)112FAB A B S OF y y OF ∆=∙-≤==,所以a =(2)由题意可设00(,)A x y ,00(,)B x y --,(,)M x y ,则2221x y a +=,220021x y a+=,2222022022200022222220000011(1)()1MA MBx x x x y y yy y y a aa k k x xx x x x x x x x a ------+-∙=∙====--+--- 所以23a =,所以a =所以离心率3c e a ===22.(1)'2()(2)(2)(1)x xf x x x e x x e =--=-+-当2x <-或1x >时,'()0f x <,当21x -<<时,'()0f x > 所以()f x 在(,2)-∞-,(1,)+∞单调递减,在(2,1)-单调递增; (2)设2()()(12)F x f x ax x =-++,(0)0F ='2()(2)4x F x x x e x a =----,'(0)2F a =-当2a ≥时,'2()(2)4(2)(1)42(2)[(1)2]x x x F x x x e x a x x e x x x e =----≤-+---=-+-+设()(1)2x h x x e =-+,'()0x h x xe =≥,所以()(1)2(0)1xh x x e h =-+≥= 即'()0F x ≤成立,所以2()12f x ax x ≤++成立;当2a <时,'(0)20F a =->,而函数'()F x 的图象在(0,)+∞连续不断且逐渐趋近负无穷,必存在正实数0x 使得'0()0F x =且在0(0,)x 上'0()0F x >,此时()(0)0F x F >=,不满足题意.综上,a 的取值范围[2,)+∞。
湖北省部分重点中学2018届新高三起点考试语文试卷一、现代文阅读(35分)(一)阅读下面的文字,完成1〜3题(9分,毎小题 3分)分享经济,又名共享经济,指的是通过人人参与,借助互联网平台,把各类过剩的消费资源、尤其是数据信息整合在一起,通过倡导人人分享,实现体验式消费,进而促使成本降低、效率提高,创造新的生产红利和消费红利。
美国著名的Zipcar租车公司,就是把各种闲置车辆及其信息通过网络平台整合起来,Zipcar的会员用车时通过网站或电话搜寻,即可发现距离会员最近的车辆情况和使用价格,然后会员可自主选择并预约用车,用完之后在约定时间内将车开回原处。
再比如,大家熟悉的淘宝网,其实也是成千上万大中小企业、成千上万用户借助互联网平台,让成千上万的产品和商品价格、产品数量、广告、厂商、消费者甚至信用等各类信息透明化,通过人人参与,平台分享,公平竞争,大大解决信息不对称问题,提高交易效率,同时也扩大消费需求。
之所以能产生这样的效应,原因就在于分享经济强调分享式消费和消费式分享,即消费既是一种消费,也是一种为他人消费提供供给和创造创新的过程;同时,分享经济的背后也提出了一个今天我们如何更好解决过剩的问题。
当今时代,高速工业化和市场化带来的巨大效率提升、生产高速增长,实际上带来了“全球性过剩”,从生产领域到消费领域,大量的资源、产品和服务处在闲置和过剩状态,因此分享经济通过互联网平台整合,把大量的“闲置”重新配置,加以利用。
这显然顺应了绿色消费、绿色生产和可持续发展的大趋势。
从更重要的意义上说,分享经济也意味着经济运行方式的改变。
工业化甚至更早时代,经济增长更加强调生产、强调效率、强调产出率,解决这个问题的重要办法就是实现分工,通过分工产生效率,通过市场交易实现资源配置最优化,达到产出最大化的目标。
但是,随着人类经济活动进一步发展,人们发现,日益细化的社会分工和市场分工,在带来效率提高的同时,也带来了过剩;强调分工促进增长的同时,也由于生产环节细化、甚至全球化分工,产生了信息不对称并由此带来了巨大的市场交易成本,反而降低了交易效率和经济增长效率。