工程信号-4传感器2
- 格式:ppt
- 大小:5.43 MB
- 文档页数:81
机载4-20mA传感器电磁敏感度防护设计引言4-20mA电流信号传感器具有高精度低幅值的特点,与电磁干扰量值相比其信号幅值较小,在电磁环境作用下易出现敏感现象,目前军用航空平台的电磁环境越来越复杂,考核标准逐步提升,加上电缆的长距离传输过程中也较易耦合干扰信号,基于以上要求提出了适用于该类型电流信号传感器的电磁防护设计方案,并得出试验结论。
1电磁环境要求目前,军用航空设备执行的电磁兼容标准普遍升级为GJB151B-2013,试验量值存在一定程度的提高,考核抗电磁干扰的试验项目包括传导敏感度试验和辐射敏感度试验。
按照设备在安装平台中的装机位置区分不同量值,目前普遍将传感器考核量值提升到空军飞机外部,具体要求如下所示。
传感器电路避免使用能够产生干扰源的器件,辐射发射和传导发射存在的技术风险较低,本文不再赘述。
表1 电磁敏感度考核项目及具体量值项目代号项目名称要求量值合格判据CS 10125Hz~150kHz电源线传导敏感度曲线二(最高126dBμV)输出波动不超过±0.16mACS 106电源线尖峰信号传导敏感度尖峰电压400VCS 1144kHz~400MHz电缆束注入传导敏感度曲线五(最高109dBμA)CS 115电缆束注入脉冲激励传导敏感度5ACS 11610kHz~100MHz 电缆和电源线阻尼正弦瞬态传导敏感度最高电流为10ARS 10310kHz~40GHz电场辐射敏感度200V/m2传感器工作原理4-20mA电流信号传感器的调理电路种类主要包括模拟式原理和数字式原理,传感器信号调理电路能完成传感器信号的放大、温度补偿或非线性补偿、模数转换等功能。
目前应用较多的为数字式调理电路,内部包含可编程传感器激励、可编程增益放大器、运算放大器以及温度传感器等。
典型传感器包含敏感元件、信号转换电路板和接口滤波电路板,信号转换电路板实现敏感元件信号采集、调理放大和温度补偿等功能,接口滤波电路板就近安装于传感器电气接口处,用于对电磁干扰信号进行滤波、以及起到供电特性防护功能。
传感器原理及工程应用答案1—1:测量的定义,答:测量是以确定被测量的值或获取测量结果为目的的一系列操作。
所以, 测量也就是将被测量与同种性质的标准量进行比较,确定被测量对标准量的倍数。
1—2:什么是测量值的绝对误差、相对误差、引用误差,答:绝对误差是测量结果与真值之差,即: 绝对误差=测量值—真值相对误差是绝对误差与被测量真值之比,常用绝对误差与测量值之比,以百分数表示 , 即: 相对误差=绝对误差/测量值×100%引用误差是绝对误差与量程之比,以百分数表示,即: 引用误差=绝对误差/量程×100%1—3什么是测量误差,测量误差有几种表示方法,它们通常应用在什么场合, 答: 测量误差是测得值减去被测量的真值。
测量误差的表示方法:绝对误差、实际相对误差、引用误差、基本误差、附加误差。
当被测量大小相同时,常用绝对误差来评定测量准确度;相对误差常用来表示和比较测量结果的准确度;引用误差是仪表中通用的一种误差表示方法,基本误差、附加误差适用于传感器或仪表中。
2,1:什么是传感器,它由哪几部分组成,它的作用及相互关系如何,答:传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。
通常,传感器由敏感元件和转换元件组成。
其中,敏感元件是指传感器中能直接感受或响应被测量的部分; 转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。
2—2:什么是传感器的静态特性,它有哪些性能指标,分别说明这些性能指标的含义, 答:传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为传感器的静态特性;其主要指标有线性度、灵敏度、精确度、最小检测量和分辨力、迟滞、重复性、零点漂移、温漂。
灵敏度定义是输出量增量Δy与引起输出量增量Δy的相应输入量增量Δx之比。
传感器的线性度是指传感器的输出与输入之间数量关系的线性程度。
输出与输入关系可分为线性特性和非线性特性。
国内外电子信息工程领域的智能传感器研究综述摘要:智能传感器是电子信息工程领域的重要研究方向之一,其能够感知和获取环境中的各种信息,并通过内部处理和通信技术进行数据的处理和传输。
本综述通过对国内外智能传感器研究领域的文献梳理和总结,对智能传感器的分类、研究进展、应用场景进行了综合介绍,并对未来研究趋势进行了展望。
一、智能传感器的分类根据测量参数的不同,智能传感器可以分为温度传感器、压力传感器、湿度传感器、光传感器、加速度传感器、化学传感器等。
同时,根据智能传感器的工作原理,还可以将其分为电阻式传感器、电容式传感器、电感式传感器等。
二、国内外电子信息工程领域智能传感器的研究进展1. 传感器设计和制造技术:包括材料选择、传感元件设计、封装技术等。
2. 传感器信号处理技术:包括模拟信号处理技术、数字信号处理技术、嵌入式系统设计等。
3. 传感器通信技术:包括蓝牙、WiFi、LoRa、NB-IoT等无线通信技术的应用。
4. 传感器能耗优化技术:包括低功耗设计、能源收集技术、节能算法设计等。
三、智能传感器的应用场景1. 工业领域:智能传感器在工业自动化中的应用具有广泛的前景,可以实现对生产过程的监测和控制。
2. 农业领域:智能传感器在农业生产中的应用可以帮助农民进行精确的灌溉、施肥和植物生长环境监测等。
3. 城市建设和智能交通:智能传感器在城市交通监控、智能停车、交通信号优化等方面具有重要应用。
4. 医疗健康领域:智能传感器在医疗健康领域可以用于实时监测身体健康状况、药物释放等方面。
5. 环境监测与控制:智能传感器可以用于空气质量监测、水质监测、垃圾处理、环境保护等方面。
四、未来研究趋势展望1. 多模态传感器:通过整合多种不同类型的传感器,实现多样化数据的获取和处理。
2. 人工智能与智能传感器的结合:利用深度学习、机器学习等算法,提高传感器的自学习和自适应能力。
3. 高可靠性与能源自主:研究如何通过新材料和能量收集技术来提高传感器的可靠性和能源自主性。
可编辑修改精选全文完整版《传感器技术及应用》课程标准课程名称:传感器技术及应用课程类型:专业基础课总学时:64学时学分:4指定人:贾卫坊审核人:适用专业:应用电子技术、电气自动化技术、楼宇智能化工业技术制订时间:2014年7月30日(一)课程性质和任务1.课程性质:本课程是应用电子技术、电气自动化技术、楼宇智能化工业技术等专业职业技术课,,是在学生学习完《电子技术基础一》、《电子技术基础二》、《电路分析基础》等相关课程后开设的。
其主要包括传感器的认识、结构原理和使用方法,并在此基础上分别介绍常用传感器应用技术及实用电路的分析与设计。
2.课程标准设计思路:本课程讲解的内容以实用为主,原理分析通俗易懂。
各章节中典型传感器应用电路的分析和测试,融合常用传感器的基本知识。
课程内容包含了传感器检测若干个项目,每个项目又分为若干个典型工作任务,每个任务将相关知识和实践实验进行有机的结合,突出实际应用,减少理论推导,注重培养学生的实际应用能力和分析解决问题的实际工作能力。
据本课程的教学目标,以各种测量手段为主线,传感器的应用贯穿课程整个内容,让学生在用什么、学什么、会什么的过程中,逐步掌握专业技能和相关专业知识,培养学生的实际操作能力。
由于本课程与实际联系紧密,理论教学和实践实验训练有机结合,对学生的成绩评定应采用新的评价方式。
3.课程任务:通过本课程的学习和技能训练,使学生能认识传感器,了解测量基本原理,理解各种传感器进行非电量电测的方法,掌握传感器的基本结构和使用方法。
初步具备实用传感器的应用和电路制作技能,并了解相应的测量转换电路、信号处理电路的原理及各种传感器在工业中的应用。
(二)课程目标1.职业知识:●传感器的静态特性、动态特性与技术指标●电阻传感器原理与应用●电感传感器原理与应用●电容传感器原理与应用●光电(光纤、光栅)传感器原理与应用●磁电式传感器与霍尔传感器●压电式传感器原理与应用●半导体物性传感器●温度检测系统●压力检测系统●液位测检系统●流量检测系统●传感器在汽车上的应用2.职业技能:●测量误差与数据处理●传感器的标定和校准●应变电阻传感器的测量电路与电子秤的标定。
传感器技术及其信号处理方法第一章传感器概述1.1 传感器技术基础传感器(sensor)是一种把物理量转换成电信号的器件。
可以说,传感器代表了物理世界与电气设备(如计算机)世界接口的一部分。
这种接口的另一部分由把电信号转换成物理量的执行器(actuator)表示。
为什么我们这么关心这个接口?近年来,电子行业拥有了巨大的信息处理能力。
其中最明显的例子是个人计算机。
此外,价格低廉的微处理器的使用对汽车、微波炉、玩具等嵌入式计算产品的设计产生了重大影响。
最近几年,使用微处理器进行功能控制的产品越来越多。
在汽车行业,为满足污染限制要求必须利用微处理器的这种信息处理能力。
而在其他行业,这种能力又带来了降低产品成本、提高产品性能的优势。
所有这些微处理器都需要输人电压以接收指令和数据、因此,随着廉价微处理器的出现,传感器在各种产品中的应用也越来越多。
此外,由于传感器输出的是电信号,因而传感器也就能够按电子没备的描述方式来插述。
同电子产品数据手册一样,很多传感器数据手册也都遵照某种格式撰写。
然而,目前存在很多种格式,而且传感器规格说明的国际标准还没有制订,这样,传感器系统设计师就会遇到对同一传感器性能参数存在不同的解释,这常常令人混淆。
这种混淆并非由于这些术语的含义无法理解,而是在于传感器界不同的人群习惯于使用不同的术语,认识到这一点至关重要。
1.1.1 传感器数据手册为了解决上述术语使用的差异向题,有必要首先命绍数据手册的功用,数据手册主要是一份营销文件,用来突出某一传感器的优点,強调其潜在的应用,但是有可能忽视该传感器的不足。
很多情况下,传感器是设计用来满足特定用户的特定性能要求的,而数锯手册就集中了该用户最感兴趣的性能参数。
这种情况下,传感器制造商和客户就有可能越来越习惯于使用某种约定的传感器性能参数定义,而这种定义却未必通用,这样,这种传感器未来的新用户必须认清这种情形以便恰当地理解这些参数。
人们常常遇到不同的定义。
matlab传感器课程设计一、课程目标知识目标:1. 了解Matlab软件在传感器数据处理中的应用,掌握基本的数据读取、显示和存储操作;2. 理解传感器的工作原理,能运用Matlab进行传感器信号的采集、处理和分析;3. 掌握利用Matlab进行传感器数据滤波、特征提取和分类等算法的实现。
技能目标:1. 能够运用Matlab软件进行传感器的数据采集、处理和可视化;2. 能够编写简单的Matlab程序,实现对传感器信号的实时监测和分析;3. 能够运用所学的算法对传感器数据进行有效处理,解决实际问题。
情感态度价值观目标:1. 培养学生对传感器技术及其在工程领域应用的兴趣,激发学生的学习热情;2. 培养学生严谨的科学态度,注重实际操作与理论知识的结合;3. 增强学生的团队协作意识,培养合作解决问题的能力。
分析课程性质、学生特点和教学要求,本课程目标旨在使学生在掌握Matlab 软件操作技能的基础上,深入了解传感器技术及其应用。
通过课程学习,使学生能够将所学知识应用于实际问题的解决,培养具备创新意识和实践能力的高素质人才。
课程目标具体、可衡量,便于教学设计和评估。
二、教学内容1. 传感器基础知识:介绍传感器的定义、分类和工作原理,重点讲解常见传感器(如温度传感器、压力传感器等)的原理与应用。
教材章节:第一章 传感器概述2. Matlab软件入门:讲解Matlab软件的安装与基本操作,包括数据类型、矩阵运算、编程控制结构等。
教材章节:第二章 Matlab软件入门3. 传感器数据采集:介绍传感器数据采集的方法,使用Matlab进行数据读取、显示和存储操作。
教材章节:第三章 传感器数据采集4. 信号处理与分析:讲解常见信号处理算法,如滤波、特征提取和分类算法,并结合Matlab进行实践操作。
教材章节:第四章 信号处理与分析5. 实际应用案例:分析传感器在工程领域的典型应用案例,运用所学知识解决实际问题。
教材章节:第五章 传感器应用案例6. 课程项目:设计一个综合性的项目,要求学生运用Matlab和传感器技术解决实际问题,培养实际操作和团队协作能力。
模块一传感器概述练习题一、填空题:1、依据传感器的工作原理,通常传感器由、和转换电路三局部组成,是能把外界转换成的器件和装置。
2、传感器的静态特性包含、、迟滞、、分辨力、精确度、稳定性和漂移。
3、传感器的输入输出特性指标可分为和动态指标两大类,线性度和灵敏度是传感器的指标,而频率响应特性是传感器的指标。
4、传感器可分为物性型和结构型传感器,热电阻是型传感器,电容式加速度传感器是型传感器。
5、某传感器的灵敏度为K,且灵敏度变化量为△«,那么该传00感器的灵敏度误差计算公式为。
6、测量过程中存在着测量误差,按性质可被分为、和三类。
7、相对误差是指测量的与被测量量真值的比值,通常用百分数表示。
8、噪声一般可分为和两大类。
9、任何测量都不可能,都存在。
10、常用的根本电量传感器包括、电感式和电容式传感器。
11、对传感器进行动态的主要目的是检测传感器的动态性能指标。
12、传感器的过载能力是指传感器在不致引起规定性能指标永久改变的条件下,允许超过的能力。
13、传感检测系统目前正迅速地由模拟式、数字式,向方向开展。
14、假设测量系统无接地点时,屏蔽导体应连接到信号源的。
15、如果仅仅检测是否与对象物体接触,可使用作为传感器。
16、动态标定的目的,是检验测试传感器的指标。
17、确定静态标定系统的关键是选用被测非电量或电量的标准信号发生器和。
18、传感器的频率响应特性,必须在所测信号频率范围内,保持条件。
19、为了提高检测系统的分辨率,需要对磁栅、容栅等大位移测量传感器输出信号进行。
2021感器的核心局部是。
21、在反射参数测量中,由耦合器的方向性欠佳以及阻抗失配引起的系统误差是。
22、传感器在输入按同一方向连续屡次变动时所得特性曲线不一致的程度称为。
二、判断题:1、灵敏度高、线性误差小的传感器,其动态特性就好。
〔〕2、测量系统的灵敏度要综合考虑系统各环节的灵敏度。
〔〕3、测量的输出值与理论输出值的差值即为测量误差。
传感器原理及工程应用习题参考答案篇一:《传感器原理及工程应用》第四版(郁有文)课后答案第一章传感与检测技术的理论基础1.什么就是测量值的绝对误差、相对误差、提及讹差?请问:某量值的测出值和真值之差称作绝对误差。
相对误差有实际相对误差和标称相对误差两种表示方法。
实际相对误差是绝对误差与被测量的真值之比;标称相对误差是绝对误差与测得值之比。
提及误差就是仪表中通用型的一种误差则表示方法,也用相对误差则表示,它就是相对于仪表满量程的一种误差。
提及误差就是绝对误差(在仪表中指的就是某一刻度点的示值误差)与仪表的量程之比。
2.什么是测量误差?测量误差有几种表示方法?它们通常应用领域在什么场合?答:测量误差是测得值与被测量的真值之差。
测量误差需用绝对误差和相对误差则表示,提及误差也就是相对误差的一种则表示方法。
在实际测量中,有时要用到修正值,而修正值是与绝对误差大小相等符号相反的值。
在计算相对误差时也必须知道绝对误差的大小才能计算。
使用绝对误差难以测评测量精度的多寡,而使用相对误差比较客观地充分反映测量精度。
引用误差是仪表中应用的一种相对误差,仪表的精度是用引用误差表示的。
3.用测量范围为-50~+150kpa的压力传感器测量140kpa压力时,传感器测得示值为142kpa,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。
求解:绝对误差??142?140?2kpa实际相对误差标称相对误差引用误差??142?140?100%?1.43%140??142?140?100%?1.41%142142?140?100%?1%150?(?50)??4.什么就是随机误差?随机误差产生的原因就是什么?如何减小随机误差对测量结果的影响?请问:在同一测量条件下,多次测量同一被测量时,其绝对值和符号以不容原订方式变化着的误差称作随机误差。
随机误差是由很多不便掌握或暂时未能掌握的微小因素(测量装置方面的因素、环境方面的因素、人员方面的因素),如电磁场的微变,零件的摩擦、间隙,热起伏,空气扰动,气压及湿度的变化,测量人员感觉器官的生理变化等,对测量值的综合影响所造成的。
两线制电流和四线制电流都只有两根信号线,它们之间的主要区别在于:两线制电流的两根信号线既要给传感器或者变送器供电,又要提供电流信号;而四线制电流的两根信号线只提供电流信号。
因此,通常提供两线制电流信号的传感器或者变送器是无源的;而提供四线制电流信号的传感器或者变送器是有源的,因此,当PLC的模板输入通道设定为连接四线制传感器时,PLC只从模板通道的端子上采集模拟信号,而当PLC的模板输入通道设定为连接二线制传感器时,PLC的模拟输入模板的通道上还要向外输出一个直流24V的电源,以驱动两线制传感器工作。
传感器型号:1、两线制〔本身需要供应24vDC电源的,输出信号为4-20MA,电流〕即+接24vdc,负输出4-20mA电流。
2、四线制〔有自己的供电电源,一般是220vac,信号线输出+为4-20ma正,-为4-20ma 负。
PLC:〔以2正、3负为例〕1、两线制时正极2输出24VDC电压,3接收电流〕,所以遇到两线制传感器时,一种接法是2接传感器正,3接传感器负;跳线为两线制电流信号。
二种接法是2悬空,3接传感器的负,同时传感器正要接柜内24vdc;跳线为两线制电流信号。
〔以2正、3负为例〕2、四线制时正极2是接收电流,3是负极。
(四线制好处是传感器负极信号与柜内M为不同电平时不会影响精度很大,因为是传感器本身电流的回路)遇到四线制传感器时,一种方法是2接传感器正,3接传感器负,plc跳线为4线制电流。
〔以2正、3负为例〕3、四线制传感器与plc两线制跳线接法:信号线负与柜内M线相连。
将传感器正与plc的3相连,2悬空,跳线为两线制电流。
〔以2正、3负为例〕4、电压信号:2接传感器正,3接传感器负,plc跳线为电压信号。
问:我用的SM3318*12bit模块信号有时正常有时不正常,后来我把COMP-跟信号的M-接起来就好了,但我同时发现他们之间接电容也可以,是怎么回事??模块的COMP-端、各信号的M-端和模块24伏供电的M端之间电气上有什么关系??答:对隔离输入模板,.摸板参考地Mana与CPU的电源地M没有电连接。
重庆大学学生实验报告实验课程名称工程信号处理实验开课实验室xxxxx学院机械工程学院年级xxxx 专业班xxxx班学生姓名xxxx 学号xxxx开课时间xx 至xx 学年第xx 学期机械工程学院制《工程信号处理》实验报告实验2实验装置连线3.频谱分析启动动态信号分析仪软件,对周期信号幅值谱进行测量,显示并保存结果;对随机信号自功率谱密度进行测量,显示并保存结果;导入信号,对其进行频谱细化分析,显示并保存结果;导入调制信号数据,进行信号解调分析,显示并保存数据结果。
4.传递相干分析连接实验设备(如下图所示),选用SP-TFE-1传递函数分析仪为实验软件。
分别对双通道信号进行传递函数分析与相干函数分析。
实验4实验设备连接5.小波分析实验分别进行小波变换的变焦特性或多分辨特性(“数学显微镜”特性) 观察实验、连续小波变换实验、小波分解实验、小波包分解实验和小波分解和小波包分解识别微弱奇异信号实验。
五、实验过程原始记录(数据、图表、计算等)实验1数据采集与波形显示采样率为4k,正弦波频率100Hz 波形图 采样率1k,正弦波频率100Hz 波形图信号发生器信号发生器数据采集器计算机 (动态信号分析仪软件)Ch2系统)(t x 数据采集器 )(t y 计算机 (传递相干分析软件)Ch1 Ch2采样率500Hz,正弦波频率100Hz波形图采样率4k,方波频率100Hz,外部触发波形图实验2时域、幅值域及时差域幅分析图2.1Asin_f50_fs5000正弦波波形图正弦波统计特征值表正弦波的概率密度函数图同频正弦信号的互相关函数图正弦信号与方波信号的互相关函数图实验3. 频谱分析正弦信号时域波形正弦信号幅值谱正弦信号对数幅值谱调制波波形图调制波频谱图调制波解调后波形图,包络波形图调制波解调后波形图,包络幅值谱图白噪声的采集和分析白噪声时域波形白噪声功率谱密度白噪声对数谱密度图白噪声解调后功率谱密度倒谱图实验4传递相干分析双通道信号时域波形双通道信号传涵幅频谱图双通道信号传函相频谱双通道信号传函脉冲响应图双通道信号互谱虚部图双通道信号X-Y图实验5小波分析实验小波基 小波变换信号分析-连续小波变换的三维图离散小波变换 离散小波变换的翻页方波分析 小波包分析六、实验结果及分析 1.数据采集与波形显示实验分析:选择不同采样频率和触发方式,对信号发生器的信号进行采样,可观察到当采样频率没有信号最高频率两倍时,会出现频率混叠现象。