上海市高一上学期数学第一次联考试卷
- 格式:doc
- 大小:1.25 MB
- 文档页数:17
上南中学高一年级月考数学试卷 2012.9.20一.填空题:(每小题3分,共42分)1. 集合{1,2,3,4}A =的非空子集的个数为 15 ;2. 若,0,0<>>c b a 则a c > c ; 3.已知集合}2,2{2a a a -为数集,求实数a 的取值范围是 0≠a 且4≠a ;4.若集合{}0132=++x kx x 中至多有一个元素,则k 的取值范围是 0=k 或49≥ ; 5.写出命题“已知a 、b 、c 是实数,如果0<ac ,那么()002≠=++a c bx ax 有实数根”的否命题 已知a 、b 、c 是实数,如果0≥ac ,那么()002≠=++a c bx ax 没有实数根” ;6.写出0x <的一个充分不必要的条件 1-<x (答案不唯一) ;7.设{}{}2,2,1,,4,2,1m Q m P ==,则满足P Q P =的实数m 的值为 0,2- ;8.集合{|24},{|0}A x x B x x a =-<<=-<,当A B =∅时,实数a 的取值范围是 2-≤a ;9.设全集R U =,集合{|11},{|02}A x x B x x =-≤≤=<<,则()B A C U ⋃= {}21≥-<x x x 或 ;10.若{}R x x x x A ∈<--=,0432,则N A = {}3,2,1,0 ; 11.已知全集{}{}{}4,1,2,5,4,3,2,1===B A C B A U U ,则=B {}4,2,1 ;12.设集合2{|43},{|2}A y y x x a B y y ==--++=<,若A B ⊂≠,则实数a 的取值范围是 5-<a ;13.设集合⎭⎬⎫⎩⎨⎧∈∈-=Z x Z x x A ,36,试用列举法表示集合A = {}9,3,6,0,5,1,4,2- ; 14.给出下列条件p 与q :① 1:=x p 或2=x ;11:-=-x x q .② :p 一元二次方程02=++m x x 有实数解;41:<m q . ③ x p :是6的倍数;x q :是2的倍数. ④ :p 一个四边形是矩形;:q 四边形的对角线相等.其中p 是q 的必要不充分条件的序号为 ② ;二.选择题(每小题3分共12分)15.若0,0<<>>d c b a ,则下列不等式恒成立的是 ( C )()22ad bc A < ()33ad bc B < ()c b d aC < ()db c a D < 16.下列命题为真命题的是 ( D ) ()A 若A B =∅,则B A ,至少有一个为空集;()B 若集合(){}(){}1,,1,2--==+-==x y y x B x y y x A ,则{}1,2-=B A ; ()C 任何集合必有一个真子集;()D 若{}{}22,x y x Q x y y P ====,则Q P ⊆;17.若不等式012>-+bx ax 的解集是{}43<<x x ,则实数b a +的值为 ( A ) ()21A ()2B ()41C ()31D 18.条件M 是N 的充要条件的为 ( D ) ()A 22:;:bc ac N b a M >> ()B c b d a N d c b a M ->->>:;,: ()C bd ac N d c b a M >>>>>:;0,0: ()D 0:;:≤+=-ab N b a b a M三.解答题(共46分)19.(满分7分)已知0>>b a ,试比较2222b a b a -+与ba b a -+的值的大小. 解:因为2222222ba ab b a b a b a b a --=-+--+,又因为0>>b a ,所以002222>-⇒>>b a b a 且0<-ab , 即02222222<--=-+--+b a ab b a b a b a b a ,所以2222b a b a -+<ba b a -+. 20.(满分9分)若{}x U ,1,0=,{}1,0=A ,且U x ∈2,求A C U . 解:因为U x ∈2,则有02=x 或12=x 或x x =2.解得0=x 或1±=x ,由集合元素的互异性知1-=x ,则{}1,1,0-=U ,故{}1-=A C U21.(满分10分)已知31:,421:≤≤+≤≤+x m x m βα,若α是β的必要条件,求实数m 的取值范围. 解:设{}421+≤≤+=m x m x A ,{}31≤≤=x x B . 因为α是β的必要条件,所以A B ⊆,所以⎩⎨⎧+≤≤+42311m m 021≤≤-⇒m . 所以实数m 的取值范围是021≤≤-m . 22.(满分10分)设{}{},015,022=++==++=cx x x B b ax x x A又{}{}3,5,3==B A B A ,求c b a ,,的值.解:因为{}3=B A ,所以8015332-=⇒=++c c , 所以{}{},5,30152==++=cx x x B 由{},5,3=B A 可得{}3=A 或{}5,3=A ,而{}3=B A ,所以{}3=A .所以⎪⎩⎪⎨⎧=++=-=∆0330422b a ac a ⎩⎨⎧=-=⇒96b a , 所以8,9,6-==-=c b a .23.(满分10分)已知{}{}2,,1,21,1,1r r B d d A =++=,其中1,0≠≠r d ,问当rd ,满足什么条件时B A =?并求出这种情形下的集合A . 解:由题意,有两种情形:⑴ ⎩⎨⎧=+=+②①2211r d r d ,由①得1-=r d ,代人②得0122=+-r r ,所以1=r ,与条件1≠r 矛盾,因此在这种情形下B A =不能成立.⑵ ⎩⎨⎧=+=+②①r d r d 2112,由①得12-=r d ,代人②得,0122=--r r ()()0112=-+⇒r r ,由条件1≠r ,得21-=r ,代人②得43-=d . 当21-=r ,43-=d 时,⎭⎬⎫⎩⎨⎧-==21,41,1B A .。
上海市高一上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)已知集合,则()A . {0,x,1,2}B . {2,0,1,2}C . {0,1,2}D . 不能确定2. (2分) (2018高一上·凯里月考) 已知集合 , ,则与的关系为()A .B .C .D .3. (2分)集合,则()A .B .C .D .4. (2分) (2019高一上·林芝期中) 若全集,则集合的真子集共有()A . 个B . 个C . 个D . 个5. (2分)(2017·蚌埠模拟) 复数Z在映射f下的象为(1+i)Z,则﹣1+2i的原象为()A .B .C .D .6. (2分)下列各组函数是同一函数的是()①f(x)=x﹣2与;②f(x)=|x|与;③f(x)=x0与g(x)=1;④f(x)=x2﹣2x﹣1与g(t)=t2﹣2t﹣1.A . ①②B . ②③C . ②④D . ①④7. (2分)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A .B .C .D .8. (2分) (2019高三上·葫芦岛月考) 若函数在上有最大值,则的取值不可能为()A .B .C .D .9. (2分)方程6x2=5x﹣4化为一般形式为()A . 6x2﹣5x+4=0B . 6x2﹣5x﹣4=0C . 6x2+5x﹣4=0D . 6x2+5x﹣410. (2分) (2016高一上·浦东期末) 给定实数x,定义[x]为不大于x的最大整数,则下列结论中不正确的是()A . x﹣[x]≥0B . x﹣[x]<1C . 令f(x)=x﹣[x],对任意实数x,f(x+1)=f(x)恒成立D . 令f(x)=x﹣[x],对任意实数x,f(﹣x)=f(x)恒成立11. (2分)若函数满足,且时,,函数,则函数在区间[-5,5]内与轴交点的个数为()A . 5B . 7C . 8D . 1012. (2分)(2019·潍坊模拟) 定义:区间,,,的长度均为,若不等式的解集是互不相交区间的并集,设该不等式的解集中所有区间的长度之和为,则()A . 当时,B . 当时,C . 当时,D . 当时,二、填空题 (共4题;共4分)13. (1分) (2018高二上·石嘴山月考) 已知,,若至少存在一个实数x使得成立,a的范围为________.14. (1分) (2017高一上·江苏月考) 已知函数,若存在,使得成立,则实数的取值范围是________.15. (1分)已知集合A={y|y= }=[0,+∞),则实数a的取值范围是________.16. (1分)(2018·南宁模拟) 已知函数,,其中 .若满足不等的解的最小值为,则实数的取值范围是________.三、解答题 (共6题;共50分)17. (5分) (2017高一上·怀柔期末) 已知元素为实数的集合S满足下列条件:①0∉S,1∉S;②若a∈S,则∈S.(Ⅰ)若{2,﹣2}⊆S,求使元素个数最少的集合S;(Ⅱ)若非空集合S为有限集,则你对集合S的元素个数有何猜测?并请证明你的猜测正确.18. (10分) (2016高一上·蓟县期中) 已知全集U为R,集合A={x|0<x≤2},B={x|x<﹣3,或x>1};求:(I)A∩B;(II)(CUA)∩(CUB);(III)CU(A∪B).19. (10分)(1)化简:(﹣2)(3y)(﹣4)(2)已知函数f(3x﹣2)=x﹣1(x∈[0,2]),函数g(x)=f(x﹣2)+3.求函数y=f(x)与y=g(x)的解析式及定义域.20. (5分) (2017高一上·江苏月考) 已知函数,且.(1)判断函数的奇偶性;(2)判断函数在(1,+∞)上的单调性,并用定义证明你的结论;(3)若,求实数a的取值范围.21. (10分) (2018高一下·金华期末) 已知,函数 .(1)当时,函数在上单调递增,求实数的取值范围;(2)当时,对任意的,都有恒成立,求的最大值.22. (10分) (2017高一上·黑龙江月考) 已知函数 ,,是奇函数,且当时,函数的最大值是1,求的表达式.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共50分)17-1、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、。
某某省某某市新锐私立学校、水口中学2014-2015学年高一上学期第一次联考数学试卷一.选择题(每题5分,共50分,每题只有一个符合题意的选项)1.(5分)设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则(C U S)∩(C U T)等于()A.∅B.{2,4,7,8} C.{1,3,5,6} D.{2,4,6,8}2.(5分)如果A={x|x>﹣1},那么()A.0⊆A B.{0}∈A C.∅∈A D.{0}⊆A3.(5分)已知,则f{f}的值为()A.0 B.2 C.4 D.84.(5分)已知f(x﹣1)=x2+4x﹣5,则f(x)的表达式是()A.f(x)=x2+6x B.f(x)=x2+8x+7 C.f(x)=x2+2x﹣3 D.f(x)=x2+6x﹣10 5.(5分)函数的定义域是()A.B.C.D.6.(5分)若函数y=x2+(2a﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a的取值X围是()A.C.7.(5分)下列给出函数f(x)与g(x)的各组中,是同一个关于x的函数的是()A.f(x)=x﹣1,g(x)=B.f(x)=2x﹣1,g(x)=2x+1C.f(x)=x2,g(x)=D.f(x)=1,g(x)=x08.(5分)下列图象中表示函数图象的是()A.B.C.D.9.(5分)f(x)是定义在(0,+∞)上的增函数,则不等式f(x)>f的解集是()A.(0,+∞)B.(0,2)C.(2,+∞)D.(2,)10.(5分)已知f(x)=ax3+bx﹣4,若f(2)=6,则f(﹣2)=()A.﹣14 B.14 C.﹣6 D.10二.填空题(每题5分,共25分)11.(5分)若A={0,1,2,3},B={x|x=3a,a∈A}则A∩B=.12.(5分)函数y=x2﹣4x+6当x∈时,函数的值域为.13.(5分)已知集合M={(x,y)|x+y=2},N={(x,y)|x﹣y=4},则M∩N等于.14.(5分)已知函数f(x)满足2f(x)+3f(﹣x)=x2+x,则f(x)=.15.(5分)已知集合A={x|ax2+2x+1=0,x∈R}的子集只有两个,则a的值为.三、解答题:解答题应写出文字说明.证明过程或演算步骤.(合计80分)16.(10分)设A={x∈Z|﹣6≤x≤6},B={1,2,3},C={3,4,5,6},求:(1)A∩(B∩C);(2)A∩∁A(B∪C)17.(10分)设A={x|x2+ax+12=0},B={x|x2+3x+2b=0},A∩B={2}(1)求a,b的值及A,B;(2)设全集U=A∪B,求(C U A)∩(C U B).18.(10分)已知f(x)=9x﹣2×3x+4,x∈.(1)设t=3x,x∈,求t的最大值与最小值;(2)求f(x)的最大值与最小值.19.(10分)已知函数f(x)是定义在R上的奇函数,当x≥0,f(x)=x2﹣2x,(1)画出 f(x)图象;(2)求出f(x)的解析式.20.(11分)已知函数f(x)=,x∈,(1)用定义法证明函数f(x)的单调性;(2)求函数f(x)的最小值和最大值.21.(12分)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?22.(12分)已知函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f (y),f(3)=1(1)求f(9),f(27)的值;(2)若f(3)+f(a﹣8)<2,某某数a的取值X围.某某省某某市新锐私立学校、水口中学2014-2015学年高一上学期第一次联考数学试卷参考答案与试题解析一.选择题(每题5分,共50分,每题只有一个符合题意的选项)1.(5分)设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则(C U S)∩(C U T)等于()A.∅B.{2,4,7,8} C.{1,3,5,6} D.{2,4,6,8}考点:交、并、补集的混合运算.专题:计算题.分析:由全集U,找出不属于集合S的元素,求出S的补集,找出不属于集合T的元素,求出T的补集,找出两补集的公共元素,即可确定出所求的集合.解答:解:∵全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},∴C U S={2,4,6,7,8},C U T={1,2,4,5,7,8},则(C U S)∩(C U T)={2,4,7,8}.故选B点评:此题考查了交、并、补集的混合运算,其中补集即为全集中不属于集合的元素组成的集合,交集即为两集合的公共元素组成的集合,在求补集时注意全集的X围.2.(5分)如果A={x|x>﹣1},那么()A.0⊆A B.{0}∈A C.∅∈A D.{0}⊆A考点:集合的包含关系判断及应用.专题:探究型.分析:利用元素和集合A的关系,以及集合Φ,{0}中元素与集合A的元素关系进行判断.解答:解:A.0为元素,而A={x|x>﹣1},为集合,元素与集合应为属于关系,∴A错误.B.{0}为集合,集合和集合之间应是包含关系,∴B错误.C.∅为集合,集合和集合之间应是包含关系,∴C错误.D.{0}为集合,且0∈A,∴{0}⊆A成立.故选D.点评:本题考查了元素和集合以及集合与集合之间的关系.元素与集合之间应使用“∈,∉”,而集合和集合之间应使用包含号.3.(5分)已知,则f{f}的值为()A.0 B.2 C.4 D.8考点:函数的值.专题:计算题.分析:欲求f{f}的值应从里向外逐一运算,根据自变量的大小代入相应的解析式进行求解即可.解答:解:∵﹣2<0∴f(﹣2)=0∴f(f(﹣2))=f(0)∵0=0∴f(0)=2即f(f(﹣2))=f(0)=2∵2>0∴f(2)=22=4即f{f}=f(f(0))=f(2)=4故选C.点评:本题主要考查了分段函数求值,同时考查了分类讨论的数学思想和计算能力,属于基础题.4.(5分)已知f(x﹣1)=x2+4x﹣5,则f(x)的表达式是()A.f(x)=x2+6x B.f(x)=x2+8x+7 C.f(x)=x2+2x﹣3 D.f(x)=x2+6x﹣10考点:函数解析式的求解及常用方法.专题:换元法;函数的性质及应用.分析:【方法﹣】用换元法,设t=x﹣1,用t表示x,代入f(x﹣1)即得f(t)的表达式;【方法二】凑元法,把f(x﹣1)的表达式x2+4x﹣5凑成含(x﹣1)的形式即得f(x)的表达式;解答:解:【方法﹣】设t=x﹣1,则x=t+1,∵f(x﹣1)=x2+4x﹣5,∴f(t)=(t+1)2+4(t+1)﹣5=t2+6t,f(x)的表达式是f(x)=x2+6x;【方法二】∵f(x﹣1)=x2+4x﹣5=(x﹣1)2+6(x﹣1),∴f(x)=x2+6x;∴f(x)的表达式是f(x)=x2+6x;故选:A.点评:本题考查了函数解析式的常用求法的问题,是基础题.5.(5分)函数的定义域是()A.B.C.D.考点:函数的定义域及其求法.专题:计算题.分析:函数式由两部分构成,且每一部分都是分式,分母又含有根式,求解时既保证分式有意义,还要保证根式有意义.解答:解:要使原函数有意义,需解得,所以函数的定义域为.故选C.点评:本题考查了函数的定义域及其求法,解答的关键是保证构成函数式的每一部分都要有意义,属基础题.6.(5分)若函数y=x2+(2a﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a的取值X围是()A.C.考点:函数单调性的性质.专题:计算题.分析:由已知中函数的解析式,结合二次函数的图象和性质,可以判断出函数y=x2+(2a ﹣1)x+1图象的形状,分析区间端点与函数图象对称轴的关键,即可得到答案.解答:解:∵函数y=x2+(2a﹣1)x+1的图象是方向朝上,以直线x=为对称轴的抛物线又∵函数在区间(﹣∞,2]上是减函数,故2≤解得a≤﹣故选B.点评:本题考查的知识点是函数单调性的性质,其中熟练掌握二次函数的图象和性质是解答本题的关键.7.(5分)下列给出函数f(x)与g(x)的各组中,是同一个关于x的函数的是()A.f(x)=x﹣1,g(x)=B.f(x)=2x﹣1,g(x)=2x+1C.f(x)=x2,g(x)=D.f(x)=1,g(x)=x0考点:判断两个函数是否为同一函数.专题:函数的性质及应用.分析:分别判断两个函数的定义域和对应法则是否完全相同即可.解答:解:A.函数g(x)的定义域为{x|x≠0},两个函数的定义域不相同,不是同一函数.B.函数f(x)和g(x)的定义域为R,两个函数的定义域相同,但对应法则不相同,不是同一函数.C.函数g(x)=x2,两个函数的定义域相同,对应法则相同,是同一函数.D.函数g(x)的定义域为{x|x≠0},两个函数的定义域不相同,不是同一函数.故选C.点评:本题主要考查判断两个函数是否为同一函数,判断的依据是判断两个函数的定义域和对应法则是否完全相同.8.(5分)下列图象中表示函数图象的是()A.B.C.D.考点:函数的图象;函数的概念及其构成要素.专题:作图题.分析:根据函数的定义,对任意的一个x都存在唯一的y与之对应可求解答:解:根据函数的定义,对任意的一个x都存在唯一的y与之对应而A、B、D都是一对多,只有C是多对一.故选C点评:本题主要考查了函数定义与函数对应的应用,要注意构成函数的要素之一:必须形成一一对应或多对一,但是不能多对一,属于基础试题9.(5分)f(x)是定义在(0,+∞)上的增函数,则不等式f(x)>f的解集是()A.(0,+∞)B.(0,2)C.(2,+∞)D.(2,)考点:函数单调性的性质.专题:常规题型.分析:把函数单调性的定义和定义域相结合即可.解答:解:由f(x)是定义在(0,+∞)上的增函数得,⇒2<x<,故选 D.点评:本题考查了函数的单调性的应用,是基础题,本题易错点是不考虑定义域.10.(5分)已知f(x)=ax3+bx﹣4,若f(2)=6,则f(﹣2)=()A.﹣14 B.14 C.﹣6 D.10考点:函数奇偶性的性质.分析:根据f(x)=ax3+bx﹣4,可得f(x)+f(﹣x)=﹣8,从而根据f(2)=6,可求f (﹣2)的值.解答:解:∵f(x)=ax3+bx﹣4∴f(x)+f(﹣x)=ax3+bx﹣4+a(﹣x)3+b×(﹣x)﹣4=﹣8∴f(x)+f(﹣x)=﹣8∵f(2)=6∴f(﹣2)=﹣14故选A.点评:本题以函数为载体,考查函数的奇偶性,解题的关键是判断f(x)+f(﹣x)=﹣8,以此题解题方法解答此类题,比构造一个奇函数简捷,此法可以推广.二.填空题(每题5分,共25分)11.(5分)若A={0,1,2,3},B={x|x=3a,a∈A}则A∩B={0,3}.考点:交集及其运算.专题:计算题.分析:将A中的元素代入x=3a中计算确定出B,求出两集合的交集即可.解答:解:∵A={0,1,2,3},B={x|x=3a,a∈A}={0,3,6,9},∴A∩B={0,3}.故答案为:{0,3}点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.12.(5分)函数y=x2﹣4x+6当x∈时,函数的值域为.考点:函数的值域;二次函数的性质.专题:计算题.分析:先对二次函数进行配方找出对称轴,利用对称轴相对区间的位置求出最大值及最小值,得函数的值域.解答:解:∵y=x2﹣4x+6=(x﹣2)2+2,x∈∴当x=2时,y min=2;当x=4时,y max=6∴函数的值域为故答案为:点评:本题主要考查二次函数在闭区间上的最值,属于基本试题,关键是对二次函数配方后,确定二次函数的对称轴相对闭区间的位置,以确定取得最大值及最小值的点.13.(5分)已知集合M={(x,y)|x+y=2},N={(x,y)|x﹣y=4},则M∩N等于{(3,﹣1)}.考点:交集及其运算.分析:集合M,N实际上是两条直线,其交集即是两直线的交点.解答:解:联立两方程解得∴M∩N={(3,﹣1)}.故答案为{(3,﹣1)}.点评:本题主要考查了集合的交运算,注意把握好各集合中的元素.14.(5分)已知函数f(x)满足2f(x)+3f(﹣x)=x2+x,则f(x)=.考点:函数解析式的求解及常用方法.专题:计算题;方程思想.分析:由2f(x)+3f(﹣x)=x2+x,用﹣x代入可得2f(﹣x)+3f(x)=x2﹣x,由两式联立解方程组求解.解答:解:∵2f(x)+3f(﹣x)=x2+x,①∴2f(﹣x)+3f(x)=x2﹣x,②得:f(x)=故答案为点评:本题主要考查函数的解析式的解法,主要应用了方程思想求解.15.(5分)已知集合A={x|ax2+2x+1=0,x∈R}的子集只有两个,则a的值为0或1.考点:子集与真子集.专题:探究型.分析:根据集合A的子集只有两个,则说明集合A只有一个元素,进而通过讨论a的取值,求解即可.解答:解:∵集合A={x|ax2+2x+1=0,x∈R}的子集只有两个,∴集合A只有一个元素.若a=0,则方程ax2+2x+1=0,等价为2x+1=0,解得x=﹣,方程只有一解,满足条件.若a≠0,则方程ax2+2x+1=0,对应的判别式△=4﹣4a=0,解得a=1,此时满足条件.故答案为:0或1.点评:本题主要考查利用集合子集个数判断集合元素个数的应用,含有n个元素的集合,其子集个数为2n个,注意对a进行讨论,防止漏解.三、解答题:解答题应写出文字说明.证明过程或演算步骤.(合计80分)16.(10分)设A={x∈Z|﹣6≤x≤6},B={1,2,3},C={3,4,5,6},求:(1)A∩(B∩C);(2)A∩∁A(B∪C)考点:交、并、补集的混合运算.专题:集合.分析:(1)由B与C求出B与C的交集,找出A与B月C交集的交集即可;(2)根据全集A求出B与C并集的交集,再求出与A交集即可.解答:解:(1)∵A={x∈Z|﹣6≤x≤6}={﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6},B={1,2,3},C={3,4,5,6},∴B∩C={3},则A∩(B∩C)={3};(2)∵A={x∈Z|﹣6≤x≤6}={﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6},B={1,2,3},C={3,4,5,6},∴B∪C={1,2,3,4,5,6},∴∁A(B∪C)={﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0},则A∩∁A(B∪C)={﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0}.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.17.(10分)设A={x|x2+ax+12=0},B={x|x2+3x+2b=0},A∩B={2}(1)求a,b的值及A,B;(2)设全集U=A∪B,求(C U A)∩(C U B).考点:集合关系中的参数取值问题.专题:计算题.分析:(1)由A∩B={2}可知3分别是方程x2+ax+12=0,x2+3x+2b=0的根,代入可求a,b 及集合A,B(2)由题意可得U=A∪B={﹣5,2,6},结合已知A,B可求解答:解:(1)∵A∩B={2}∴4+2a+12=0即a=﹣84+6+2b=0即b=﹣5 …(4分)∴A={x|x2﹣8x+12=0}={2,6},B={x|x2+3x﹣10=0}={2,﹣5} …(8分)(2)∵U=A∪B={﹣5,2,6}∴C u A={﹣5},C u B={6}∴C u A∪C u B={﹣5,6} …(12分)点评:本题主要考查了集合的交集的基本运算及并集的基本运算,属于基础试题18.(10分)已知f(x)=9x﹣2×3x+4,x∈.(1)设t=3x,x∈,求t的最大值与最小值;(2)求f(x)的最大值与最小值.考点:指数函数综合题.专题:计算题.分析:(1)设t=3x,由 x∈,且函数t=3x在上是增函数,故有≤t≤9,由此求得t 的最大值和最小值.(2)由f(x)=t2﹣2t+4=(t﹣1)2+3,可得此二次函数的对称轴为 t=1,且≤t≤9,由此求得f(x)的最大值与最小值.解答:解:(1)设t=3x,∵x∈,函数t=3x在上是增函数,故有≤t≤9,故t的最大值为9,t的最小值为.(2)由f(x)=9x﹣2×3x+4=t2﹣2t+4=(t﹣1)2+3,可得此二次函数的对称轴为 t=1,且≤t≤9,故当t=1时,函数f(x)有最小值为3,当t=9时,函数f(x)有最大值为 67.点评:本题主要考查指数函数的综合题,求二次函数在闭区间上的最值,属于中档题.19.(10分)已知函数f(x)是定义在R上的奇函数,当x≥0,f(x)=x2﹣2x,(1)画出 f(x)图象;(2)求出f(x)的解析式.考点:函数奇偶性的性质.专题:函数的性质及应用.分析:先求出奇函数的表达式,然后根据表达式作出函数的图象.解答:解:(1)先作出当x≥0,f(x)=x2﹣2x的图象,然后将图象关于原点对称,作出当x<0的图象.如图:(2)设x<0,则﹣x>0,代入f(x)=x2﹣2x得f(﹣x)=(﹣x)2﹣2(﹣x),因为函数f(x)是定义在R上的奇函数,所以f(﹣x)=﹣f(x),即f(x)=﹣x2﹣2x,所以函数的表达式为:点评:本题的考点是利用函数的奇偶性求函数的解析式.20.(11分)已知函数f(x)=,x∈,(1)用定义法证明函数f(x)的单调性;(2)求函数f(x)的最小值和最大值.考点:函数单调性的判断与证明.专题:计算题;证明题;函数的性质及应用.分析:(1)用定义法证明单调性一般可以分为五步,取值,作差,化简变形,判号,下结论.(2)利用函数的单调性求最值.解答:解(1)证明:任取3≤x1<x2≤5,则,f(x1)﹣f(x2)=﹣=,∵3≤x1<x2≤5,∴x1﹣x2<0,x1+1>0,x2+1>0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴上是增函数,(2)∵上是增函数,∴当x=3时,f(x)有最小值,当x=5时,f(x)有最大值f(5)=.点评:本题考查了函数单调性的证明及函数单调性的应用,证明一般有两种方法,定义法,导数法,可应用于求最值.属于基础题.21.(12分)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?考点:根据实际问题选择函数类型;函数的最值及其几何意义.专题:应用题;压轴题.分析:(Ⅰ)严格按照题中月租金的变化对能租出车辆数的影响列式解答即可;(Ⅱ)从月租金与月收益之间的关系列出目标函数,再利用二次函数求最值的知识,要注意函数定义域优先的原则.作为应用题要注意下好结论.解答:解:(Ⅰ)当每辆车的月租金定为3600元时,未租出的车辆数为,所以这时租出了88辆车.(Ⅱ)设每辆车的月租金定为x元,则租赁公司的月收益为,整理得.所以,当x=4050时,f(x)最大,最大值为f(4050)=307050,即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益为307050元.点评:本题以实际背景为出发点,既考查了信息的直接应用,又考查了目标函数法求最值.特别是二次函数的知识得到了充分的考查.在应用问题解答中属于非常常规且非常有代表性的一类问题,非常值得研究.22.(12分)已知函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f (y),f(3)=1(1)求f(9),f(27)的值;(2)若f(3)+f(a﹣8)<2,某某数a的取值X围.考点:函数单调性的性质;函数的值.专题:函数的性质及应用.分析:(1)由函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f (y),f(3)=1,能求出f(9)和f(27).(2)由f(x)+f(x﹣8)<2,知f(x)+f(x﹣8)=f<f(9),再由函数f(x)在定义域(0,+∞)上为增函数,能求出原不等式的解集.解答:解:(1)由原题条件,可得到f(9)=f(3×3)=f(3)+f(3)=1+1=2,f(27)=f(3×9)=f(3)+f(9)=1+2=3;(2)f(3)+f(a﹣8)=f(3a﹣24),又f(9)=2∴f(3a﹣24)<f(9),函数在定义域上为增函数,即有3a﹣24<9,∴,解得a的取值X围为8<a<11.点评:本题考查抽象函数的函数值的求法,考查不等式的解法,解题时要认真审题,仔细解答,注意合理地进行等价转化.。
上海市上海交通大学附属中学等四校联考2024-2025学年高一上学期10月数学试卷一、填空题1.已知全集{}0,1,2,3,4U =,集合{}1,2A =,{}2,3B =则A B ⋂=.2.不等式3102x x +≤-的解集是.3.已知,R b c ∈,关于x 的不等式20x bx c -+<的解集为()3,2-,则b c +=.4.已知方程22430x x +-=的两实根为12,x x ,则12x x -的值为.5.若:||1x m α-<是:04x β<<的充分非必要条件,则实数m 的取值范围是.6.化简:211133221566425a b a b a ⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭=.(其中0a >,0b >)7.已知,0x y >且31x y +=,则11x y+的最小值为8x 的分式方程3211m x x +=--有正数解,则符合条件的整数m 的和是.9.已知实数a b c >>,且0a b c ++=,则c a 的取值范围是.10.若关于x 的不等式()2220x m x m -++<的解集中恰有3个整数,则实数m 的取值范围为.11.已知a ,b ,c 不全为无理数,则关于三个数a b +,b c +,c a +,下列说法正确的是(把所有正确选项都填上)①可能均为有理数②可能均为无理数③可能恰有一个为有理数④可能恰有两个为有理数12.已知二次函数2()(0)f x ax bx c a =++>,若集合{()0,13}A xf x x ==≤≤∣中恰有两个元素,则(2)f a 的取值范围为.二、单选题13.下列结论中错误的有()A .若a ,b 为正实数,a b >,则3322a b a b ab +>+B .若a ,b ,m 为正实数,a b <,则a m ab m b+<+C .若22a b c c >,则a b >;D .当0x >时,2xx+的最小值为14.下列问题中,a ,b 是不相等的正数,比较x ,y ,z 的表达式.下列选项正确的是()问题甲:一个直径a 寸的披萨和一个直径b 寸的披萨,面积和等于两个直径都是x 寸的披萨;问题乙:某人散步,第一圈的速度是a ,第二圈的速度是b ,这两圈的平均速度为y ;问题丙:将一物体放在两臂不等长的天平测量,放左边时右侧砝码质量为a (天平平衡),放右边时左边砝码质量为b (天平平衡),物体的实际质量为z .A .x y z >>B .x z y >>C .z x y >>D .z y x>>15.设1237 A A A A 、、、、是均含有2个元素的集合,且171(1,2,3,,6)i i A A A A i +=∅==∅ 、,记1237B A A A A =⋃⋃⋃⋃ ,则B 中元素个数的最小值是()A .4B .5C .6D .716.已知集合S 是由某些正整数组成的集合,且满足:若a S ∈,则当且仅当(a m n =+其中,m n S ∈且)m n ≠,或(a p q =+其中*,,,Z p q S p q ∉∈且)p q ≠.现有如下两个命题:①4S ∈;②集合{}35,N x x n n S =+∈⊆.则下列选项中正确的是()A .①是真命题,②是真命题;B .①是真命题,②是假命题C .①是假命题,②是真命题;D .①是假命题,②是假命题.三、解答题17.设集合{}260P x x x =--<,{}23Q x a x a =≤≤+.(1)若Q P Q P ≠∅= 且,求实数a 的取值范围;(2)若P Q =∅ ,求实数a 的取值范围.18.已知函数()y f x =满足2()21f x x a x a =-+-+(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥恒成立,求实数a 的取值范围.19.某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少?(2)为了扩大商品的影响力,提高年销售量,公司决定明年对该商品进行全面技术革新和营销策略改革,并提高价格到x 元,公司拟投入()216006x -万元作为技改费用,投入50万元作为固定宣传费用,试问:该商品明年的销售量a 至少达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价.20.已知a b c d ,,,为正实数,利用平均不等式证明(1)(2)并指出等号成立条件,然后解决(3)中的实际问题.(1)请根据基本不等式2a b +≥(,a b R +∈),证明:4a b c d +++≥;(2)请利用(1)的结论,证明:3a b c ++≥(3)如图,将边长为1米的正方形硬纸板,在它的四个角各减去一个小正方形后,在这层一个无盖纸盒.如果要使制作的盒子容积最大,那么剪去的小正方形的边长应为多少米?21.对于集合{}()12,,,3n A a a a n Z n =∈≥ ,其中每个元素均为正整数,如果任意去掉其中一个元素(1,2,3,)i a i n = 之后,剩余的所有元素组成集合(1,2,)i A i n = ,并且i A 都能分为两个集合B 和C ,满足B C =∅ ,i B C A ⋃=,其中B 和C 的所有元素之和相等,就称集合A 为“可分集合”.(1)判断集合{}1,2,3,4和{}1,3,5,7,9,11,13是否是“可分集合”(不必写过程);(2)求证:五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)若集合{}()12,,,3n A a a a n Z n =∈≥ 是“可分集合”.①证明:n 为奇数;②求集合A 中元素个数的最小值.。
上海市浦东新区部分学校联考2024-2025学年高一上学期期中考试数学试卷一、填空题1.用∈或∉填空:0φ.2.已知集合A ={1,2,3,4,5},集合{0,2,4,6,8}B =,则A B =.3.用列举法表示方程组31x y x y +=⎧⎨-=⎩的解集为.4.把不等式|1|2x -<的解集用区间表示:.5.关于x 的不等式(3)m x x m +<+解集为空集,则实数m 的值为.6.当36a <<=.7.已知集合(1,)A =+∞,集合(,)B a =-∞,且A B B = ,则实数a 的取值范围是.8.已知等式2235(21)(1)x x a x x c ++=+++恒成立,则实数c =.9.已知12x >,则121x x +-的最小值为10.关于x 的方程222(1)40x m x m +-+=有两个互为倒数的实数根,则实数m 的值为.11.已知关于x 的不等式22101kx kx x -+≤+的解集为空集,则实数k 的取值范围是12.若规定由整数组成的集合0,1,2,,}{E n = ,10n ≥,N ∈n 的子集123}{,,,,m a a a a 为E 的第k 个子集,其中3122222m a a a a k =++++ ,则E 的第2024个子集是.二、单选题13.“1x >”是“2x >”的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要14.命题“对任意的实数x ,都有210x x ++>”的否定形式是().A .存在实数x ,使得210x x ++≤B .对任意的实数x ,都有210x x ++≤C .存在实数x ,使得210x x ++>D .存在无数个实数x ,使得210x x ++>15.若a b c R ∈、、,则下列四个命题中,正确的是()A .若a b >,则22ac bc >B .若,a b c d >>,则a c b d ->-C .若a b >,则11a b<D .若a b >,则22a b >16.已知||||x y ≠,||||||x y a x y -=-,||||||x y b x y +=+,则,a b 之间的大小关系是().A .a b>B .a b <C .a b =D .a b≤三、解答题17.化简:113232211166(8)63a b a b a b⎛⎫⋅- ⎪⎝⎭.18.(1)对于实数x ,比较221x +与2x x +的大小;(2)对于实数x ,比较|2152|||x x --+与4的大小.19.若不等式ax 2+bx -1>0的解集是{x |1<x <2}.(1)求a ,b 的值;(2)求不等式11ax bx +-≥0的解集.20.汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.在一个限速为40km/h 的小道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场勘查测得甲车的刹车距离略超过12m ,乙车的刹车距离略超过10m ,又知甲、乙两种车型的刹车距离S (m )与车速x (km/h )之间分别有如下关系:20.010.1S x x =+甲,20.0050.05S x x =+乙.问:甲、乙两车有无超速现象?21.设集合{}2320A x x x =-+=,(){}222150B x x a x a =+++-=.(1)若{}2A B = ,求实数a 的值;(2)若集合B 中有两个元素1x ,2x ,求实数a 的取值范围,并用含a 的代数式表示12x x -;(3)若全集U =R ,A B =∅ ,求实数a 的取值范围.。
一、填空题 1.关于x 的不等式的解集是___________. 23020x x -≤-【答案】(20,23]【分析】把给定不等式化成一元二次不等式求解即可. 【详解】不等式化为:,解得,23020x x -≤-200(23)(20)0x x x -≠⎧⎨--≤⎩2023x <≤所以不等式的解集是. 23020x x -≤-(20,23]故答案为:.(20,23]2.已知a 、,且,则ab 的最大值是____________. R b ∈2241a b +=【答案】##0.25 14【分析】利用基本不等式得,即可得到最大值. 22144a b ab =+≥ab 【详解】因为实数满足, ,a b 2241a b +=所以由基本不等式可得:221422a b a b =+≥⨯所以,当且仅当,即时等号成立, 14ab ≤22142a b ==a b ⎧=⎪⎪⎨⎪=⎪⎩a b ⎧=⎪⎪⎨⎪=⎪⎩即的最大值为.ab 14故答案为:.143.若点P (3,y )是角终边上一点,且,则y 的值是____________. α2sin 3=-a 【答案】【分析】利用三角函数值的定义,即可求解. 【详解】,解得s 32in α==-y =故答案为:4.已知.若是奇函数,则实数a 的值是____________.()11f x x x a =+-(1)=-y f x 【答案】2-【分析】利用已知函数的定义域,结合奇函数的定义计算作答即可. 【详解】函数的定义域为且, 11()f x x x a=+-{R |0x x ∈≠}x a ≠因为函数是奇函数,则当且时,恒成立, (1)=-y f x 1x ≠1x a ≠+(1)(1)0f x f x --+-=因此,整理得, 111101111x x a x x a+++=--------2221101(1)a x a x ++=-+-即,于是得,解得,22222(1)(1)(2)0(1)[(1)]a a a x x a x ++++--=-+-2(1)(1)020a a a ⎧+++=⎨--=⎩2a =-所以实数a 的值是. 2-故答案为:2-5.若函数的值域是,则函数的值域是____________.()y f x =1,42⎡⎤⎢⎥⎣⎦()()()12121F x f x f x =+++【答案】172,4⎡⎤⎢⎥⎣⎦【分析】由给定条件求出的值域,换元借助对勾函数性质即可得解.(21)f x +【详解】因函数的值域是,从而得函数值域为,()y f x =1,42⎡⎤⎢⎥⎣⎦(21)t f x =+1,42⎡⎤⎢⎥⎣⎦函数变为,,()F x 1y t t =+1,42t ⎡⎤∈⎢⎥⎣⎦由对勾函数的性质知在上递减,在上递增,1y t t =+1,12⎡⎤⎢⎥⎣⎦[1,4]时,,而时,,时,,即,1t =min 2y =12t =52y =4t =17y 4=max 174y =所以原函数值域是.172,4⎡⎤⎢⎥⎣⎦故答案为:.172,4⎡⎤⎢⎥⎣⎦6.已知里氏震级R 与地震释放的能量E 的关系为.那么里氏8.4级的地震释放的()2lg 11.43R E =-能量大约是里氏6.8级地震释放的能量的_____________倍.(精确到0.1) 【答案】251.2【分析】根据给定条件,作差并结合对数运算求解作答.【详解】令里氏8.4级的地震释放的能量为,里氏6.8级的地震释放的能量为,1E 2E 则,,两式相减并整理得,()12lg 11.48.43E -=()22lg 11.4 6.83E -=12lg lg 2.4E E -=即,因此. 12lg 2.4E E = 2.41210251.2EE =≈故答案为:251.27.若一个等腰三角形顶角的正弦值为,则其底角的余弦值为____________. 2425【答案】或.3545【分析】设顶角,则其底角的余弦值为,由半角公式求值即可. ()0,πα∈πcos sin 222ααæöç÷-=ç÷èø【详解】设顶角,则,∴或 ()0,πα∈247sin ,cos 2525αα==±3sin 25α=45则其底角的余弦值为或. π3cos sin 2225ααæöç÷-==ç÷èø45故答案为:或.35458.已知点A 的坐标为,将OA 绕坐标原点顺时针旋转至,则点的横坐标是(4,3)-3πOA 'A '____________.【分析】根据给定条件,利用三角函数定义,结合差角的余弦公式求解作答.【详解】以x 轴非负半轴为角的始边,令射线OA 为终边的角为,则射线为终边的角为αOA 'π3α-,显然,,5OA OA =='=34sin ,cos 55αα=-=因此,πππ413cos cos cos sin sin 333525ααα⎛⎫-=+=⨯- ⎪⎝⎭所以点A '5=9.方程的实数解为____________.9135x x+-=【答案】3log 2x =【分析】分、两种情况化简方程,求出的值,解之即可.0x ≤0x >9135x x+-=3x【详解】当时,则,由可得,可得;0x ≤31x ≤9135x x+-=()23340x x --=3x =当时,则,由可得,可得,解得.0x >31x >9135x x+-=()23360x x +-=32x =3log 2x =故答案为:.3log 2x =10.设,当时,恒成立,则实数m 的取值范围是()222x x f x --=R x ∈()()210f x mx f ++>____________. 【答案】()1,1-【分析】根据题意把不等式转化为即,结合函数的单调性2(2)(1)0f x mx f ++>2(2)(1)f x mx f +>-和奇偶性,得到在上恒成立,根据二次函数的性质,列出不等式,即可求解.2210x mx ++>R x ∈【详解】由函数,111(22)[2()]22222()2x x x x x x f x --=--=⋅-=均为在上的增函数,故函数是在上的单调递增函数,1212,2xxy y ⎛⎫==- ⎪⎝⎭R ()f x R 且满足,所以函数为奇函数, 1111()22()22()x x x x f x f x --------=-=-=-()f x 因为,即, 2(2)(1)0f x mx f ++>2(2)(1)(1)f x mx f f +>-=-可得恒成立,即在上恒成立, 221x mx +>-2210x mx ++>R x ∈则满足,即,解得, 2(2)40m -<244m <11m -<<所以实数的取值范围是. m (1,1)-故答案为:.(1,1)-11.已知,(是自然对数的底数),若对任意的,都存在唯一的()ln f x x =1,e D t ⎡⎤=⎢⎥⎣⎦e a D ∈b D∈,使得,则实数的取值范围是_____________.()()4f a f b +=t 【答案】{}5e 【分析】分析出函数在上单调递增,可得出,即可求得实数的值.()f x D ()14e 1e f t f t ⎧⎛⎫+= ⎪⎪⎪⎝⎭⎨⎪>⎪⎩t 【详解】因为函数在上单调递增,()f x D 对任意的,都存在唯一的,使得,a D ∈b D ∈()()4f a f b +=则,解得.()1ln 14e 1ef t f t t ⎧⎛⎫+=-= ⎪⎪⎪⎝⎭⎨⎪>⎪⎩5e t =故答案为:.{}5e 12.对任意集合M ,定义,X 是全集,集合,则对任意的,下列命1.()0,M x Mf x x M ∈⎧=⎨∉⎩,S T X ⊆x X ∈题中真命题的序号是_____________. (1)若,则;S T ⊆()()S T f x f x ≤(2); ()()1S S f x f x =-(3);()()()S S T T f x f x f x =⋅ (4)(其中符号[a ]表示不大于a 的最大整数).()()()12S T S T f x f x f x ⎡⎤++=⎢⎥⎣⎦ 【答案】(1)(2)(3)(4)【分析】根据给定条件对4个命题逐一分析并判断作答.【详解】对于(1),因,时,,,时,,而S T ⊆x S ∈x T ∈()()1S T f x f x ==x S ∉()0S f x =()0T f x =或,则,(1)正确;()1T f x =()()S T f x f x ≤对于(2),时,,则,时,, x S ∈x S ∉()1,()0S S f x f x ==x S ∉x S ∈即,,从而有,(2)正确; ()0,()1S S f x f x ==()()1S S f x f x +=()1()S S f x f x =-对于(3),,则,, x S T ∈ ,x S x T ∈∈()1,()1,()1S T S T f x f x f x === 即,()()()S T S T f x f x f x =⋅ ,则,此时与至少有一个成立,即与中至少一个x S T ∉⋂()0S T f x = x S ∉x T ∉()0S f x =()0T f x =成立,从而成立, ()()()S T S T f x f x f x =⋅ 综上知(3)正确;对于(4),时,,若,则,x S T ∈⋃()1S T f x = ,x S x T ∈∈()1,()1S T f x f x ==,()()13[[]122S T f x f x ++==若,则,,,x S x T ∈∉()1,()0S T f x f x ==()()1[]12S T f x f x ++=若,同理可得,,x S x T ∉∈()()1[12S T f x f x ++=若,则,,,x S T ∉⋃,x S x T ∉∉()()()0S T S T f x f x f x === ()()11[[]022S T f x f x ++==综上得,(4)正确.()()1()[]2S S T T f x f x f x ++= 故答案为:(1)(2)(3)(4).【点睛】方法点睛:本题关键是理解函数的新定义,题目的来源是数学中著名的狄利克雷函数,需要对函数的新定义充分理解,进行合理的分类讨论,做到不重复不遗漏,可以利用维恩图进行辅助.二、单选题13.若a ,b 为实数,则“”是“”的( ) 1ab >1b a>A .充分但非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件【答案】D【分析】通过举反例和反例即可判断. 2,3a b =-=-2,3a b =-=【详解】当时,满足,但此时,故正向无法推出, 2,3a b =-=-1ab >1b a<同样时,满足,但此时,故反向也无法推出, 2,3a b =-=1b a>1ab <故“”是“”的既不充分也不必要条件. 1ab >1b a>故选:D.14.已知是钝角,那么下列各值中能取到的值是( ) θsin cos θθ-A .B .C .D .43345312【答案】A【分析】利用辅助角公式可得出,求出的取值范围,结合正弦函πsin cos 4θθθ⎛⎫-=- ⎪⎝⎭π4θ-数的值域可得出的取值范围,即可得出合适的选项. sin cos θθ-【详解】因为,则,所以,, ππ2θ<<ππ3π444θ<-<(πsin cos 4θθθ⎛⎫-=-∈ ⎪⎝⎭所以,可取的值为. sin cos θθ-43故选:A.15.已知.对于正实数,下列关系式中不可能成立的是( )()22xf x =-()a b a b ≠、A .B .22a b ab f ff a b +⎛⎫⎛⎫>> ⎪ ⎪+⎝⎭⎝⎭22ab a b f f f a b +⎛⎫⎛⎫>> ⎪ ⎪+⎝⎭⎝⎭C .D .22ab a b f ff a b +⎛⎫⎛⎫>> ⎪ ⎪+⎝⎭⎝⎭22ab a b f f f a b +⎛⎫⎛⎫>> ⎪ ⎪+⎝⎭⎝⎭【答案】D【分析】根据给定条件,结合均值不等式可得,再探讨函数的单调性,确22a b aba b+>>+()f x定中不可能最大的作答. 2(),(2ab a bf f f a b ++【详解】正实数,则,有, ()a b a b ≠、02a b +>>02a bab +>>2ab a b >+因此,函数, 202a b ab a b +>>+22,1()2222,1x xx x f x x ⎧-≥=-=⎨-<⎩即有函数在上单调递减,在上单调递增, ()f x (0,1][1,)+∞若,则有,C 正确; 012a b+<≤2()()2ab a b f f f a b +>>+若,则有,A 正确; 21aba b ≥+2()()2a b ab f f f a b +>>+若且时,,12a b +>201aba b <<+1≥2a b f f+⎛⎫> ⎪⎝⎭时,,实数最大数记为,1≤2ab f f a b ⎛⎫> ⎪+⎝⎭,,c d e max{,,}c d e于是, 22max{(),(max{(),(22a b ab a b abf f f f f f a b a b++=>++因此选项B 可能,选项D 一定不可能. 故选:D16.若,,下列判断错误的是ππtan 22b a θθ⎛⎫=-<< ⎪⎝⎭()()sin cos 02πa x b x x ϕϕ+=+≤<( )A .当时,B .当时, 0,0a b >>ϕθ=0,0a b ><2πϕθ=+C .当时,D .当时,0,0a b <>πϕθ=+0,0a b <<2πϕθ=+【答案】D【分析】根据给定条件,结合辅助角公式的变形,确定辅助角的取值作答.ϕ【详解】由选项知,,,0ab ≠sin cos )a x b x x x +=令,有,, cos ϕϕ==)sin t n ππ2an ta (c 2os b a ϕϕθθϕ==-<=<02πϕ≤<则, sin cos cos cos sin ))a x b x x x x ϕϕϕ+=+=+对于A ,当时,为第一象限角,且,,,则,A0,0a b >>ϕπ02ϕ<<π02θ<<tan tan ϕθ=ϕθ=正确;对于B ,当时,为第四象限角,且,,,则0,0a b ><ϕ3π2π2ϕ<<π02θ-<<tan tan(2π)ϕθ=+,B 正确;2πϕθ=+对于C ,当时,为第二象限角,且,,,则0,0a b <>ϕππ2ϕ<<π02θ-<<tan tan(π)ϕθ=+,C 正确;πϕθ=+对于D ,当时,为第三象限角,且,,,则0,0a b <<ϕ3ππ2ϕ<<π02θ<<tan tan(π)ϕθ=+,D 错误.πϕθ=+故选:D三、解答题17.已知. tan 2θ=-π02θ<<(1)求;tan θ(2)【答案】(2)3+【分析】(1)利用二倍角的正切公式求解; (2)利用弦化切的方法求解. 【详解】(1)因为22tan tan 21tan θθθ==--解得,2tan 0θθ-=t anθ=tan θ=因为,所以.π02θ<<t an θ=(2sin cos tan 13sin cos tan 1θθθθθθ++====+--18.用水清洗一堆蔬菜上残留的农药.对用一定量的水清洗一次的效果作如下假定:用1个单位量的水可洗掉蔬菜上残留农药量的,用水越多洗掉的农药量也越多,设用x 单位量的水清洗一次以13后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为.()f x (1)假定函数的定义域是,写出,的值,并判断的单调性; ()y f x =[0,)+∞(0)f (1)f ()y f x =(2)设,求实数t 的值,现有单位量的水,可以清洗一次,也可以把水平均分()211f x t x =+⋅(0)a a >成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由. 【答案】(1);;严格单调递减; (0)1f =2(1)3f =(2);答案见解析. 12t =【分析】(1)根据给定信息,直接求出,的值,再根据题意判断的单调性即可; (0)f (1)f ()f x (2)分别计算两种方式的农药残留量,再作差比较大小即可.【详解】(1)表示没有用水清洗时,蔬菜上残留的农药量将保持原样,则, (0)f (0)1f =因为用1个单位量的水可洗掉蔬菜上残留农药量的,则蔬菜上残留的农药量与本次清洗前残留的13农药量之比为,因此, 232(1)3f =因为用水越多洗掉的农药量也越多,则蔬菜上残留的农药量与本次清洗前残留的农药量之比越小,因此函数严格单调递减. ()f x (2)由(1)知,,而函数,于是,解得,,2(1)3f =()211f x t x =+⋅1213t =+12t =22()2f x x =+清洗一次,残留在蔬菜上的农药量为, 122()2y f a a ==+把水平均分成2份后清洗两次,残留在蔬菜上的农药量为, 222222264[([]2(8)2()2a y f a a ===++,2122222222642(4)(4)2(8)(2)(8)a a a y y a a a a +--=-=++++当时,,当时,,当时,, 4a >12y y >4a =12y y =04a <<12y y <所以当时,分成2份后清洗两次,清洗后蔬菜上残留的农药量少; 4a >当时,两种清洗方案效果相同;4a =当时,清洗一次,清洗后蔬菜上残留的农药量少. 04a <<19.已知是定义在上的奇函数,当时,. ()y f x =R 0x >()1x f x x=-+(1)求的值,并写出的解析式;(0),(1)f f -()f x (2)若,求实数a ,b 的值.()[]{}|,,,22a b y y f x x a b ⎡⎤=∈=⎢⎥⎣⎦【答案】(1),. ()()100,12f f =-=()1x f x x =-+(2) 1,1a b =-=【分析】(1)根据函数奇偶性的概念求函数值和解析式; (2)根据函数的单调性结合值域列出方程即可求解. 【详解】(1)因为是定义在上的奇函数, ()y f x =R 所以, 1(0)0,(1)(1)2f f f =-=-=当时,, 0x <()()1xf x f x x=--=--所以,即. ,01()0,0,01xx x f x x xx x ⎧-<⎪-⎪==⎨⎪⎪->+⎩()1x f x x =-+(2)因为当时,单调递减, 0x >()1111x f x x x=-=-+++且函数为奇函数,所以在上单调递减, ()f x R 所以当时,,当时,,0x <()0f x >0x >()0f x <因为,所以,()[]{}|,,,22a b y y f x x a b ⎡⎤=∈=⎢⎥⎣⎦0a b <<所以,即解得.()2()2b f a a f b ⎧=⎪⎪⎨⎪=⎪⎩1212a b a b a b ⎧-=⎪⎪-⎨⎪-=⎪+⎩1,1a b =-=20.在平面直角坐标系中,两点、的“直角距离”定义为,记为11(,)P x y ()22,Q x y 1212x x y y -+-.如,点、的“直角距离”为9,记为.PQ (1,2)P --(2,4)Q 9PQ =(1)已知点,Γ是满足的动点Q 的集合,求点集Γ所占区域的面积; (0,0)P 1PQ ≤(2)已知点,点,求的取值范围; (0,0)P [(cos ,sin )(0,2))Q αααπ∈PQ (3)已知动点P 在函数的图像上,定点,若的最小值为1,1yx =-)[(),sin 0,2π)Q ααα∈PQ 求的值. α【答案】(1)2(2) ⎡⎣(3)或或π3α=4π311π6【分析】(1)分类讨论区绝对值,得到其图形为正方形,求出其边长,则得到面积;(2)分,,,四类讨论即可;0,2απ⎡∈⎤⎢⎥⎣⎦,2παπ⎛⎤∈ ⎥⎝⎦3,2παπ⎛⎤∈ ⎥⎝⎦3,22παπ⎛⎫∈ ⎪⎝⎭(3)利用绝对值不等式有,再根据范围即可得到答案.||12sin 13PQ πα⎛⎫≥+-= ⎪⎝⎭α【详解】(1)设,则, (),Q x y 1x y +≤当,则,0,0x y ≥≥1x y +≤当,则,0,0x y ≥<1x y -≤当,则,0,0x y <≥1x y -+≤当,则,0,0x y <<1x y --≤顺次连接四点, ()()()()0,1,1,0,0,1,1,0A B C D --则得到点集所占区域面积.2S ==(2),|||0cos ||0sin ||cos ||sin |PQ αααα=-+-=+当,此时, π0,2α⎡⎤∈⎢⎥⎣⎦sin ,cos 0αα≥则, ||cos sin 4PQ πααα⎛⎫=+=+ ⎪⎝⎭,, π0,2α⎡⎤∈⎢⎥⎣⎦ ππ3π,444α⎡⎤∴+∈⎢⎥⎣⎦,即,则, πππsin sin ,sin 442α⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦ πsin 4α⎤⎛⎫+∈⎥ ⎪⎝⎭⎦||PQ ∈当,此时, π,π2α⎛⎤∈ ⎥⎝⎦sin 0,cos 0αα≥<则, πcos sin 4PQ ααα⎛⎫=-+=- ⎪⎝⎭,, π,π2α⎛⎤∴∈ ⎥⎝⎦ππ3π,444α⎛⎤∴-∈ ⎥⎝⎦,即,则, π3ππsin sin ,sin 442α⎛⎫⎡⎤∴-∈ ⎪⎢⎥⎝⎭⎣⎦πsin 4α⎤⎛⎫-∈⎥ ⎪⎝⎭⎦||PQ ∈当,此时, 3π,2απ⎛⎤∈ ⎥⎝⎦sin 0,cos 0αα<≤则, πcos sin 4PQ ααα⎛⎫=--=+ ⎪⎝⎭,, 3,2παπ⎛⎤∈ ⎝⎦ 57,444πππα⎛⎤∴+∈ ⎥⎝⎦则,则, sin 1,4πα⎡⎛⎫+∈-⎢ ⎪⎝⎭⎣[1,PQ ∈当,此时,, 3π,2π2α⎛⎫∈ ⎪⎝⎭sin 0α<cos 0α>则, ||cos sin 4PQ πααα⎛⎫=-=- ⎪⎝⎭,, 3,22παπ⎛⎫∈ ⎪⎝⎭ π5π7π,444α⎛⎫-∈ ⎪⎝⎭则,, πsin 1,4α⎡⎛⎫+∈-⎢ ⎪⎝⎭⎣(||PQ ∴∈综上,.[1,PQ ∈(3)设,根据绝对值不等式有(),1P x x -|||||(1sin )|PQ x x αα=+-+, π1sin 12sin 13ααα⎛⎫≥+=+-= ⎪⎝⎭若,即,,, π12sin 13α⎛⎫+-= ⎪⎝⎭πsin 03α⎛⎫-= ⎪⎝⎭[)0,2πα∈ ππ5π,333α⎡⎫∴-∈-⎪⎢⎣⎭或,或. π03α∴-=ππ3α∴=4π3若,即,, π12sin 13α⎛⎫+-=- ⎪⎝⎭sin 13πα⎛⎫-=- ⎪⎝⎭π3π32α∴-=11π6α∴=综上或或. π3α=4π311π621.设函数的反函数存在,记为.设,. ()y f x =()1y f x -=(){}A x f x x ==()(){}1B x f x f x -==(1)若,判断是否是、中的元素; ()116xf x ⎛⎫= ⎪⎝⎭12A B (2)若在其定义域上为严格增函数,求证:;()y f x =A B =(3)若的方程有两个不等的实数解,求实数的取值范()f x =x ()()1f x a f x a --=+a 围.【答案】(1), 12A ∉12B ∈(2)证明见解析(3) 7,24⎛⎤ ⎥⎝⎦【分析】(1)求出函数的解析式,利用元素与集合的关系判断与集合、的关系,可得()1f x -12A B 出结论;(2)分析可知,利用集合的包含关系以及函数的单调性证得,()(){}B x f f x x ==A B ⊆B A ⊆,即可证得结论成立;(3)令,分析可得,由已知方程可得,可得()()y g x f x a ==+()()11g x f x a --=-()()1g x g x -=,可得出,分析可得方程有两个不等的非负实根,根据二次方()()g g x x =()g x x =220x x a -+-=程根的分布可得出关于实数的不等式组,解之即可.a 【详解】(1)解:因为,则, ()116xf x ⎛⎫= ⎪⎝⎭()1116log f x x -=所以,,则,所以,, 116x A x x ⎧⎫⎪⎪⎛⎫==⎨⎬ ⎪⎝⎭⎪⎪⎩⎭121111642⎛⎫=≠ ⎪⎝⎭12A ∉,则,所以,. 1161log 16x B x x ⎧⎫⎪⎪⎛⎫==⎨⎬ ⎪⎝⎭⎪⎪⎩⎭41211216111log log 22416--⎛⎫=== ⎪⎝⎭12B ∈(2)解:由题意可得, ()(){}()(){}1B x f x f x x f f x x -====任取,则,所以,,,故;1x A ∈()11f x x =()()()111f f x f x x ==1x B ∴∈A B ⊆任取,则,下面证明出.2x B ∈()()22f f x x =()22f x x =因为函数在其定义域内为严格增函数,()f x 若,则,与题设矛盾;()22f x x <()()()222f f x f x x <<若,则,与题设矛盾.()22f x x >()()()222f f x f x x >>故,即,故.()22f x x =2x A ∈B A ⊆综上所述,.A B =(3)解:令,则,则,即()()y g x f x a ==+()()11x a f y x g y --⎧+=⎪⎨=⎪⎩()()11g y f y a --=-,()()11g x f x a --=-由可得,所以,,()()1f x a f x a --=+()()1g x g x -=()()g g x x =因为在其定义域内单调递增,所以,有两个不等的非负()g x =()g x x =x =实根,整理可得,220x x a -+-=所以,,解得. ()Δ14247010220a a a ⎧=--=->⎪⎪>⎨⎪-≥⎪⎩724a <≤因此,实数的取值范围是. a 7,24⎛⎤ ⎥⎝⎦。
2020-2021上海市高一数学上期中第一次模拟试题及答案一、选择题1.若集合{}|1,A x x x R =≤∈,{}2|,B y y x x R ==∈,则A B =IA .{}|11x x -≤≤B .{}|0x x ≥C .{}|01x x ≤≤D .∅2.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-≤≤⋂=Z ,则A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 3.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L ( )A .50-B .0C .2D .504.已知函数224()(log )log (4)1f x x x =++,则函数()f x 的最小值是A .2B .3116C .158D .15.函数()1ln f x x x ⎛⎫=-⎪⎝⎭的图象大致是( ) A . B .C .D .6.已知函数y=f (x )定义域是[-2,3],则y=f (2x-1)的定义域是( ) A .50,2⎡⎤⎢⎥⎣⎦B .[]1,4-C .1,22⎡⎤-⎢⎥⎣⎦D .[]5,5-7.函数sin21cos xy x=-的部分图像大致为A .B .C .D .8.已知定义在R 上的函数()21()x m f x m -=-为实数为偶函数,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<9.已知0.80.820.7,log 0.8, 1.1a b c ===,则,,a b c 的大小关系是( )A .a b c <<B .b a c <<C .a c b <<D .b c a <<10.三个数0.377,0.3,ln 0.3a b c ===大小的顺序是( ) A .a c b >>B .a b c >>C .b a c >>D .c a b >>11.方程 4log 7x x += 的解所在区间是( ) A .(1,2)B .(3,4)C .(5,6)D .(6,7)12.函数y =2x 2–e |x |在[–2,2]的图像大致为( )A .B .C .D .二、填空题13.若函数()24,43,x x f x x x x λλ-≥⎧=⎨-+<⎩恰有2个零点,则λ的取值范围是______.14.函数()22()log 23f x x x =+-的单调递减区间是______.15.已知函数()(),y f x y g x ==分别是定义在[]3,3-上的偶函数和奇函数,且它们在[]0,3上的图象如图所示,则不等式()()0f x g x ≥在[]3,3-上的解集是________.16.已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.17.已知2()y f x x =+是奇函数,且f (1)1=,若()()2g x f x =+,则(1)g -=___.18.定义在[3,3]-上的奇函数()f x ,已知当[0,3]x ∈时,()34()x xf x a a R =+⋅∈,则()f x 在[3,0]-上的解析式为______.19.若集合(){}22210A x k x kx =+++=有且仅有2个子集,则满足条件的实数k 的最小值是____.20.已知函数()()0f x ax b a =->,()()43ff x x =-,则()2f =_______.三、解答题21.某单位建造一间背面靠墙的小房,地面面积为212m ,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,屋顶的造价为5800元.如果墙高为3m ,且不计房尾背面和地面的费用,问怎样设计房屋能使总造价最低?最低造价是多少?22.已知函数22()f x x x=+. (1)求(1)f ,(2)f 的值;(2)设1a b >>,试比较()f a 、()f b 的大小,并说明理由; (3)若不等式2(1)2(1)1f x x m x -≥-++-对一切[1,6]x ∈恒成立,求实数m 的最大值. 23.设集合222{|40},{|2(1)10}A x x x B x x a x a =+==+++-=,若A ∩B=B ,求a 的取值范围.24.食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收益P 、种黄瓜的年收益Q 与投入a(单位:万元)满足P =80+1a 4Q =+120.设甲大棚的投入为x(单位:万元),每年两个大棚的总收益为f(x)(单位:万元). (1)求f(50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f(x)最大?25.已知()221g x x ax =-+在区间[]13, 上的值域为[]0,4。
上海市建平世纪中学2024-2025学年高一上学期第一次检测数学试卷一、填空题1.已知全集为R ,集合{3}A xx =<∣,则A =. 2.已知集合{1,2},{1,,3}A B a ==,且A B B =U ,则a =.3.被3除余1的所有整数组成的集合用描述法表示为.4.用反证法证明:若240x -=,则2x =或2x =-,应假设:.5.已知方程2410x x -+=的两个根为1x 和2x ,则2212x x +=. 6.若集合{(,)3}M x y x y =+=∣,{(,)26}N x y x y =-=∣,则M N =I . 7.已知,a b 挝R R .若集合{}2,,1,,,0,b A a B a a b A B a ⎧⎫==+=⎨⎬⎩⎭,则a b +的值为. 8.设{}{}2540,10A xx x B x ax =-+==-=∣∣,若A B A =U ,则实数a 的取值为. 9.设全集U R =,集合()3,0A =-,集合(),1B =-∞-,则如图阴影部分表示的集合为(用区间表示)10.若集合()(){}|230A x x x =+-≤,{}35B xm x m =-≤≤+∣,且“x A ∈”是“x B ∈”的充分不必要条件,则实数m 的取值范围为.11.设M 、N 是两个非空集合,定义M 与N 的“差集”为{|M N x x M -=∈且}x N ∉,若{|M x y ==},3[]1,N =,则集合M N -=12.设集合S 是正整数集的子集,且S 中至少有两个元素,若集合T 满足以下三个条件:①T 是正整数的子集,且T 中至少有两个元素;②对于任意,x y S ∈,当y x ≠,都有xy T ∈;③对于任意,x y T ∈,若y x >,则y S x∈;则称集合T 为集合S 的“耦合集,若集合{}1234,,,S p p p p =,且43212p p p p >>>≥,设1p k =,则集合S 的“耦合集”T =二、单选题13.下列说法正确的是( )A .{0,1,2}{2,1,0}=B .{0,1,2}∅∈C .{0,1}{(0,1)}= D .0{0}= 14.若集合{}21,A m =,{}2,9B =,则“3m =”是“{}9A B ⋂=”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 15.下列命题是真命题的为( )A .若0a b c d >>>>,则ab cd >B .若a b >,则22ac bc >C .若0a b >>且0c <,则22c c a b >D .若a b >,则11a b> 16.已知集合{1,2}A =,{0,2}B =,若定义集合运算:{}*,,A B z z xy x A y B ==∈∈,则集合*A B 的所有元素之和为( )A .6B .3C .2D .0三、解答题17.已知集合{34}A xx =-<<∣,集合{133}B x m x m =-<<+∣. (1)当2m =时,求A B U ;(2)若A B B =I ,求m 的取值范围.18.已知关于x 的一元二次方程22430x mx m -+-=的两个实根分别为12,x x .(1)求实数m 的取值范围;(2)若12,x x 满足:1212x x x x +=,求实数m 的值.19.(1)设,R a b ∈,比较22a b +与2(2)5a b --的大小.(2)解关于x 的不等式234mx x m -≥-,其中R m ∈.20.设集合{}(){}222320,2(1)50A xx x B x x a x a =-+==+++-=∣∣; (1)若{2}A B =I ,求实数a 的值;(2)若B 集合中有两个元素12,x x ,求12x x -;(3)若R,U B A B ==I ,求实数a 的取值范围.21.已知A 是R 的非空真子集,如果对任意,x y A ∈,都有,x y A xy A +∈∈,则称A 是封闭集.(1)判断集合{}{}0,1,0,1B C ==-是否为封闭集,并说明理由;(2)判断以下两个命题的真假,并说明理由;命题p :若非空集合12,A A 是封闭集,则12A A ⋃也是封闭集;命题q :非空集合12,A A 是封闭集,则12A A ⋂≠∅是12A A ⋂是封闭集的充要条件;(3)若非空集合A 是封闭集合,设全集为R ,求证:A 的补集不是封闭集。
2020-2021上海市高一数学上期末第一次模拟试题及答案一、选择题1.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C .等于0D .正负都有可能2.已知0.2633,log 4,log 2a b c ===,则,,a b c 的大小关系为 ( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<3.已知0.11.1x =, 1.10.9y =,234log 3z =,则x ,y ,z 的大小关系是( ) A .x y z >> B .y x z >>C .y z x >>D .x z y >>4.设4log 3a =,8log 6b =,0.12c =,则( ) A .a b c >>B .b a c >>C .c a b >>D .c b a >>5.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为()1,3,若方程()60f x a +=,有两个相等的根,则实数a =( )A .-15B .1C .1或-15D .1-或-156.若函数()2log ,?0,? 0x x x f x e x >⎧=⎨≤⎩,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( ) A .1eB .eC .21e D .2e7.下列函数中,值域是()0,+∞的是( ) A .2y x = B .211y x =+ C .2x y =-D .()lg 1(0)y x x =+>8.已知函数()ln f x x =,2()3g x x =-+,则()?()f x g x 的图象大致为( )A .B .C .D .9.已知3log 2a =,0.12b =,sin 789c =o ,则a ,b ,c 的大小关系是 A .a b c <<B .a c b <<C .c a b <<D .b c a <<10.偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos 12xf x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( ) A .()3,5B .()2,4C .11,42⎛⎫⎪⎝⎭D .11,53⎛⎫⎪⎝⎭11.曲线241(22)y x x =-+-≤≤与直线24y kx k =-+有两个不同的交点时实数k 的范围是( ) A .53(,]124B .5(,)12+∞ C .13(,)34D .53(,)(,)124-∞⋃+∞ 12.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则()U P Q ⋃ð= A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}二、填空题13.定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f (4)=0,则不等式f (x )≥0的解集是___. 14.若155325a b c ===,则111a b c+-=__________. 15.已知函数()1352=++f x ax bx (a ,b 为常数),若()35f -=,则()3f 的值为______ 16.已知函数12()log f x x a =+,2()2g x x x =-,对任意的11[,2]4x ∈,总存在2[1,2]x ∈-,使得12()()f x g x =,则实数a 的取值范围是______________.17.若函数() 1263f x x m x x =-+-+-在2x =时取得最小值,则实数m 的取值范围是______;18.函数()()4log 521x f x x =-+-的定义域为________. 19.某食品的保鲜时间y (单位:小时)与储存温度x (单位:)满足函数关系(为自然对数的底数,k 、b 为常数).若该食品在0的保鲜时间设计192小时,在22的保鲜时间是48小时,则该食品在33的保鲜时间是 小时.20.若集合{}{}2|560|20A x x x B x ax a Z =-+≤=-=∈,,,且B A ⊆,则实数a =_____.三、解答题21.某上市公司股票在30天内每股的交易价格P (元)关于时间t (天)的函数关系为12,020,518,2030,10t t t P t t t ⎧+≤≤∈⎪⎪=⎨⎪-+<≤∈⎪⎩N N ,该股票在30天内的日交易量Q (万股)关于时间t(天)的函数为一次函数,其图象过点(4,36)和点(10,30). (1)求出日交易量Q (万股)与时间t (天)的一次函数关系式;(2)用y (万元)表示该股票日交易额,写出y 关于t 的函数关系式,并求在这30天内第几天日交易额最大,最大值为多少?22.义域为R 的函数()f x 满足:对任意实数x,y 均有()()()2f x y f x f y +=++,且()22f =,又当1x >时,()0f x >.(1)求()()0.1f f -的值,并证明:当1x <时,()0f x <; (2)若不等式()()()222221240f aa x a x ----++<对任意[] 1,3x ∈恒成立,求实数a 的取值范围.23.某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S 中的成员仅以自驾或公交方式通勤.分析显示:当S 中%x (0100x <<)的成员自驾时,自驾群体的人均通勤时间为()30030180029030100x f x x x x <≤⎧⎪=⎨+-<<⎪⎩,,(单位:分钟),而公交群体的人均通勤时间不受x 影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间? (2)求该地上班族S 的人均通勤时间()g x 的表达式;讨论()g x 的单调性,并说明其实际意义.24.药材人工种植技术具有养殖密度高、经济效益好的特点.研究表明:人工种植药材时,某种药材在一定的条件下,每株药材的年平均生长量(v 单位:千克)是每平方米种植株数x 的函数.当x 不超过4时,v 的值为2;当420x <≤时,v 是x 的一次函数,其中当x 为10时,v 的值为4;当x 为20时,v 的值为0.()1当020x <≤时,求函数v 关于x 的函数表达式;()2当每平方米种植株数x 为何值时,每平方米药材的年生长总量(单位:千克)取得最大值?并求出这个最大值.(年生长总量=年平均生长量⨯种植株数)25.已知2()12xf x =+,()()1g x f x =-. (1)判断函数()g x 的奇偶性;(2)求101011()()i i f i f i ==-+∑∑的值.26.已知函数2()1f x x x m =-+.(1)若()f x 在x 轴正半轴上有两个不同的零点,求实数m 的取值范围; (2)当[1,2]x ∈时,()1f x >-恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】因为f (x ) 在R 上的单调增,所以由x 2+x 1>0,得x 2>-x 1,所以21121()()()()()0f x f x f x f x f x >-=-⇒+>同理得2313()()0,()()0,f x f x f x f x +>+> 即f (x 1)+f (x 2)+f (x 3)>0,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行2.B解析:B 【解析】 【分析】先比较三个数与零的大小关系,确定三个数的正负,然后将它们与1进行大小比较,得知1a >,0,1b c <<,再利用换底公式得出b 、c 的大小,从而得出三个数的大小关系.【详解】函数3xy =在R 上是增函数,则0.20331a =>=,函数6log y x =在()0,∞+上是增函数,则666log 1log 4log 6<<,即60log 41<<, 即01b <<,同理可得01c <<,由换底公式得22393log 2log 2log 4c ===, 且96ln 4ln 4log 4log 4ln 9ln 6c b ==<==,即01c b <<<,因此,c b a <<,故选A .【点睛】本题考查比较数的大小,这三个数的结构不一致,这些数的大小比较一般是利用中间值法来比较,一般中间值是0与1,步骤如下:①首先比较各数与零的大小,确定正负,其中正数比负数大;②其次利用指数函数或对数函数的单调性,将各数与1进行大小比较,或者找其他中间值来比较,从而最终确定三个数的大小关系.3.A解析:A 【解析】 【分析】利用指数函数、对数函数的单调性直接比较. 【详解】解:0.1x 1.1 1.11=>=Q , 1.100y 0.90.91<=<=,22334z log log 103=<<,x ∴,y ,z 的大小关系为x y z >>. 故选A . 【点睛】本题考查三个数的大小的比较,利用指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.4.D解析:D 【解析】 【分析】由对数的运算化简可得2log a =log b =,结合对数函数的性质,求得1a b <<,又由指数函数的性质,求得0.121c =>,即可求解,得到答案.【详解】由题意,对数的运算公式,可得24222log 31log 3log 3log log 42a ====28222log 61log 6log 6log log 83b ====,2<<,所以222log log log 21<<=,即1a b <<,由指数函数的性质,可得0.10221c =>=, 所以c b a >>. 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及指数函数的图象与性质的应用,其中解答中熟练应用指数函数与对数函数的图象与性质,求得,,a b c 的范围是解答的关键,着重考查了推理与运算能力,属于基础题.5.A解析:A 【解析】 【分析】设()2f x ax bx c =++,可知1、3为方程()20f x x +=的两根,且0a <,利用韦达定理可将b 、c 用a 表示,再由方程()60f x a +=有两个相等的根,由0∆=求出实数a 的值. 【详解】由于不等式()2f x x >-的解集为()1,3,即关于x 的二次不等式()220ax b x c +++>的解集为()1,3,则0a <.由题意可知,1、3为关于x 的二次方程()220ax b x c +++=的两根,由韦达定理得2134b a +-=+=,133ca=⨯=,42b a ∴=--,3c a =, ()()2423f x ax a x a ∴=-++,由题意知,关于x 的二次方程()60f x a +=有两相等的根, 即关于x 的二次方程()24290ax a x a -++=有两相等的根,则()()()224236102220a a a a ∆=+-=+-=,0a <Q ,解得15a =-,故选:A. 【点睛】本题考查二次不等式、二次方程相关知识,考查二次不等式解集与方程之间的关系,解题的关键就是将问题中涉及的知识点进行等价处理,考查分析问题和解决问题的能力,属于中等题.6.A解析:A 【解析】 【分析】直接利用分段函数解析式,认清自变量的范围,多重函数值的意义,从内往外求,根据自变量的范围,选择合适的式子求解即可. 【详解】因为函数2log ,0(),0x x x f x e x >⎧=⎨≤⎩,因为102>,所以211()log 122f ==-,又因为10-<,所以11(1)f ee--==, 即11(())2f f e=,故选A. 【点睛】该题考查的是有关利用分段函数解析式求函数值的问题,在解题的过程中,注意自变量的取值范围,选择合适的式子,求解即可,注意内层函数的函数值充当外层函数的自变量.7.D解析:D 【解析】 【分析】利用不等式性质及函数单调性对选项依次求值域即可. 【详解】对于A :2y x =的值域为[)0,+∞;对于B :20x ≥Q ,211x ∴+≥,21011x ∴<≤+, 211y x ∴=+的值域为(]0,1; 对于C :2xy =-的值域为(),0-∞;对于D :0x >Q ,11x ∴+>,()lg 10x ∴+>,()lg 1y x ∴=+的值域为()0,+∞;故选:D . 【点睛】此题主要考查函数值域的求法,考查不等式性质及函数单调性,是一道基础题.8.C解析:C 【解析】 【分析】 【详解】因为函数()ln f x x =,()23g x x =-+,可得()()•f x g x 是偶函数,图象关于y 轴对称,排除,A D ;又()0,1x ∈时,()()0,0f x g x <>,所以()()•0f x g x <,排除B , 故选C. 【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.9.B解析:B 【解析】 【分析】 【详解】由对数函数的性质可知34333log 2log 34a =<=<, 由指数函数的性质0.121b =>,由三角函数的性质00000sin 789sin(236069)sin 69sin 60c ==⨯+=>,所以c ∈, 所以a c b <<,故选B.10.D解析:D 【解析】试题分析:由()()2f x f x =-,可知函数()f x 图像关于1x =对称,又因为()f x 为偶函数,所以函数()f x 图像关于y 轴对称.所以函数()f x 的周期为2,要使函数()()log a g x f x x =-有且仅有三个零点,即函数()y f x =和函数log a y x =图形有且只有3个交点.由数形结合分析可知,0111{log 31,53log 51a a a a <<>-⇒<<<-,故D 正确. 考点:函数零点【思路点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.11.A解析:A 【解析】试题分析:1(22)y x =-≤≤对应的图形为以()0,1为圆心2为半径的圆的上半部分,直线24y kx k =-+过定点()2,4,直线与半圆相切时斜率512k =,过点()2,1-时斜率34k =,结合图形可知实数k 的范围是53(,]124考点:1.直线与圆的位置关系;2.数形结合法12.C解析:C 【解析】试题分析:根据补集的运算得{}{}{}{}2,4,6,()2,4,61,2,41,2,4,6UP UP Q =∴⋃=⋃=痧.故选C.【考点】补集的运算.【易错点睛】解本题时要看清楚是求“⋂”还是求“⋃”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.二、填空题13.-40∪4+∞)【解析】【分析】由奇函数的性质可得f (0)=0由函数单调性可得在(04)上f (x )<0在(4+∞)上f (x )>0结合函数的奇偶性可得在(-40)上的函数值的情况从而可得答案【详解】根解析: [-4,0]∪[4,+∞) 【解析】 【分析】由奇函数的性质可得f (0)=0,由函数单调性可得在(0,4)上,f (x )<0,在(4,+∞)上,f (x )>0,结合函数的奇偶性可得在(-4,0)上的函数值的情况,从而可得答案. 【详解】根据题意,函数f (x )是定义在R 上的奇函数,则f (0)=0,又由f (x )在区间(0,+∞)上单调递增,且f (4)=0,则在(0,4)上,f (x )<0,在(4,+∞)上,f (x )>0,又由函数f (x )为奇函数,则在(-4,0)上,f (x )>0,在(-∞,-4)上,f (x )<0, 若f (x )≥0,则有-4≤x≤0或x≥4, 则不等式f (x )≥0的解集是[-4,0]∪[4,+∞); 故答案为:[-4,0]∪[4,+∞). 【点睛】本题考查函数的单调性和奇偶性的综合应用,属于基础题.14.1【解析】故答案为解析:1 【解析】155325a b c ===因为,1553log 25,log 25,log 25a b c ∴===,252525111log 15log 5log 3a b c∴+-=+-25log 251==,故答案为1.15.【解析】【分析】由求得进而求解的值得到答案【详解】由题意函数(为常数)且所以所以又由故答案为:【点睛】本题主要考查了函数值的求解其中解答中根据函数的解析式准确运算是解答的关键着重考查了计算能力属于基 解析:1-【解析】 【分析】由()35f -=,求得1532723a b -⋅-+=,进而求解()3f 的值,得到答案. 【详解】由题意,函数()1352=++f x ax bx (a ,b 为常数),且()35f -=, 所以()15332725f a b -=-⋅-+=,所以153273a b -⋅-=, 又由()1533272321f a b -=⋅++=-+=-. 故答案为:1-. 【点睛】本题主要考查了函数值的求解,其中解答中根据函数的解析式,准确运算是解答的关键,着重考查了计算能力,属于基础题.16.【解析】分析:对于多元变量任意存在的问题可转化为求值域问题首先求函数的值域然后利用函数的值域是函数值域的子集列出不等式求得结果详解:由条件可知函数的值域是函数值域的子集当时当时所以解得故填:点睛:本 解析:[0,1]【解析】分析:对于多元变量任意存在的问题,可转化为求值域问题,首先求函数()(),f x g x 的值域,然后利用函数()f x 的值域是函数()g x 值域的子集,列出不等式,求得结果. 详解:由条件可知函数()f x 的值域是函数()g x 值域的子集,当11,24x ⎡⎤∈⎢⎥⎣⎦时,()[]1,2f x a a ∈-++,当[]21,2x ∈-时,()[]1,3g x ∈- ,所以1123a a -+≥-⎧⎨+≤⎩ ,解得01a ≤≤,故填:[]0,1. 点睛:本题考查函数中多元变量任意存在的问题,一般来说都转化为子集问题,若是任意1x D ∈,存在2x E ∈,满足()()12f x g x >,即转化为()()min min f x g x >,若是任意1x D ∈,任意2x E ∈,满足()()12f x g x >,即转化为()()min max f x g x >,本题意在考查转化与化归的能力.17.【解析】【分析】根据条件可化为分段函数根据函数的单调性和函数值即可得到解不等式组即可【详解】当时当时且当时且当时且若函数在时取得最小值根据一次函数的单调性和函数值可得解得故实数的取值范围为故答案为: 解析:[)5,+∞【解析】 【分析】根据条件可化为分段函数,根据函数的单调性和函数值即可得到()()7050507027127m m m m m m ⎧-+≤⎪-+≤⎪⎪-≥⎪⎨+≥⎪⎪+≥⎪+≥⎪⎩解不等式组即可. 【详解】当1x <时,()()121861927f x x m mx x m m x =-+-+-=+-+, 当12x ≤<时,()()121861725f x x m mx x m m x =-+-+-=+-+, 且()112f m =+,当23x ≤<时,()()121861725f x x mx m x m m x =-+-+-=-+-, 且()27f =,当3x ≥时,()()126181927f x x mx m x m m x =-+-+-=--++, 且()32f m =+,若函数() 1263f x x m x x =-+-+-在2x =时取得最小值,根据一次函数的单调性和函数值可得()()7050507027127m m m m m m ⎧-+≤⎪-+≤⎪⎪-≥⎪⎨+≥⎪⎪+≥⎪+≥⎪⎩,解得5m ≥,故实数m 的取值范围为[)5,+∞ 故答案为:[)5,+∞ 【点睛】本题考查了由分段函数的单调性和最值求参数的取值范围,考查了分类讨论的思想,属于中档题.18.【解析】【分析】根据题意列出不等式组解出即可【详解】要使函数有意义需满足解得即函数的定义域为故答案为【点睛】本题主要考查了具体函数的定义域问题属于基础题;常见的形式有:1分式函数分母不能为0;2偶次解析:[)0,5【解析】 【分析】根据题意,列出不等式组50210xx ->⎧⎨-≥⎩,解出即可. 【详解】要使函数()()4log 5f x x =-+有意义, 需满足50210xx ->⎧⎨-≥⎩,解得05x <≤,即函数的定义域为[)0,5, 故答案为[)0,5. 【点睛】本题主要考查了具体函数的定义域问题,属于基础题;常见的形式有:1、分式函数分母不能为0;2、偶次根式下大于等于0;3、对数函数的真数部分大于0;4、0的0次方无意义;5、对于正切函数tan y x =,需满足,2x k k Z ππ≠+∈等等,当同时出现时,取其交集.19.24【解析】由题意得:所以时考点:函数及其应用解析:24 【解析】由题意得:2211221924811{,,1924248b k k k be e e e +=∴====,所以33x =时,331131()192248k b k b y e e e +==⋅=⨯=.考点:函数及其应用.20.或【解析】【分析】先解二次不等式可得再由讨论参数两种情况再结合求解即可【详解】解:解不等式得即①当时满足②当时又则解得又则综上可得或故答案为:或【点睛】本题考查了二次不等式的解法空集的定义及集合的包解析:0或1 【解析】 【分析】先解二次不等式可得{}|23A x x =≤≤,再由B A ⊆,讨论参数0a =,0a ≠两种情况,再结合a Z ∈求解即可. 【详解】解:解不等式2560x x -+≤,得23x ≤≤,即{}|23A x x =≤≤, ①当0a =时,B φ=,满足B A ⊆,②当0a ≠时,2B a ⎧⎫=⎨⎬⎩⎭,又B A ⊆,则223a ≤≤,解得213a ≤≤,又a Z ∈,则1a =,综上可得0a =或1a =, 故答案为:0或1. 【点睛】本题考查了二次不等式的解法、空集的定义及集合的包含关系,重点考查了分类讨论的数学思想方法,属基础题.三、解答题21.(1)40Q t =-+,030t <≤,t ∈N (2)在30天中的第15天,日交易额最大为125万元. 【解析】 【分析】(1)设出一次函数解析式,利用待定系数法求得一次函数解析式. (2)求得日交易额的分段函数解析式,结合二次函数的性质,求得最大值. 【详解】(1)设Q ct d =+,把所给两组数据()()4,36,10,30代入可求得1c =-,40d =. ∴40Q t =-+,030t <≤,t N ∈(3)首先日交易额y (万元)=日交易量Q (万股)⨯每股交易价格P (元)()()1240,020,51840,2030,10t t t t N y t t t t N ⎧⎛⎫+-+≤≤∈ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-+<≤∈ ⎪⎪⎝⎭⎩,∴()()22115125,020,516040,2030,10t t t N y t t t N ⎧--+≤≤∈⎪⎪=⎨⎪--<≤∈⎪⎩ 当020t ≤≤时,当15t =时,max 125y =万元 当20t 30<≤时,y 随x 的增大而减小故在30天中的第15天,日交易额最大为125万元. 【点睛】本小题主要考查待定系数法求函数解析式,考查分段函数的最值,考查二次函数的性质,属于中档题.22.(1)答案见解析;(2)0a <或1a >. 【解析】 试题分析:(1)利用赋值法计算可得()()02,14f f =--=-,设1x <,则21x ->, 利用()22f =拆项:()()22f f x x =-+即可证得:当1x <时,()0f x <; (2)结合(1)的结论可证得()f x 是增函数,据此脱去f 符号,原问题转化为()()2222122a a x a x ----+<-在[]1,3上恒成立,分离参数有:222234x x a a x x+-->-恒成立,结合基本不等式的结论可得实数a 的取值范围是0a <或1a >. 试题解析: (1)令,得,令, 得,令,得,设,则,因为,所以;(2)设,,因为所以,所以为增函数,所以,即,上式等价于对任意恒成立,因为,所以上式等价于对任意恒成立,设,(时取等),所以,解得或. 23.(1) ()45100x ,∈时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)见解析. 【解析】 【分析】(1)由题意知求出f (x )>40时x 的取值范围即可;(2)分段求出g (x )的解析式,判断g (x )的单调性,再说明其实际意义. 【详解】(1)由题意知,当30100x <<时,()180029040f x x x=+->, 即2659000x x -+>, 解得20x <或45x >,∴()45100x ∈,时,公交群体的人均通勤时间少于自驾群体的人均通勤时间; (2)当030x <≤时,()()30%401%4010xg x x x =⋅+-=-; 当30100x <<时,()()218013290%401%585010x g x x x x x x ⎛⎫=+-⋅+-=-+ ⎪⎝⎭;∴()2401013585010x g x x x ⎧-⎪⎪=⎨⎪-+⎪⎩;当032.5x <<时,()g x 单调递减; 当32.5100x <<时,()g x 单调递增;说明该地上班族S 中有小于32.5%的人自驾时,人均通勤时间是递减的; 有大于32.5%的人自驾时,人均通勤时间是递增的; 当自驾人数为32.5%时,人均通勤时间最少. 【点睛】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.24.(1)2,0428,4205x v x x <≤⎧⎪=⎨-+<≤⎪⎩;(2) 10株时,最大值40千克【解析】 【分析】当420x <≤时,设v ax b =+,然后代入两组数值,解二元一次方程组可得参数a 、b 的值,即可得到函数v 关于x 的函数表达式;第()2题设药材每平方米的年生长总量为()f x 千克,然后列出()f x 表达式,再分段求出()f x 的最大值,综合两段的最大值可得最终结果.【详解】(1)由题意得,当04x <≤时,2v =; 当420x <≤时,设v ax b =+,由已知得200104a b a b +=⎧⎨+=⎩,解得258a b ⎧=-⎪⎨⎪=⎩,所以285v x =-+,故函数2,0428,4205x v x x <≤⎧⎪=⎨-+<≤⎪⎩.(2)设药材每平方米的年生长总量为()f x 千克,依题意及()1可得()22,0428,4205x x f x x x x <≤⎧⎪=⎨-+<≤⎪⎩,当04x <≤时,()f x 为增函数,故()()4428max f x f ==⨯=; 当420x <≤时,()()222222820(10)40555f x x x x x x =-+=--=--+,此时()()1040max f x f ==.综上所述,可知当每平方米种植10株时,药材的年生长总量取得最大值40千克. 【点睛】本题主要考查应用函数解决实际问题的能力,考查了理解能力,以及实际问题转化为数学问题的能力,本题属中档题. 25.(1)()g x 为奇函数;(2)20 【解析】 【分析】(1)先求得函数()g x 的定义域,然后由()()g x g x -=-证得()g x 为奇函数.(2)根据()g x 为奇函数,求得()()0g i g i -+=,从而得到()()2f i f i -+=,由此求得所求表达式的值. 【详解】(1)12()12xxg x -=+,定义域为x ∈R ,当x ∈R 时,x R -∈. 因为11112212()()112212xx x xx x g x g x --+----====-++,所以()g x 为奇函数. (2)由(1)得()()0g i g i -+=,于是()()2f i f i -+=.所以101010101111[()()()10()]2220i i i i f i f f i i i f ====-+====⨯+=-∑∑∑∑【点睛】本小题主要考查函数奇偶性的判断,考查利用函数的奇偶性进行计算,属于基础题. 26.(1)2m >;(2)m <【解析】 【分析】(1)首先>0∆,保证有两个不等实根,又121=x x ,两根同号,因此只要两根的和也大于0,则满足题意;(2)当[1,2]x ∈时,()1f x >-恒成立,转化为2m x x<+在[1,2]x ∈上恒成立即可 ,只要求得2x x +在[1,2]上的最小值即可. 【详解】(1)由题知210x mx -+=有两个不等正根,则2121240010m x x m x x ⎧∆=->⎪+=>⎨⎪=>⎩,∴2m >;(2)211x mx -+>-恒成立即22mx x <+恒成立, 又[1,2]x ∈,故2m x x<+在[1,2]x ∈上恒成立即可 , 又2y x x=+在[1,2]x ∈上的值域为 ,故m < 【点睛】本题考查一元二次方程根的分布,考查不等式恒成立问题.一元二次方程根的分布可结合二次函数图象得出其条件,不等式恒成立可采用分离参数法,把问题转化为求函数的最值.。
2022-2023学年上海市实验学校高一上学期开学考数学试题一、单选题1.若α是锐角,()2sin 152α+=那么锐角α等于( ) A .15 B .30 C .45 D .60【答案】B【分析】由题可得1545α+=,即得. 【详解】因为()2sin 152α+=α是锐角, 所以()1515,105α+∈,1545α+=, 所以30α=. 故选:B .2.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:()3333211,2631=--=-.2和26均为“和谐数”.那么、不超过2016的正整数中,所有们“和谐数”之和为( ) A .6858 B .6860 C .9260 D .9262【答案】B【分析】根据“和谐数”的概念找出公式:()()()32321212121k k k ==+-+-,(其中k 为非负整数),然后再分析计算即可.【详解】()()()()()()()()33222121212121212121k k k k k k k k ⎡⎤⎡⎤+--=+--+++-+-⎣⎦⎣⎦()22121k =+(其中k 为非负整数),由()221212016k +≤得k ≤所以0,1,,9k =,即得所有不超过2016的“和谐数”,它们的和为:()()()()()33333333333113153171519171916860⎡⎤--+-+-++-+-=+=⎣⎦.故选:B.3.100人共有2000元人民币,其中任意10人的钱数的和不超过380元.那么一个人最多有( )元. A .216 B .218C .238D .236【答案】B【分析】由题可得存在9人的钱数的和不少于162元,结合条件进而即得.【详解】因为任意10个人的钱数的和不超过380元, 所以任意90个人的钱数的和不少于1620元, 所以存在9人的钱数的和不少于162元, 所以一个人最多能有380162218-=元. 故选:B.4.函数||y a x =与y x a =+的图象恰有两个公共点,则实数a 的取值范围是( ) A .1a > B .11a -<< C .1a ≥或1a ≤- D .1a >或1a <-【答案】D【分析】||y a x =的图象为过原点的折线,关于y 轴对称,y x a =+的图象是直线,斜率为1,按a 的正负分类作出图象后,分析可得.【详解】||y a x =的图象为过原点的折线,关于y 轴对称,分两种情况讨论,①当a>0时,y a x =的图象过第一、二象限,直线y x a =+斜率为1, 当a>0时,直线y x a =+过第一、二、三象限,若使其图象恰有两个公共点,如图1,必有a>1;②当a <0时,||y a x =过第三、四象限;而y =x +a 过第二、三、四象限,若使共图象恰有两个公共点,如图2,必有1a <-, 故选:D.图1图2二、填空题5.计算:()1cot3012sin60cos60tan30--++=___________. 3【分析】根据特殊角的三角函数值计算. 【详解】原式331213131333=-. 3 6.若a b b c a ck c a b+++===,则k =___________. 【答案】2或1-【分析】依题意可得()()2a b c a b c k ++=++,再分0a b c ++≠和0a b c ++=两种情况讨论,即可得解. 【详解】解:因为a b b c a ck c a b+++===, 所以a b ck +=①,b c ak +=②,a c bk +=③, ①+②+③得()()2a b c a b c k ++=++, 当0a b c ++≠时,2k =;当0a b c ++=时,a b c +=-,代入①得c ck -=,解得1k =-, 综上所述,2k =或1-. 故答案为:2或1-7.若抛物线2241y x px p =-++中不管p 取何值时都通过定点,则定点坐标为___________. 【答案】()4,33【分析】若抛物线2241y x px p =-++中不管p 取何值时都通过定点,则含p 的项的系数为0,由此求出x 的值,再求y 的值,得出定点坐标.【详解】2241y x px p =-++可化为()2241y x p x =--+,当4x =时,33y =,且与p 的取值无关, 所以不管p 取何值时都通过定点()4,33. 故答案为:()4,338.已知抛物线2y ax bx c =++的部分图象如图,则下列说法:①对称轴是直线1x =;②当13x 时,0y <;③方程250ax bx c +++=无实数根.其中正确的说法是___________.(只填写序号).【答案】①②③【分析】根据图像确定二次函数图像的对称轴,与x 轴交点的横坐标,函数的最小值然后判断.【详解】①由图像知对称轴是直线1x =,正确;②由对称性得3x =是方程20ax bx c ++=的另一根,因此当13x 时,函数图像对应的点在x 轴下方,因而0y <,正确;③函数的最小值是,因而函数值必须不小于4-, 因而方程250ax bx c +++=无实数根,正确. 故答案为:①②③.9.如图.在ABC 中,90,ACB AC BC ∠==,P 为三角形内部一点,其3PC =,5,7PA PB ==.则APB △的面积为___________.【答案】14【分析】过P 作AC 与BC 的垂线,得到矩形CDPE ,设矩形CDPE 的长与宽,以及等腰Rt ABC △的直角边,根据3PC =,5,7PA PB ==,利用勾股定理构造方程,整理化简,然后利用面积差,整体代入求解APB △的面积. 【详解】过P 作PD AC ⊥于,D PE BC ⊥于E ,则四边形CDPE 是矩形,设,,PD x PE y AC BC a ====, 所以,CD PE y CE PD x ====,因为3PC =,5,7PA PB ==根据勾股定理可得,()()22222292549x y x a y y a x ⎧+=⎪⎪+-=⎨⎪+-=⎪⎩,所以22216240a ay a ax ⎧-=⎨-=⎩,所以228a ay ax --=, 所以221111()142222APB ABC APC BCP S S S S a ax ay a ax ay =--=--=--=△△△△.故答案为:14.10.把三张大小相同的正方形卡片A 、B 、C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图1摆放时,阴影部分的面积为1S ;若按图2摆放时,阴影部分的面积为2S ,则1S ___________2S ,(填“>”“<”或“=”)【答案】=【分析】根据正方形的性质,可以把两块阴影部分合并后计算面积,然后比较1S 和2S 的大小.【详解】设底面的正方形的边长为a ,正方形卡片A 、B 、C 的边长为b , 由图1得()()()21S a b a b a b =--=-, 由图2得()()()22S a b a b a b =--=-, 所以12S S . 故答案为:=11.若一元二次方程()2220x a x a -++=的两个实数根分別是3、b ,则a b +=___________.【答案】5【分析】把3x =代入方程求得a ,再由韦达定理求得另一根即得结论.【详解】把3x =代入一元二次方程()2220x a x a -++=,得93(2)20a a -++=,解得3a =,由根与系数的关系得()2351a b -++=-=,解得2b =,所以325a b +=+=.故答案为:5.12.有一个六位数1abcde ,它乘以3后得六位数1abcde ,则此六位数为___________. 【答案】142857【分析】设1后面的五位数为x ,列出方程,求出x ,写出此六位数.【详解】设1后面的五位数为x .则()11000003101x x ⨯+⨯=+,解得42857x =, 所以这个六位数为110000042857142857⨯+=. 故答案为:14285713.若质数p q 、满足:340,111q p p q --=+<,则pq 的最大值为___________. 【答案】1007【分析】由340q p --=得34p q =-,43p q +=,代入不等式111p q +<求得,p q 的范围,pq 要最大,则q 也最大,由质数分析可得结论.【详解】因为340q p --=,所以34p q =-,因为111p q +<,所以34111q q +-<, 解得28.75q <,因为340q p --=,所以34q p =+,则43p q +=, 因为111p q +<,所以41113p p ++<,解得82.25p <, 由于43p q +=,因此pq 最大时,q 也最大, 所以当q 取最大质数23时,65p =不合题意舍去,则19q =时,53p =,此时符命题意,故pq 的最大值为19531007⨯=.故答案为:1007.14.在平面直角坐标系xOy 中,对于任意两点()()111222,,,P x y P x y 的“破晓距离”,给出如下定义:若1212x x y y -≥-,则点1P 与点2P 的“破晓距离”为12x x -;若1212x x y y -<-,则点1P 与点2P 的“破晓距离”为12y y -.例如:点1(1,2)P ,点2(3,5)P ,因为1325-<-,所以点1P 与点2P 的“破晓距离”为|25|3-=,也就是线段1PQ 与线段2P Q 长度的较大值(点Q 为垂直于y 轴的直线1PQ 与垂直于x 轴的直线2P Q 的交点).已知(,)C x y 是直线334y x =+上的一个动点,点D 的坐标是(0,1),则当点C 与点D 的“破晓距离”取最小值时相应的点C 的坐标为___________. 【答案】815,77⎛⎫- ⎪⎝⎭【分析】过点C 作x 轴的垂线,过点D 作y 的垂线,两条垂线交于点M ,连接CD .当点C 在直线DM 上方且使CMD △为等腰直角三角形时,点C 与点D 的“破晓距离”最小,根据新定义证此结论成立,然后求出0x 即得.【详解】过点C 作x 轴的垂线,过点D 作y 的垂线,两条垂线交于点M ,连接CD . 当点C 在点D 的后上方且使CMD △为等腰直角三角形时, 点C 与点D 的“破晓距离”最小.理由如下: 记此时C 所在位置的坐标为003,34x x ⎛⎫+ ⎪⎝⎭.当点C 的横坐标大于0x 时,线段CM 的长度变大,由于点C 与点D 的“破晓距离”是线段CM 与线段MD 长度的较大值, 所以点C 与点D 的“破晓距离”变大:当点C 的横坐标小于0x 时,线段MD 的长度变大, 点C 与点D 的“破晓距离”变大.所以当点C 的横坐标等于0x 时,点C 与点D 的“破晓距离”最小.因为00331,,4CM x MD x CM DM =+-=-=,所以003314x x +-=-,解得087x ,所以点C 的坐标是815,77⎛⎫- ⎪⎝⎭.故答案为:815,77⎛⎫- ⎪⎝⎭.三、解答题15.如图,已知平行四边形ABCD ,对角AC 与BD 交于点O ,以AD 、AB 边分别为边长作正方形ADEF 和正方形ABHG ,连接FG .(1)求证:2FG AO =:(2)若6,4,60AB AD BAD ∠===,请求出AGF 的面积. 【答案】(1)证明见解析 (2)63【分析】(1)通过条件证明AFG DAC ≅即可; (2)根据条件求出ABCDS,然后得到DAC S △即可.【详解】(1)因为四边形ADEF 和四边形ABHG 都是正方形, 所以,,90AD AF AB AG BAG DAF ∠∠====, 所以180GAF BAD ∠∠+=,因为四边形ABCD 是平行四边形,所以,AB CD AB CD =∥ 所以180BAD ADC ∠+∠=,所以GAF ADC ∠∠=, 在AFG 和DAC △中,,AG CDADC GAF AF AD =⎧⎪∠=∠⎨⎪=⎩所以(),AFG DAC SAS ≅所以GF AC =,在平行四边形ABCD 中,2AC AO =,所以2GF AO =; (2)过点D 作DM AB ⊥交AB 于点M ,因为4,60,90AD BAD AMD ∠∠===, 所以34sin604232DM =⨯=⨯=, 所以623123ABCDS AB DM =⋅=⨯=所以16231232A DA BCDCSS AB DM ==⋅=⨯=因为AFG DAC ≅,所以63DACAGFSS==,即AGF 的面积为63.16.一块三角形材料如图所示,30,90,12A C AB ∠=∠==用这块材料剪出一个矩形CDEF ,其中,点D 、E 、F 分别在,,BC AB AC .设AE 的长为x ,矩形CDEF 的面积为S .(1)写出S 关于x 的函数解析式,并写出x 的取值范围; (2)当矩形CDEF 的面积为83AE 的长:(3)当AE 的长为多少时,矩形CDEF 的面积最大?最大面积是多少? 【答案】(1)2333(012)S x x x =+<<; (2)4或8;(3)6AE =时,最大面积是93【分析】(1)易得012x <<,由直角三角形由AE 表示出,EF CF ,可得矩形面积; (2)解方程3=S AE 的长; (3)由二次函数的性质可得最大值.【详解】(1)因为AB =12,AE =x ,点E 与点A 、点B 均不重合, 所以012x <<,因为四边形CDEF 是矩形,所以90AFE ∠=︒,因为30A ∠=︒,所以12EF AE =,AF =, 在Rt ABC 中,90,30,12C A AB ∠=︒∠=︒=,所以162BC AB ==,由勾股定理得AC =CF AC AF =-=,所以21(012)2S CF EF x x x x ⎛⎫=⋅==+<< ⎪ ⎪⎝⎭; (2)由题意得26)x -+=解得124,8x x ==, 所以AE 的长为4或8; (3)因为S=)26x -+ 所以当6x =时,矩形CDEF 的面积最大,即当点E 为AB 的中点时,矩形CDEF的面积最大,最大面积是17.已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不存在,请说明理由; (2)求使12212x x x x +-的值为整数的实数k 的整数值. 【答案】(1)不存在,理由见解析; (2)235k =---,,【分析】(1)利用反证法先假设存在实数k ,使得()()12123222x x x x --=-成立,根据一元二次方程有两个实数根可得95k =,因此原假设不成立,故不存在; (2)根据题意()22212121221121244224411x x x x x x k x x x x x x k k +++-=-=-=-=-++,可得1k +能被4整除,即可求出k 的值.【详解】(1)假设存在实数k ,使得()()12123222x x x x --=-成立,一元二次方程24410kx kx k -++=的两个实数根,()2400Δ(4)441160k k k k k k ≠⎧∴⇒<⎨=--⋅+=-⎩,(不要忽略判别式的要求),由韦达定理得1212114x x k x x k +=⎧⎪+⎨=⎪⎩,()()()()2221212121212129322252942k x x x x x x x x x x x x k +∴--=+-=+-=-=-, 95k ⇒=但0k <,∴不存在实数k ,使得()()12123222x x x x --=-成立.(2)()22212121221121244224411x x x x x x k x x x x x x k k +++-=-=-=-=-++, ∴要使其值是整数,只需要1k +能被4整除,故1124k +=±±±,,,即021335k =---,,,,,, 0k <,235k ∴=---,,.18.阅读理解:对于任意正实数a b 、,因为2(()0a b -,所以20a ab b -+,所以2a b ab +,只有当a b =时,等号成立.结论:在2a b ab +(a b 、均为正实数)中,若ab 为定值p ,则2a b p +,只有当a b =时,a b +有最小值2p .根据上述内容,回答下列问题:(1)若0m >,只有当m =___________时,1m m+有最小值___________; (2)思考验证:如图1,AB 为半圆O 的直径,C 为半圆上任意一点(与点A B 、不重合),过点C 作CD AB ⊥,垂足为,,D AD a DB b ==.试根据图形验证2a b ab +,并指出等号成立时的条件.(3)探索应用:如图2,已知()()3,0,0,4,A B P --为双曲线12(0)y x x=>上的任意一点,过点P 作PC x ⊥轴,垂足为,C PD y ⊥轴,垂足为D .求四边形ABCD 面积的最小值,并说明此时四边形ABCD 的形状.【答案】(1)1,2(2)验证答案见解析,CD 等于半径时取等号 (3)最小值24,四边形ABCD 是菱形 【分析】(1)根据阅读材料,1=m m 时,1m m+取得最小值,由此计算可得; (2)利用直角三角形相似得CD ab =,由OC CD ≥(,D O 重合时取等号)可得不等式成立;(3)设12,P x x ⎛⎫⎪⎝⎭,求出,C D 坐标,求出,AC BD 后可计算出四边形的面积,然后由阅读材料的结论得出最小值及四边形形状. 【详解】(1)由题意1=m m ,又0m >,因此1m =时,1m m+的最小值为2; (2)因为AB 是O 的直径.所以AC BC ⊥.又CD AB ⊥,所以90CAD BCD B ∠∠∠==-, 所以Rt CAD ~Rt BCD △,所以CD ADBD CD=,即2CD AD DB =⋅,所以CD ab =, 若点D 与O 不重合,连接OC ,在Rt OCD 中,有OC CD >,所以2a bab +> 若点D 与O 重合时,OC CD =.所以2a bab +=综上所述,2a bab +≥2a b ab +≥,当CD 等于半径时取等号; (3)设12,P x x ⎛⎫⎪⎝⎭,则()1212,0,0,,3,4C x D CA x DB x x ⎛⎫=+=+ ⎪⎝⎭,1112(3)422ABCD S CA DB x x ⎛⎫=⨯=+⨯+ ⎪⎝⎭化简得9212ABCD S x x ⎛⎫=++ ⎪⎝⎭,因为90,0x x >>,所以9926x x x x+≥⋅=,当且仅当9x x=,即3x =时取等号,所以261224S ≥⨯+=.ABCD S 由最小值24.此时()()()3,4,3,0,0,4,5P C D AB BC CD DA ====, 所以四边形ABCD 是菱形.19.已知正实数x ,y ,z 满足:1xy yz zx ++≠,且()()()()()()2222221111114xy y z z x xyyzzx------++=.(1)求111xy yz zx++的值. (2)证明:9()()()8()x y y z z x xyz xy yz zx +++≥++. 【答案】(1)1 (2)证明见解析【分析】(1)已知等式化简得xyz x y z =++,求值式通分后可得结论; (2)作差后,凑配成非负数的和,即证.【详解】(1)由等式()()()()()()2222221111114x y y z z x xyyzzx------++=,去分母得()()()()()()2222221111114z x y x y z y z x xyz --+--+--=,()()()2222222222223()0x y z xy z x yz x y z y z x z x y xyz x y z xyz ⎡⎤++-+++++++++-=⎣⎦,()()()()0xyz xy yz zx x y z xy yz zx x y z xyz ++-+++++++-=,∴[]()(1)0xyz x y z xy yz zx -++++-=,∵1xy yz zx ++≠,∴10xy yz zx ++-≠, ∴()0xyz x y z -++=,∴xyz x y z =++, ∴原式1x y zxyz++==. (2)由(1)知xyz x y z =++,又x ,y ,z 为正实数, 222222()()()2x y y z z x x y xy y z yz z x zx xyz +++=++++++()()()2222222x y z y z x z x y xyz =++++++,222222()()3x y z xy yz zx x y xy y z yz z x zx xyz ++++=++++++()()()2222223x y z y z x z x y xyz =++++++∴9()()()8()x y y z z x xyz xy yz zx +++-++ 9()()()8()()x y y z z x x y z xy yz zx =+++-++++()()()2222226x y z y z x z x y xyz =+++++-222()()()0x y z y z x z x y =-+-+-≥.所以9()()()8()x y y z z x xyz xy yz zx +++≥++.20.如图,在平面直角坐标系中,对称轴为直线12x =-的抛物线2(0)y ax bx c a =++≠与x 轴交于A B 、两点,其中点A 的坐标为(4,0)-,与y 轴交于点()045C -,,作直线AC .(1)求抛物线的解析式;(2)如图,点D 是直线AC 下方抛物线上的一个动点,连结DA DC 、.当DAC ∆面积最大时,求点D 的坐标;(3)如图,在(2)的条件下,过点D 作于DE AC ⊥点E ,交y 轴于点,F 将CEF ∆绕点E 旋转得到,C EF ''∆在旋转过程中,当点C '或点F '落在y 轴上(不与点C 、F 重合)时,将,C EF ''∆沿射线DE 平移得到C E F '''''∆,在平移过程中,平面内是否存在点,G 使得四边形OF GC ''''是菱形?若存在,请直接写出所有符合条件的点G 的坐标;若不存在,请说明理由. 【答案】(1)2333y x =-23343y =+-(3) 所有符合条件的点G 坐标为(3,33-或(5,53-【分析】(1)分别根据对称轴方程,再代入点的坐标进行求解即可.(2) 过D 作//DH y 轴交AC 于H ,进而根据DAC DAH DCH S S S ∆∆∆=+表达出DAC S ∆关于D 的横坐标的表达式,再根据二次函数的最值求解即可.(3)分两种情况,设平移的距离为2t ,再根据菱形满足''''OC OF =即可求得t ,进而根据菱形的性质可求得G【详解】()1抛物线对称轴为12x =-.且点A 的坐标为(40)-,.点C 的坐标为(043,,-122164043b a a b c c ⎧-=-⎪⎪∴-+=⎨⎪=-⎪⎩.解得333343a b c ⎧=⎪⎪⎪⎪=⎨⎪⎪=-⎪⎪⎩∴抛物线的解析式为2334333y x x =+- (2)过D 作//DH y 轴交AC 于H .设23343,33m m m D +-⎛⎫ ⎪ ⎪⎝⎭, 设AC 的解析式为y kx b =+,则4043k b b -+=⎧⎪⎨=-⎪⎩,解得343k b ⎧=-⎪⎨=-⎪⎩.故AC 的解析式为343y x =--.则()33,4H m m -- 则()2123423DAC DAH DCH A C S S S x x DH m m ∆∆∆=+=-⋅=-⋅+ ()22383233m =-⋅++. 故当2m =-时,DAC S ∆取最大值833.此时1032,3D ⎛⎫-- ⎪ ⎪⎝⎭(3) 存在,所有符合条件的G 坐标为(3,33-,(5,53-. 提示:8333430,,2,F EC EF FC ⎛=== ⎝⎭①当'C 落在y 轴上时,如图,点('0,23C -,83'2,F ⎛- ⎝⎭,设平移距离是2t ,则()''3,23C t t -+,83''23,3F t t ⎛⎫-+-+ ⎪ ⎪⎝⎭. 由''''OC OF =得()()222283323233t tt t ⎛⎫+-+=-++-+ ⎪ ⎪⎝⎭,解得536t =. 此时573'',26C ⎛⎫- ⎪ ⎪⎝⎭,1113'',26M ⎛⎫- ⎪ ⎪⎝⎭,所以()3,33G -.②当'F 落在y 轴上时,如图,点103'0,F ⎛⎝⎭,('2,43C --, 设平移距离是2t ,则103''3,F t t ⎫⎪⎪⎭,()''23,43C t t --. 由''''OC OF =得()()222210332343t t tt ⎛⎫+=-++- ⎪ ⎪⎝⎭,解得73t =. 此时7133'',2F ⎛ ⎝⎭,3173'',2C ⎛ ⎝⎭,所以(5,53G -.综上所述,所有符合条件的点G 坐标为(3,33-或(5,53-【点睛】本题主要考查了二次函数的解析式的求解,同时也考查了抛物线上的点构成的三角形的面积最值问题.也考查了三角形旋转以及是否存在点满足条件的问题.需要根据题意,利用二次函数与菱形的性质建立适当的等式进行求解.属于难题.。
格致中学 二○二四学年度第一学期第一次测验高一年级 数学试卷(共4页)(测试90分钟内完成,总分100分,试后交答题卷)友情提示:昨天,你既然经历了艰苦的学习,今天,你必将赢得可喜的收获祝你:诚实守信,沉着冷静,细致踏实,自信自强,去迎接胜利一、填空题:(本题共有10个小题,每小题4分,满分40分)1.不等式的解集为______.2.已知关于的一元二次方程的两个实数根为,则的值为______.3.设,,,若,则______.4.设,则“”是“”的______条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)5的解集为______.(用列举法表示)6.给出下列关系式,其中正确的是______(填序号).①;②;③;④;⑤.7.设集合,则集合的非空真子集的个数为______.8.若不等式恒成立,则实数的取值范围是______.9.已知对于实数,满足且,则的最大值为______.10.已知集合,,定义集合,则中元素的个数为______.二、选择题:(本题共有4个小题,每小题4分,满分16分)11.用反证法证明命题“已知是正整数,如果能被7整除,那么至少有一个能被7整除”时,第一步应该假设的内容是( )A .只有一个能被7整除B .都不能被7整除C .都能被7整除D .只有不能被7整除12.若,则下列结论不正确的是( )A .B .C .D .11x≤x 2310x x --=12,x x 1211x x +,a b ∈R {}1,P a ={}1,Q b =--P Q =a b -=,a b ∈R 2b a <220a bb->20y ++={}a ∅⊆{}a a ⊆{}{}a a ⊆{}{},a a b ∈{}{},a ∅⊆∅{}21,14,M a x a x x =-=≤≤∈Z M 24223x mx x +<-+m ,x y 2x y +≤3x y -≤3x y -()()()()(){}0,0,0,1,1,0,0,1,1,0A =--(){},2,1,,B x y x y x y =≤≤∈Z ()()(){}12121122,,,,A B x x y y x y A x y B ⊕=++∈∈A B ⊕,x y xy ,x y ,x y ,x y ,x y x 110a b<<0a b +<22a b <2ab b <2ab a <13.若关于的不等式的解集为,则的值( )A .与有关,且与有关B .与有关,但与无关C .与无关,且与无关D .与无关,但与有关14.设,若关于的不等式的解集中的整数解个数恰为3个,则满足条件的实数所在区间可以是( )A .B .C .D .三、解答题:(本题共有5大题,满分44分。
上海市高一上学期第一次段考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2020·南昌模拟) 如图所示是一位学生设计的奖杯模型,奖杯底托为空心的正四面体,且挖去的空心部分是恰好与四面体四个面都相切的球;顶部为球,其直径与正四面体的棱长相等,若这样设计奖杯,则球与球的半径之比()A .B .C .D .2. (2分) (2016高三上·嵊州期末) 如图,四边形ABCD与ABEF均为矩形,BC=BE=2AB,二面角E﹣AB﹣C 的大小为.现将△ACD绕着AC旋转一周,则在旋转过程中,()A . 不存在某个位置,使得直线AD与BE所成的角为B . 存在某个位置,使得直线AD与BE所成的角为C . 不存在某个位置,使得直线AD与平面ABEF所成的角为D . 存在某个位置,使得直线AD与平面ABEF所成的角为3. (2分)如图,四边形是边长为1的正方形,,,且,为的中点.则下列结论中不正确的是()A .B .C .D .4. (2分)(2017·渝中模拟) 设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是()A . a∥b,b⊂α,则a∥αB . a⊂α,b⊂β,α∥β,则a∥bC . a⊂α,b⊂α,α∥β,b∥β,则α∥βD . α∥β,a⊂α,则a∥β5. (2分)在△ABC中,AB=2,BC=1.5,∠ABC=120°,若使该三角形绕直线BC旋转一周,则所形成的几何体的体积是()A .B .C .D .6. (2分)某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是()A .B .C .D .7. (2分)已知三棱锥A﹣BCD中,点E,F分别是AB,CD的中点AC=BD=2,且直线AC,BD所成的角为60°,则线段EF的长度为()A . 1B .C . 1或D . 1或8. (2分) (2019高三上·汉中月考) 九章算术是我国古代著名数学经典其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示阴影部分为镶嵌在墙体内的部分已知弦尺,弓形高寸,估算该木材镶嵌在墙中的体积约为()(注:1丈尺寸,, )A . 600立方寸B . 610立方寸C . 620立方寸D . 633立方寸9. (2分)设是两条不同的直线,是两个不同的平面,则下列命题中正确的是()A . 若,,则B . 若 , ,则C . 若, , ,则D . 若,且,点,直线,则10. (2分)(2020·平邑模拟) 在四面体ABCD中,△ABC和△BCD均是边长为1的等边三角形,已知四面体ABCD的四个顶点都在同一球面上,且AD是该球的直径,则四面体ABCD的体积为()A .B .C .D .11. (2分)(2018高二下·定远期末) 如图,在直三棱柱中,,.若二面角的大小为,则的长为()A .B .C . 2D .12. (2分) (2019高二上·靖安月考) 如图,在棱长均为2的正四棱锥P-ABCD中,点E为PC的中点,则下列命题正确的是()A . BE∥平面PAD,且BE到平面PAD的距离为B . BE∥平面PAD,且BE到平面PAD的距离为C . BE与平面PAD不平行,且BE与平面PAD所成的角大于30°D . BE与平面PAD不平行,且BE与平面PAD所成的角小于30°二、填空题 (共4题;共5分)13. (1分)(2017·榆林模拟) 已知关于空间两条不同直线m,n,两个不同平面α,β,有下列四个命题:①若m∥α且n∥α,则m∥n;②若m⊥β且m⊥n,则n∥β;③若m⊥α且m∥β,则α⊥β;④若n⊂α且m 不垂直于α,则m不垂直于n.其中正确命题的序号为________.14. (1分)(2017·衡阳模拟) 我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图所示,在空间直角坐标系xOy平面内,若函数f(x)= 的图象与x轴围成一个封闭的区域A,将区域A沿z轴的正方向平移4个单位,得到几何体如图一,现有一个与之等高的圆柱如图二,其底面积与区域A的面积相等,则此圆柱的体积为________.15. (2分) (2019高一下·深圳期末) 棱长均为1m的正三棱柱透明封闭容器盛有am3水,当侧面AA1B1B水平放置时,液面高为hm(如图1); 当转动容器至截面A1BC水平放置时,盛水恰好充满三棱锥A-A1BC(如图2),则a=________ ;h=________ .16. (1分)在正方体ABCD﹣A1B1C1D1中,若棱长AB=3,则点B到平面ACD1的距离为________.三、解答题 (共6题;共60分)17. (15分) (2015高一下·衡水开学考) 如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC= ,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.18. (5分)(2017·黑龙江模拟) 如图,在四棱锥P﹣ABCD中,平面PAD⊥底面ABCD,其中底面ABCD为等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2 ,PA⊥PD,Q为PD的中点.(Ⅰ)证明:CQ∥平面PAB;(Ⅱ)求直线PD与平面AQC所成角的正弦值.19. (5分)(2020·定远模拟) 如图,四棱锥中,平面,,,,为线段上一点,,为的中点.(I)证明平面;(II)求四面体的体积.20. (10分) (2017高一上·济南月考) 如图所示,四边形是圆柱的轴截面,是圆柱的一条母线,己知,, .(1)求证:(2)求圆柱的侧面积.21. (10分)如图所示,在四棱锥P-ABCD中,底面ABCD为菱形,且∠DAB=60°,PA=PD , M为CD的中点,BD⊥PM .(1)求证:平面PAD⊥平面ABCD;(2)若∠APD=90°,四棱锥P-ABCD的体积为,求三棱锥A-PBM的高.22. (15分) (2017高一上·济南月考) 如图,在中,,四边形是边长为的正方形,平面平面,若,分别是的中点.(1)求证:平面 ;(2)求证:平面平面 ; (3)求几何体的体和 .参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分) 17-1、17-2、17-3、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、。
上海市高一上学期数学第一次段考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如果,那么()A . 0⊆AB . {0}∈AC . ∅∈AD . {0}⊆A2. (2分)已知集合,则集合M的真子集个数是()A . 5B . 6C . 7D . 83. (2分)函数的定义域是()A . (﹣∞,﹣1)∪(﹣1,+∞)B . [﹣3,+∞)C . [﹣3,﹣1)∪(﹣1,+∞)D . (﹣1,+∞)4. (2分) (2018高一上·上海期中) 下列各组函数与表示同一函数的是()A . 与B . 与C . 与D . 与5. (2分) (2016高一上·湖北期中) 已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A . (1,+∞)B . [1,+∞)C . (2,+∞)D . [2,+∞)6. (2分)已知f(x)= 是(﹣,+∞)上的增函数,那么a的取值范围是()A . (,2)B . (1,2]C . [ ,2]D . (1,2)7. (2分) (2016高一上·苏州期中) 若函数f(x)是定义在R上的奇函数,且x>0时,f(x)=lnx,则ef(﹣2)的值为()A .B .C .D .8. (2分) (2019高一上·忻州月考) 若函数的图象恒过的定点恰在函数的图象上,则的最小值为()A .B .C .D .9. (2分)函数的值域为()A .B .C .D .10. (2分)已知是关于的一元二次方程的两根,若,则的取值范围是()A .B .C .D .二、填空题 (共4题;共4分)11. (1分)(2017·和平模拟) 已知f(x)=x3+3x2+6x,f(a)=1,f(b)=﹣9,则a+b的值为________.12. (1分)已知定义在R上的偶函数f(x)满足f(x)=﹣f(x+2),且当x∈(2,3)时,f(x)=3﹣x,则f(7.5)=________13. (1分) (2018高一上·杭州期中) 已知指数函数,则函数必过定点________14. (1分)(2017·嘉兴模拟) 若正实数满足,则的最小值是________.三、解答题 (共5题;共50分)15. (10分) (2017高一上·武汉期末) 已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.(1)若m=﹣1求A∩B;(2)若A∩B=∅,求实数m的取值范围.16. (10分) (2016高一上·东海期中) 设函数f(x)= ﹣(1)证明函数f(x)是奇函数;(2)证明函数f(x)在(﹣∞,+∞)内是增函数;(3)求函数f(x)在[1,2]上的值域.17. (10分) (2018高一上·吉林期末) 定义在上的函数满足.当时,.(Ⅰ)求的解析式;(Ⅱ)当时,求的最大值和最小值.18. (5分) (2015高一下·正定开学考) 已知函数f(2x)=x2﹣2ax+3(1)求函数y=f(x)的解析式(2)若函数y=f(x)在[ ,8]上的最小值为﹣1,求a的值.19. (15分)已知函数f(x)= ,x∈[﹣5,﹣2].(1)利用定义法判断函数的单调性;(2)求函数值域.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共5题;共50分)15-1、15-2、16-1、16-2、16-3、17-1、18-1、18-2、19-1、19-2、。
上海浦江第一中学高一数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设f(x)=,x∈R,那么f(x)是( )A.奇函数且在(0,+∞)上是增函数B.偶函数且在(0,+∞)上是增函数C.奇函数且在(0,+∞)上是减函数D.偶函数且在(0,+∞)上是减函数参考答案:D【考点】函数奇偶性的判断;函数单调性的判断与证明.【分析】先利用函数奇偶性的定义判断函数的奇偶性,然后通过讨论去绝对值号,即可探讨函数的单调性.【解答】解:∵f(x)=,x∈R,∴f(﹣x)===f(x),故f(x)为偶函数当x>0时,f(x)=,是减函数,故选D.【点评】本题考查了函数奇偶性的判断和函数单调性的判断与证明,是个基础题.2. 设A.a<c<bB. b<c<aC.a<b<cD.b<a<c参考答案:D3. 将函数的图象向右平移单位后,所得图象对应的函数解析式为()A. B.C. D. 参考答案:D【分析】先将函数中x换为x-后化简即可.【详解】化解为故选D【点睛】本题考查三角函数平移问题,属于基础题目,解题中根据左加右减的法则,将x按要求变换. 4. 要得到函数的图象,只需将的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度参考答案:B略5. 设集合,其中,则下列关系中正确的是()A.M B. C.D.参考答案:D6. 总体由编号为01,02,…,29,30的30个个体组成。
利用下面的随机数表选取4个个体。
选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第4个个体的编号为()(A )02 (D)29参考答案:D7. 若向量a=(1,1),b=(1,-1),c=(-2,4),则c等于()A.-a+3b B.a-3bC.3a-b D.-3a+b参考答案:B略8. 设f(x)=且f(0)=f(2),则( )A.f(-2) < c < f() B.f()< c < f(-2)C.f() < f(-2) < c D.c < f()< f(-2)参考答案:B9. 某器物的三视图如图12-12所示,根据图中数据可知该器物的体积是()图12-12A.8πB.9πC.πD.π参考答案:D10. 无论为何实值,直线总过一个定点,该定点坐标为().A.(1,)B.(,)C.(,)D.(,)参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11. 在某次数学测验中,记座号为n(n=1,2,3,4)的同学的考试成绩为,若{70,85,88,90,98,100},且满足则这四位同学考试成绩的所有可能有种。
2020-2021上海辽阳中学高中必修一数学上期末第一次模拟试卷附答案一、选择题1.已知奇函数()y f x =的图像关于点(,0)2π对称,当[0,)2x π∈时,()1cos f x x =-,则当5(,3]2x ππ∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =- 2.已知函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( ) A .12B .2C .22D .23.若函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 的取值范围是( ) A .()1,+∞B .(1,8)C .(4,8)D .[4,8)4.若()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则a 的取值范围是( ) A .2,35⎡⎫⎪⎢⎣⎭B .2,35⎛⎤ ⎥⎝⎦C .(),3-∞D .2,5⎛⎫+∞ ⎪⎝⎭5.把函数()()2log 1f x x =+的图象向右平移一个单位,所得图象与函数()g x 的图象关于直线y x =对称;已知偶函数()h x 满足()()11h x h x -=--,当[]0,1x ∈时,()()1h x g x =-;若函数()()y k f x h x =⋅-有五个零点,则正数k 的取值范围是( ) A .()3log 2,1B .[)3log 2,1C .61log 2,2⎛⎫ ⎪⎝⎭D .61log 2,2⎛⎤ ⎥⎝⎦6.已知函数()()y f x x R =∈满足(1)()0f x f x ++-=,若方程1()21f x x =-有2022个不同的实数根i x (1,2,3,2022i =L ),则1232022x x x x ++++=L ( ) A .1010 B .2020 C .1011D .20227.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( ) A .{1,2} B .{1,4} C .{1,2,3,4}D .{1,4,16,64}8.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( )A .1,02⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,02⎛⎫-⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭9.已知函数f (x )=12log ,1,24,1,x x x x >⎧⎪⎨⎪+≤⎩则1(())2f f )等于( )A .4B .-2C .2D .110.点P 从点O 出发,按逆时针方向沿周长为l 的平面图形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系如图所示,则点P 所走的图形可能是A .B .C .D .11.函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数且f (2)=0,则使f (x )<0的x 的取值范围( ) A .(-∞,2)B .(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,2)12.已知定义在R 上的函数()f x 在(),2-∞-上是减函数,若()()2g x f x =-是奇函数,且()20g =,则不等式()0xf x ≤的解集是( )A .][(),22,-∞-⋃+∞ B .][)4,20,⎡--⋃+∞⎣C .][(),42,-∞-⋃-+∞D .][(),40,-∞-⋃+∞二、填空题13.定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f (4)=0,则不等式f (x )≥0的解集是___.14.已知函数()1352=++f x ax bx (a ,b 为常数),若()35f -=,则()3f 的值为______15.若函数() 1263f x x m x x =-+-+-在2x =时取得最小值,则实数m 的取值范围是______;16.函数()()4log 521x f x x =-+-的定义域为________.17.函数()f x 与()g x 的图象拼成如图所示的“Z ”字形折线段ABOCD ,不含(0,1)A 、(1,1)B 、(0,0)O 、(1,1)C --、(0,1)D -五个点,若()f x 的图象关于原点对称的图形即为()g x 的图象,则其中一个函数的解析式可以为__________.18.已知()f x 、()g x 分别是定义在R 上的偶函数和奇函数,且()()2xf xg x x -=-,则(1)(1)f g +=__________.19.已知函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则m的取值范围为______.20.已知sin ()(1)x f x f x π⎧=⎨-⎩(0)(0)x x <>则1111()()66f f -+为_____ 三、解答题21.已知函数()2log 11m f x x ⎛⎫=+⎪-⎝⎭,其中m 为实数. (1)若1m =,求证:函数()f x 在()1,+∞上为减函数; (2)若()f x 为奇函数,求实数m 的值.22.已知函数()log (12)a f x x =+,()log (2)a g x x =-,其中0a >且1a ≠,设()()()h x f x g x =-.(1)求函数()h x 的定义域; (2)若312f ⎛⎫=-⎪⎝⎭,求使()0h x <成立的x 的集合.23.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2019年不仅净利润创下记录,海外增长同祥强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投人固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且210200,040()100008019450,40x x x R x x x x ⎧+<<⎪=⎨+-⎪⎩…,由市场调研知,每部手机售价0.8万元,且全年内生产的手机当年能全部销售完.(Ⅰ)求出2020年的利润()Q x (万元)关于年产量x (千部)的函数关系式(利润=销售额-成本);(Ⅱ)2020年产量x 为多少(千部)时,企业所获利润最大?最大利润是多少? (说明:当0a >时,函数ay x x=+在单调递减,在)+∞单调递增) 24.已知函数()22xxf x k -=+⋅,()()log ()2xa g x f x =-(0a >且1a ≠),且(0)4f =.(1)求k 的值;(2)求关于x 的不等式()0>g x 的解集; (3)若()82x tf x ≥+对x ∈R 恒成立,求t 的取值范围. 25.泉州是全国休闲食品重要的生产基地,食品产业是其特色产业之一,其糖果产量占全国的20%.现拥有中国驰名商标17件及“全国食品工业强县”2个(晋江、惠安)等荣誉称号,涌现出达利、盼盼、友臣、金冠、雅客、安记、回头客等一大批龙头企业.已知泉州某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1元/千克,每次购买配料需支付运费90元.设该厂每隔()*x x ∈N天购买一次配料.公司每次购买配料均需支付保管费用,其标准如下:6天以内(含6天),均按10元/天支付;超出6天,除支付前6天保管费用外,还需支付剩余配料保管费用,剩余配料按3(5)200x -元/千克一次性支付. (1)当8x =时,求该厂用于配料的保管费用P 元;(2)求该厂配料的总费用y (元)关于x 的函数关系式,根据平均每天支付的费用,请你给出合理建议,每隔多少天购买一次配料较好. 附:80()f x x x=+在单调递减,在)+∞单调递增. 26.设全集为R ,集合A ={x |3≤x <7},B ={x |2<x <6},求∁R (A ∪B ),∁R (A ∩B ),(∁R A )∩B ,A ∪(∁R B ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】 当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,结合奇偶性与对称性即可得到结果. 【详解】因为奇函数()y f x =的图像关于点,02π⎛⎫⎪⎝⎭对称,所以()()0f x f x π++-=, 且()()f x f x -=-,所以()()f x f x π+=,故()f x 是以π为周期的函数.当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,故()()31cos 31cos f x x x ππ-=--=+ 因为()f x 是周期为π的奇函数,所以()()()3f x f x f x π-=-=- 故()1cos f x x -=+,即()1cos f x x =--,5,32x ππ⎛⎤∈ ⎥⎝⎦故选C 【点睛】本题考查求函数的表达式,考查函数的图象与性质,涉及对称性与周期性,属于中档题.2.A解析:A 【解析】 【分析】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数,但在[0,1]上为减函数,得0<a<1,把x=1代入即可求出a 的值.【详解】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数, 但在[0,1]上为减函数,∴0<a<1,当x=1时,1(1)log ()=-log 2=111a a f =+, 解得1=2a ,本题考查了函数的值与及定义域的求法,属于基础题,关键是先判断出函数的单调性. 点评:做此题时要仔细观察、分析,分析出(0)=0f ,这样避免了讨论.不然的话,需要讨论函数的单调性.3.D解析:D 【解析】 【分析】根据分段函数单调性列不等式,解得结果. 【详解】因为函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数, 所以140482422a a a aa ⎧⎪>⎪⎪->∴≤<⎨⎪⎪-+≤⎪⎩故选:D 【点睛】本题考查根据分段函数单调性求参数,考查基本分析判断能力,属中档题.4.A解析:A 【解析】 【分析】利用函数()y f x =是(),-∞+∞上的增函数,保证每支都是增函数,还要使得两支函数在分界点1x =处的函数值大小,即()23141a a -⨯-≤,然后列不等式可解出实数a 的取值范围. 【详解】由于函数()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数, 则函数()34y a x a =--在(),1-∞上是增函数,所以,30a ->,即3a <; 且有()23141a a -⨯-≤,即351a -≤,得25a ≥, 因此,实数a 的取值范围是2,35⎡⎫⎪⎢⎣⎭,故选A.本题考查分段函数的单调性与参数,在求解分段函数的单调性时,要注意以下两点: (1)确保每支函数的单调性和原函数的单调性一致; (2)结合图象确保各支函数在分界点处函数值的大小关系.5.C解析:C 【解析】分析:由题意分别确定函数f (x )的图象性质和函数h (x )图象的性质,然后数形结合得到关于k 的不等式组,求解不等式组即可求得最终结果.详解:曲线()()2log 1f x x =+右移一个单位,得()21log y f x x =-=, 所以g (x )=2x ,h (x -1)=h (-x -1)=h (x +1),则函数h (x )的周期为2. 当x ∈[0,1]时,()21xh x =-,y =kf (x )-h (x )有五个零点,等价于函数y =kf (x )与函数y =h (x )的图象有五个公共点. 绘制函数图像如图所示,由图像知kf (3)<1且kf (5)>1,即:22log 41log 61k k <⎧⎨>⎩,求解不等式组可得:61log22k <<. 即k 的取值范围是612,2log ⎛⎫ ⎪⎝⎭. 本题选择C 选项.点睛:本题主要考查函数图象的平移变换,函数的周期性,函数的奇偶性,数形结合解题等知识,意在考查学生的转化能力和计算求解能力.6.C解析:C 【解析】 【分析】 函数()f x 和121=-y x 都关于1,02⎛⎫⎪⎝⎭对称,所有1()21f x x =-的所有零点都关于1,02⎛⎫⎪⎝⎭对称,根据对称性计算1232022x x x x ++++L 的值. 【详解】()()10f x f x ++-=Q ,()f x ∴关于1,02⎛⎫⎪⎝⎭对称,而函数121=-y x 也关于1,02⎛⎫⎪⎝⎭对称, ()121f x x ∴=-的所有零点关于1,02⎛⎫⎪⎝⎭对称, ()121f x x ∴=-的2022个不同的实数根i x (1,2,3,2022i =L ), 有1011组关于1,02⎛⎫⎪⎝⎭对称,122022...101111011x x x ∴+++=⨯=.故选:C 【点睛】本题考查根据对称性计算零点之和,重点考查函数的对称性,属于中档题型.7.D解析:D 【解析】 【分析】方程()()20mf x nf x p ++=不同的解的个数可为0,1,2,3,4.若有4个不同解,则可根据二次函数的图像的对称性知道4个不同的解中,有两个的解的和与余下两个解的和相等,故可得正确的选项. 【详解】设关于()f x 的方程()()20mfx nf x p ++=有两根,即()1f x t =或()2f x t =.而()2f x ax bx c =++的图象关于2bx a=-对称,因而()1f x t =或()2f x t =的两根也关于2b x a =-对称.而选项D 中41616422++≠.故选D .【点睛】对于形如()0f g x =⎡⎤⎣⎦的方程(常称为复合方程),通过的解法是令()t x g =,从而得到方程组()()0f tg x t ⎧=⎪⎨=⎪⎩,考虑这个方程组的解即可得到原方程的解,注意原方程的解的特征取决于两个函数的图像特征.8.A解析:A 【解析】 【分析】由已知可知,()f x 在()1,-+∞上单调递减,结合二次函数的开口方向及对称轴的位置即可求解. 【详解】∵二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,∴()f x 在()1,-+∞上单调递减, ∵对称轴12x a=, ∴0112a a<⎧⎪⎨≤-⎪⎩,解可得102a -≤<,故选A . 【点睛】本题主要考查了二次函数的性质及函数单调性的定义的简单应用,解题中要注意已知不等式与单调性相互关系的转化,属于中档题.9.B解析:B 【解析】121242242f ⎛⎫=+=+= ⎪⎝⎭,则()1214log 422f f f ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭,故选B. 10.C解析:C 【解析】 【分析】认真观察函数图像,根据运动特点,采用排除法解决. 【详解】由函数关系式可知当点P 运动到图形周长一半时O,P 两点连线的距离最大,可以排除选项A,D,对选项B 正方形的图像关于对角线对称,所以距离y 与点P 走过的路程x 的函数图像应该关于2l对称,由图可知不满足题意故排除选项B , 故选C . 【点睛】本题考查函数图象的识别和判断,考查对于运动问题的深刻理解,解题关键是认真分析函数图象的特点.考查学生分析问题的能力.11.D解析:D 【解析】 【分析】根据偶函数的性质,求出函数()0f x <在(-∞,0]上的解集,再根据对称性即可得出答案. 【详解】由函数()f x 为偶函数,所以()()220f f -==,又因为函数()f x 在(-∞,0]是减函数,所以函数()0f x <在(-∞,0]上的解集为(]2,0-,由偶函数的性质图像关于y 轴对称,可得在(0,+ ∞)上()0f x <的解集为(0,2),综上可得,()0f x <的解集为(-2,2). 故选:D. 【点睛】本题考查了偶函数的性质的应用,借助于偶函数的性质解不等式,属于基础题.12.C解析:C 【解析】 【分析】由()()2g x f x =-是奇函数,可得()f x 的图像关于()2,0-中心对称,再由已知可得函数()f x 的三个零点为-4,-2,0,画出()f x 的大致形状,数形结合得出答案. 【详解】由()()2g x f x =-是把函数()f x 向右平移2个单位得到的,且()()200g g ==,()()()4220f g g -=-=-=,()()200f g -==,画出()f x 的大致形状结合函数的图像可知,当4x ≤-或2x ≥-时,()0xf x ≤,故选C. 【点睛】本题主要考查了函数性质的应用,作出函数简图,考查了学生数形结合的能力,属于中档题.二、填空题13.-40∪4+∞)【解析】【分析】由奇函数的性质可得f (0)=0由函数单调性可得在(04)上f (x )<0在(4+∞)上f (x )>0结合函数的奇偶性可得在(-40)上的函数值的情况从而可得答案【详解】根解析: [-4,0]∪[4,+∞)【解析】【分析】由奇函数的性质可得f (0)=0,由函数单调性可得在(0,4)上,f (x )<0,在(4,+∞)上,f (x )>0,结合函数的奇偶性可得在(-4,0)上的函数值的情况,从而可得答案.【详解】根据题意,函数f (x )是定义在R 上的奇函数,则f (0)=0,又由f (x )在区间(0,+∞)上单调递增,且f (4)=0,则在(0,4)上,f (x )<0,在(4,+∞)上,f (x )>0,又由函数f (x )为奇函数,则在(-4,0)上,f (x )>0,在(-∞,-4)上,f (x )<0, 若f (x )≥0,则有-4≤x≤0或x≥4,则不等式f (x )≥0的解集是[-4,0]∪[4,+∞);故答案为:[-4,0]∪[4,+∞).【点睛】本题考查函数的单调性和奇偶性的综合应用,属于基础题.14.【解析】【分析】由求得进而求解的值得到答案【详解】由题意函数(为常数)且所以所以又由故答案为:【点睛】本题主要考查了函数值的求解其中解答中根据函数的解析式准确运算是解答的关键着重考查了计算能力属于基 解析:1-【解析】【分析】由()35f -=,求得1532723a b -⋅-+=,进而求解()3f 的值,得到答案.【详解】由题意,函数()1352=++f x ax bx (a ,b 为常数),且()35f -=,所以()15332725f a b -=-⋅-+=,所以153273a b -⋅-=,又由()1533272321f a b -=⋅++=-+=-.故答案为:1-.【点睛】本题主要考查了函数值的求解,其中解答中根据函数的解析式,准确运算是解答的关键,着重考查了计算能力,属于基础题.15.【解析】【分析】根据条件可化为分段函数根据函数的单调性和函数值即可得到解不等式组即可【详解】当时当时且当时且当时且若函数在时取得最小值根据一次函数的单调性和函数值可得解得故实数的取值范围为故答案为: 解析:[)5,+∞【解析】【分析】根据条件可化为分段函数,根据函数的单调性和函数值即可得到()()7050507027127m m m m m m ⎧-+≤⎪-+≤⎪⎪-≥⎪⎨+≥⎪⎪+≥⎪+≥⎪⎩解不等式组即可.【详解】当1x <时,()()121861927f x x m mx x m m x =-+-+-=+-+,当12x ≤<时,()()121861725f x x m mx x m m x =-+-+-=+-+,且()112f m =+,当23x ≤<时,()()121861725f x x mx m x m m x =-+-+-=-+-,且()27f =,当3x ≥时,()()126181927f x x mx m x m m x =-+-+-=--++,且()32f m =+,若函数() 1263f x x m x x =-+-+-在2x =时取得最小值,根据一次函数的单调性和函数值可得()()7050507027127m m m m m m ⎧-+≤⎪-+≤⎪⎪-≥⎪⎨+≥⎪⎪+≥⎪+≥⎪⎩,解得5m ≥, 故实数m 的取值范围为[)5,+∞故答案为:[)5,+∞【点睛】本题考查了由分段函数的单调性和最值求参数的取值范围,考查了分类讨论的思想,属于中档题.16.【解析】【分析】根据题意列出不等式组解出即可【详解】要使函数有意义需满足解得即函数的定义域为故答案为【点睛】本题主要考查了具体函数的定义域问题属于基础题;常见的形式有:1分式函数分母不能为0;2偶次 解析:[)0,5【解析】【分析】根据题意,列出不等式组50210x x ->⎧⎨-≥⎩,解出即可. 【详解】要使函数()()4log 5f x x =-+有意义,需满足50210x x ->⎧⎨-≥⎩,解得05x <≤,即函数的定义域为[)0,5, 故答案为[)0,5.【点睛】本题主要考查了具体函数的定义域问题,属于基础题;常见的形式有:1、分式函数分母不能为0;2、偶次根式下大于等于0;3、对数函数的真数部分大于0;4、0的0次方无意义;5、对于正切函数tan y x =,需满足,2x k k Z ππ≠+∈等等,当同时出现时,取其交集. 17.【解析】【分析】先根据图象可以得出f(x)的图象可以在OC 或CD 中选取一个再在AB 或OB 中选取一个即可得出函数f(x)的解析式【详解】由图可知线段OC 与线段OB 是关于原点对称的线段CD 与线段BA 也是解析:()1x f x ⎧=⎨⎩1001x x -<<<< 【解析】【分析】先根据图象可以得出f (x )的图象可以在OC 或CD 中选取一个,再在AB 或OB 中选取一个,即可得出函数f (x ) 的解析式.【详解】由图可知,线段OC 与线段OB 是关于原点对称的,线段CD 与线段BA 也是关于原点对称的,根据题意,f (x) 与g (x) 的图象关于原点对称,所以f (x)的图象可以在OC 或CD 中选取一个,再在AB 或OB 中选取一个,比如其组合形式为: OC 和AB , CD 和OB , 不妨取f (x )的图象为OC 和AB ,OC 的方程为: (10)y x x =-<<,AB 的方程为: 1(01)y x =<<,所以,10()1,01x x f x x -<<⎧=⎨<<⎩,故答案为:,10()1,01x x f x x -<<⎧=⎨<<⎩【点睛】本题主要考查了函数解析式的求法,涉及分段函数的表示和函数图象对称性的应用,属于中档题.18.【解析】【分析】根据函数的奇偶性令即可求解【详解】、分别是定义在上的偶函数和奇函数且故答案为:【点睛】本题主要考查了函数的奇偶性属于容易题 解析:32【解析】【分析】根据函数的奇偶性,令1x =-即可求解.【详解】()f x Q 、()g x 分别是定义在R 上的偶函数和奇函数, 且()()2x f x g x x -=- ∴13(1)(1)(1)(1)212f g f g ----=+=+=, 故答案为:32【点睛】本题主要考查了函数的奇偶性,属于容易题. 19.或【解析】【分析】分类讨论的范围利用对数函数二次函数的性质进一步求出的范围【详解】解:∵函数若有最大值或最小值则函数有最大值或最小值且取最值时当时由于没有最值故也没有最值不满足题意当时函数有最小值没 解析:{|2m m >或2}3m <-【解析】【分析】分类讨论m 的范围,利用对数函数、二次函数的性质,进一步求出m 的范围.【详解】解:∵函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值, 则函数2(2)2y mx m x m =+-+-有最大值或最小值,且y 取最值时,0y >. 当0m =时,22y x =--,由于y 没有最值,故()f x 也没有最值,不满足题意. 当0m >时,函数y 有最小值,没有最大值,()f x 有最大值,没有最小值.故y 的最小值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->,求得 2m >;当0m <时,函数y 有最大值,没有最小值,()f x 有最小值,没有最大值.故y 的最大值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->, 求得23m <-. 综上,m 的取值范围为{|2m m >或2}3m <-.故答案为:{|2m m >或2}3m <-.【点睛】本题主要考查复合函数的单调性,二次函数、对数函数的性质,二次函数的最值,属于中档题. 20.0【解析】【分析】根据分段函数的解析式代入求值即可求解【详解】因为则所以【点睛】本题主要考查了分段函数求值属于中档题解析:0【解析】【分析】根据分段函数的解析式,代入求值即可求解.【详解】因为sin ()(1)x f x f x π⎧=⎨-⎩(0)(0)x x <> 则11111()sin()sin 6662f ππ-=-==, 11511()()()sin()66662f f f π==-=-=-, 所以1111()()066f f -+=. 【点睛】本题主要考查了分段函数求值,属于中档题.三、解答题21.(1)证明见解析(2)0m =或2m =【解析】【分析】(1)对于1x ∀,()21,x ∈+∞,且12x x <,计算()()120f x f x ->得到证明.(2)根据奇函数得到()()0f x f x -+=,代入化简得到()22211x m x --=-,计算得到答案.【详解】(1)当1m =时,()221log 1log 11x f x x x ⎛⎫⎛⎫=+= ⎪ ⎪--⎝⎭⎝⎭, 对于1x ∀,()21,x ∈+∞,且12x x <,()()12122212log log 11x x f x f x x x -=---1212122121221log log 1x x x x x x x x x x ⎛⎫--=⋅= ⎪--⎝⎭因为12x x <,所以12x x ->-,所以121122x x x x x x ->-,又因1x ,()21,x ∈+∞,且12x x <,所以()1222110x x x x x -=->, 即1211221x x x x x x ->-,所以1212122log 0x x x x x x ⎛⎫-> ⎪-⎝⎭,()()120f x f x ->. 所以函数()f x 在()1,+∞上为减函数.(2)()221log 1log 11m x m f x x x +-⎛⎫⎛⎫=+= ⎪ ⎪--⎝⎭⎝⎭, 若()f x 为奇函数,则()()f x f x -=-,即()()0f x f x -+=. 所以211log log 11x m x m x x -+-+-⎛⎫⎛⎫+ ⎪ ⎪---⎝⎭⎝⎭211log 11x m x m x x -+-+-⎛⎫⎛⎫=⋅ ⎪ ⎪---⎝⎭⎝⎭ 2(1)1log 11x m x m x x --+-⎛⎫⎛⎫= ⎪⎪+-⎝⎭⎝⎭2222(1)log 01x m x ⎛⎫--== ⎪-⎝⎭, 所以()22211x m x --=-,所以()211m -=,0m =或2m =.【点睛】本题考查了单调性的证明,根据奇偶性求参数,意在考查学生对于函数性质的灵活运用.22.(1)1,22⎛⎫-⎪⎝⎭;(2)1,23⎛⎫ ⎪⎝⎭ 【解析】【分析】(1)由真数大于0列出不等式组求解即可;(2)由312f ⎛⎫=- ⎪⎝⎭得出14a =,再利用对数函数的单调性解不等式即可得出答案. 【详解】(1)要使函数有意义,则12020x x +>⎧⎨->⎩, 即122x -<<,故()h x 的定义域为1,22⎛⎫- ⎪⎝⎭.(2)∵312f ⎛⎫=-⎪⎝⎭,∴log (13)log 41a a +==-, ∴14a =, ∴1144()log (12)log (2)h x x x =+--,∵()0h x <,∴0212x x <-<+,得123x <<, ∴使()0h x <成立的的集合为1,23⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查了求对数型函数的定义域以及由对数函数的单调性解不等式,属于中档题.23.(Ⅰ)()210600250,040,100009200,40.x x x Q x x x x ⎧-+-<<⎪∴=⎨--+≥⎪⎩(Ⅱ)2020年年产量为100(千部)时,企业获得的利润最大,最大利润为9000万元.【解析】【分析】(Ⅰ)根据题意知利润等于销售收入减去可变成本及固定成本,分类讨论即可写出解析式(Ⅱ)利用二次函数求040x <<时函数的最大值,根据对勾函数求40x ≥时函数的最大值,比较即可得函数在定义域上的最大值.【详解】(Ⅰ)当040x << 时,()()228001020025010600250Q x x x x x x =-+-=-+- ;当40x ≥时,()100001000080080194502509200Q x x x x x x ⎛⎫=-+--=--+ ⎪⎝⎭. ()210600250,040,100009200,40.x x x Q x x x x ⎧-+-<<⎪∴=⎨--+≥⎪⎩(Ⅱ)当040x <<时,()()210308750Q x x =--+, ()()max 308750Q x Q ∴==万元;当40x ≥时,()100009200Q x x x ⎛⎫=-++ ⎪⎝⎭,当且仅当100x =时, ()()max 1009000Q x Q ==万元.所以,2020年年产量为100(千部)时,企业获得的利润最大,最大利润为9000万元.【点睛】本题主要考查了分段函数,函数的最值,函数在实际问题中的应用,属于中档题.24.(1) 3k =;(2) 当1a >时,()2,log 3x ∈-∞;当01a <<时,()2log 3,x ∈+∞;(3)(],13-∞-【解析】【分析】(1)由函数过点()0,4,待定系数求参数值;(2)求出()g x 的解析式,解对数不等式,对底数进行分类讨论即可.(3)换元,将指数型不等式转化为二次不等式,再转化为最值求解即可.【详解】(1)因为()22x x f x k -=+⋅且(0)4f =,故:14k +=, 解得3k =.(2)因为()()log ()2x a g x f x =-,由(1),将()f x 代入得:()log (32?)x a g x -=n ,则log (32?)0x a ->n ,等价于:当1a >时,321x ->n ,解得()2,log 3x ∈-∞当01a <<时,321x -<n ,解得()2log 3,x ∈+∞.(3)()82xt f x ≥+在R 上恒成立,等价于: ()()228230x x t --+≥n 恒成立; 令2x m =,则()0,m ∈+∞,则上式等价于:2830m m t --+≥,在区间()0,+∞恒成立.即:283t m m ≤-+,在区间()0,+∞恒成立,又()2283413m m m -+=--,故: 2(83)m m -+的最小值为:-13,故:只需13t ≤-即可.综上所述,(],13t ∈-∞-.【点睛】本题考查待定系数求参数值、解复杂对数不等式、由恒成立问题求参数范围,属函数综合问题. 25.(1)78;(2)221090,063167240,6x x y x x x +≤≤⎧=⎨++>⎩,N x ∈,9天. 【解析】【分析】(1)由题意得第6天后剩余配料为(86)200400-⨯=(千克),从而求得P ;(2)由题意得221090,063167240,6x x y x x x +≤≤⎧=⎨++>⎩其中N x ∈. 求出分段函数取得最小值时,对应的x 值,即可得答案.【详解】(1)第6天后剩余配料为(86)200400-⨯=(千克), 所以3(85)6040078200P ⨯-=+⨯=; (2)当6x ≤时,200109021090y x x x =++=+, 当6x >时,23(5)2009060200(6)3167240200x y x x x x -=+++⋅⋅-=++, 所以221090,063167240,6x x y x x x +≤≤⎧=⎨++>⎩其中N x ∈. 设平均每天支付的费用为()f x 元,当06x ≤≤时,2109090()210x f x x x+==+, ()f x 在[0,6]单调递减,所以min ()(6)225f x f ==;当6x >时,2316724080()3167x x f x x x x ++⎛⎫==++ ⎪⎝⎭, 可知()f x 在(0,45)单调递减,在(45,)+∞单调递增,又8459<<,(8)221f =,2(9)2203f =,所以min 2()(9)2203f x f == 综上所述,该厂9天购买一次配料才能使平均每天支付的费用最少.【点睛】本题考查构建函数模型解决实际问题、函数的单调性和最值,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意对勾函数图象的应用.26.见解析【解析】【分析】根据题意,在数轴上表示出集合,A B ,再根据集合的运算,即可得到求解.【详解】解:如图所示.∴A ∪B ={x |2<x <7},A ∩B ={x |3≤x <6}.∴∁R (A ∪B )={x |x ≤2或x ≥7},∁R(A∩B)={x|x≥6或x<3}.又∵∁R A={x|x<3或x≥7},∴(∁R A)∩B={x|2<x<3}.又∵∁R B={x|x≤2或x≥6},∴A∪(∁R B)={x|x≤2或x≥3}.【点睛】本题主要考查了集合的交集、并集与补集的混合运算问题,其中解答中正确在数轴上作出集合,A B,再根据集合的交集、并集和补集的基本运算求解是解答的关键,同时在数轴上画出集合时,要注意集合的端点的虚实,着重考查了数形结合思想的应用,以及推理与运算能力.。
上海市高一上学期数学第一次联考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分) (2019高一上·宜昌月考) 设集合,集合,则使得的
的所有取值构成的集合是()
A .
B .
C .
D .
2. (2分) (2018高一上·会泽期中) 已知全集U={1,2,3,4,5,6},A={1,2,6},B={2,4,5},则(∁UB)∩A=()
A . {4,5}
B . {1,2,3,4,5,6}
C . {1,4,6}
D . {1,6}
3. (2分) (2019高一上·成都月考) 已知函数,若,则实数之值为()
A . 2
B . 3
C . 4
D . 5
4. (2分)(2017·山东) 设函数y= 的定义域为A,函数y=ln(1﹣x)的定义域为B,则A∩B=()
A . (1,2)
B . (1,2]
C . (﹣2,1)
D . [﹣2,1)
5. (2分)已知全集U={x|0<x<9},A={x|1<x<a},若非空集合A⊆U,则实数a的取值范围是()
A . (﹣∞,9)
B . (﹣∞,9]
C . (1,9)
D . (1,9]
6. (2分) (2018高二下·定远期末) 是定义在上的单调增函数,满足
,当时,的取值范围是()
A .
B .
C .
D .
7. (2分) (2019高一上·山丹期中) 与函数相等的函数是()
A .
B .
C .
D .
8. (2分) (2020高一上·南昌月考) 某年级先后举办了数学、历史、音乐的讲座,其中有85人听了数学讲座,70人听了历史讲座,61人听了音乐讲座,16人同时听了数学、历史讲座,12人同时听了数学、音乐讲座,9人同时听了历史、音乐讲座,还有5人听了全部讲座.则听讲座的人数为()
A . 181
B . 182
C . 183
D . 184
9. (2分)已知,则等于()
A .
B .
C .
D .
10. (2分) (2018高三上·三明模拟) 已知函数,则不等式的解集是()
A .
B .
C .
D .
11. (2分) (2019高三上·长春月考) 若函数在上是单调函数,且
存在负的零点,则的取值范围是()
A .
B .
C .
D .
12. (2分) (2019高一上·武汉月考) 设集合 , ,函数 ,若 ,且 ,则的取值范围是()
A .
B .
C .
D .
二、填空题 (共4题;共4分)
13. (1分) (2019高一上·大庆月考) 函数是幂函数,且在上是减函数,则实数 ________
14. (1分)集合M={x|(x﹣1)(x﹣2)<0},N={x|x<a},若M⊆N,则实数a的取值范围是________.
15. (1分) (2018高三上·永春期中) 已知函数,其中e是自然数对数的底数,若
,则实数a的取值范围是________。
16. (1分) (2019高一上·湖州期中) 定义,已知函数,
则最小值为________,不等式的解集为________.
三、解答题 (共6题;共60分)
17. (10分)设集合A={x||x﹣a|<2},B={x|},若A⊆B.求实数a的取值范围.
18. (10分)(2017·南海模拟) 函数f(x)=|x+3|+|x﹣1|,其最小值为t.
(1)求t的值;
(2)若正实数a,b满足a+b=4,求证.
19. (10分)(2016·温岭模拟) 定义在(0,+∞)上的函数f(x)=a(x+ )﹣|x﹣ |(a∈R).
(1)当a= 时,求f(x)的单调区间;
(2)若f(x)≥ x对任意的x>0恒成立,求a的取值范围.
20. (10分) (2018高一上·上海期中) 某公司有价值10万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,改造就需要投入,相应就要提高产品附加值,假设附加值万元与技术改造投入万元之间的关系满足:① 与和的乘积成正比;② 当时,;③ ,其中
为常数,且 .
(1)设,求出的表达式,并求出的定义域;
(2)求出附加值的最大值,并求出此时的技术改造投入的的值.
21. (10分) (2019高一上·温州期中) 已知定义在上的函数 .
(1)当时,试判断在区间上的单调性,并给予证明.
(2)当时,试求的最小值.
22. (10分) (2016高一上·慈溪期中) 已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.
(1)现已画出函数f(x)在y轴左侧的图象,如图所示,请补出完整函数f(x)的图象,并根据图象写出函数f(x)的增区间;
(2)写出函数f(x)的解析式和值域.
参考答案一、单选题 (共12题;共24分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、考点:
解析:
答案:11-1、考点:
解析:
答案:12-1、考点:
解析:
二、填空题 (共4题;共4分)答案:13-1、
考点:
解析:
答案:14-1、
考点:
解析:
答案:15-1、
考点:
解析:
答案:16-1、
考点:
解析:
三、解答题 (共6题;共60分)
答案:17-1、考点:
解析:
答案:18-1、答案:18-2、
考点:
解析:
答案:19-1、
答案:19-2、考点:
解析:
答案:20-1、
答案:20-2、
考点:
解析:
答案:21-1、
答案:21-2、考点:
解析:
答案:22-1、答案:22-2、
考点:
解析:。