南京市2018届高三年级第三次模拟考试与答案
- 格式:doc
- 大小:1.71 MB
- 文档页数:15
【最新整理,下载后即可编辑】2018南京三模英语试卷及答案南京市2018届高三年级第三次模拟考试英语南京市2018届高三年级第三次模拟考试英语试卷第一部分听力(共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1Why does the man want to leave?A . The food is toobad.B The music is too loud C. The service is too slow.2What is the woman?A.A nurseB. A. teacherC. A clerk3.What does the man mean?A .He missed the endof the game.B. He got home a fewminutes late.c. He watched the gamefive minutes.4Where does the conversation probably take place?A.In a shop.B. At the cinema C .On a bus.5.How long did the woman stay in Chicago?A. 6 yearsB. I2 years.C.23 years第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
2018南京三模英语试卷及答案南京市2018届高三年级第三次模拟考试英语南京市2018届高三年级第三次模拟考试英语试卷第一部分听力(共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1Why does the man want to leave?A . The food is toobad.B The music is too loud C. The service is too slow.2What is the woman?A.A nurseB. A. teacherC. A clerk3.What does the man mean?A .He missed the endof the game.B. He got home a fewminutes late.c. He watched the gamefive minutes.4Where does the conversation probably take place?A.In a shop.B. At the cinema C .On a bus.5.How long did the woman stay in Chicago?A. 6 yearsB. I2 years.C.23 years第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
2018南京三模英语试卷及答案南京市2018届高三年级第三次模拟考试英语南京市2018届高三年级第三次模拟考试英语试卷第一部分听力(共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1Why does the man want to leave?A . The food is toobad.B The music is too loud C. The service is too slow.2What is the woman?A.A nurseB. A. teacherC. A clerk3.What does the man mean?A .He missed the endof the game.B. He got home a fewminutes late.c. He watched the gamefive minutes.4Where does the conversation probably take place?A.In a shop.B. At the cinema C .On a bus.5.How long did the woman stay in Chicago?A. 6 yearsB. I2 years.C.23 years第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
2018南京三模英语试卷及答案南京市2018届高三年级第三次模拟考试英语南京市2018届高三年级第三次模拟考试英语试卷第一部分听力(共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1Why does the man want to leave?A . The food is toobad.B The music is too loud C. The service is too slow.2What is the woman?A.A nurseB. A. teacherC. A clerk3.What does the man mean?A .He missed the endof the game.B. He got home a fewminutes late.c. He watched the gamefive minutes.4Where does the conversation probably take place?A.In a shop.B. At the cinema C .On a bus.5.How long did the woman stay in Chicago?A. 6 yearsB. I2 years.C.23 years第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
2018南京三模英语试卷及答案南京市2018届高三年级第三次模拟考试英语南京市2018届高三年级第三次模拟考试英语试卷第一部分听力(共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1Why does the man want to leave?A . The food is toobad.B The music is too loud C. The service is too slow.2What is the woman?A.A nurseB. A. teacherC. A clerk3.What does the man mean?A .He missed the endof the game.B. He got home a fewminutes late.c. He watched the gamefive minutes.4Where does the conversation probably take place?A.In a shop.B. At the cinema C .On a bus.5.How long did the woman stay in Chicago?A. 6 yearsB. I2 years.C.23 years第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
2018南京三模英语试卷及答案南京市2018届高三年级第三次模拟考试英语南京市2018届高三年级第三次模拟考试英语试卷第一部分听力(共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1Why does the man want to leave?A . The food is toobad.B The music is too loud C. The service is too slow.2What is the woman?A.A nurseB. A. teacherC. A clerk3.What does the man mean?A .He missed the endof the game.B. He got home a fewminutes late.c. He watched the gamefive minutes.4Where does the conversation probably take place?A.In a shop.B. At the cinema C .On a bus.5.How long did the woman stay in Chicago?A. 6 yearsB. I2 years.C.23 years第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
2018南京三模英语试卷及答案南京市2018届高三年级第三次模拟考试英语南京市2018届高三年级第三次模拟考试英语试卷第一部分听力(共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1Why does the man want to leave?A . The food is toobad.B The music is too loud C. The service is too slow.2What is the woman?A.A nurseB. A. teacherC. A clerk3.What does the man mean?A .He missed the endof the game.B. He got home a fewminutes late.c. He watched the gamefive minutes.4Where does the conversation probably take place?A.In a shop.B. At the cinema C .On a bus.5.How long did the woman stay in Chicago?A. 6 yearsB. I2 years.C.23 years第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
2018南京三模英语试卷及答案南京市2018届高三年级第三次模拟考试英语南京市2018届高三年级第三次模拟考试英语试卷第一部分听力(共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍.1Why does the man want to leave?A . The food is toobad。
B The music is too loud C。
The service is too slow。
2What is the woman?A.A nurseB. A. teacherC. A clerk3。
What does the man mean?A .He missed the endof the game。
B. He got home a fewminutes late.c. He watched the gamefive minutes.4Where does the conversation probably take place?A。
In a shop. B. At the cinema C .On a bus.5。
How long did the woman stay in Chicago?A。
6 years B. I2 years。
C。
23 years第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
2018届南京市高三三模英语试卷全卷精解点评+备考建议2018.05.03第一节单项填空(共15小题:每小题1分,满分15分)请认真阅读下面各题,从所给的A、B、C、D四个选项中,选出最佳选项,并在答题卡上将该项涂黑。
21.Sometimes it’s hard to accept the truth the lie sounds so much better.A. becauseB. unlessC. thoughD. until【答案】A【解析】考察状语从句引导词。
根据句义“有时候事实真相很难接受,因为谎言往往要顺耳多了”。
不难判断选A。
【点评】本题难度较低,判断出句子之间的逻辑关系即可。
22.Held inside for too long, regret affect the immune system.A. mustB. canC. shouldD. shall【答案】B【解析】考察情态动词用法。
初中时can表推测时通常只用于否定句和疑问句,一般不用于肯定句。
但can 有时也用于肯定句中表示推测,表示理论上的可能性,即从理论上或逻辑上分析是可能的,侧重根据客观逻辑推测。
本题根据“懊悔在心里忍太久,也会影响免疫系统”是根据理论逻辑判断的,所以选B。
【点评】本题难度中等,主要是多注重情态动词的用法积累。
除can之外,高考中shall,should,must的特殊用法和意义也是考察重点,需要重点记忆。
ing-of-age is a ceremony young people wear traditional costumes to mark the transition from youth to adulthood.A. thatB. whatC.asD. where【答案】D【解析】考察定语从句。
从句不缺成分,所以选关系副词where。
“coming of age是一个典礼仪式,在这个仪式中年轻人穿着传统服饰以纪念到成年的转变” 【点评】本题难度偏低,掌握定语从句的基本做题方法即可做出答案。
2018南京三模英语试卷及答案南京市2018届高三年级第三次模拟考试英语南京市2018届高三年级第三次模拟考试英语试卷第一部分听力(共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1Why does the man want to leave?A . The food is toobad.B The music is too loud C. The service is too slow.2What is the woman?A.A nurseB. A. teacherC. A clerk3.What does the man mean?A .He missed the endof the game.B. He got home a fewminutes late.c. He watched the gamefive minutes.4Where does the conversation probably take place?A.In a shop.B. At the cinema C .On a bus.5.How long did the woman stay in Chicago?A. 6 yearsB. I2 years.C.23 years第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
2018南京三模英语试卷及答案南京市2018届高三年级第三次模拟考试英语南京市2018届高三年级第三次模拟考试英语试卷第一部分听力(共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1Why does the man want to leave?A . The food is toobad.B The music is too loud C. The service is too slow.2What is the woman?A.A nurseB. A. teacherC. A clerk3.What does the man mean?A .He missed the endof the game.B. He got home a fewminutes late.c. He watched the gamefive minutes.4Where does the conversation probably take place?A.In a shop.B. At the cinema C .On a bus.5.How long did the woman stay in Chicago?A. 6 yearsB. I2 years.C.23 years第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
南京市2018届高三年级第三次模拟考试英语试卷(解析版)第一部分听力(共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1Why does the man want to leave?A . The food is toobad.B The music is too loud C. The service is too slow.2What is the woman?A.A nurseB. A. teacherC. A clerk3.What does the man mean?A .He missed the endof the game.B. He got home a fewminutes late.c. He watched the gamefive minutes.4Where does the conversation probably take place?A.In a shop.B. At the cinema C .On a bus.5.How long did the woman stay in Chicago?A. 6 yearsB. I2 years.C.23 years第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
6.Where is Starry House?A.On South Street.B. On Queen Road.C.. In Stone Lane.7.When will they meet at Starry House?A. At 5:30 pm.B. At 5:45 pm.C. At 6 :00 pm.听第7段材料,回答第8、9题,8.What are the speakers talking about?A. Where to give theconcert.B. Who to invite tothe concert.C. How advertise theconcert.9.What do the speakers agree to do in the end?A. Put up notices.B. Send out emails.C. Hand out invitations听第8段材料,回答第10 至12题。
南京市2018届高三年级第三次模拟考试数学参考答案说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.{-3,-2,2} 2. 5 3.150 4.7 5.23 6.[211,2] 7. ①③8. 5 9.4 10.2 11.x +2y -4=0 12.-3 13.259 14.[e 2,4e]二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)解:(1)因为点P 的横坐标为277,P 在单位圆上,α为锐角,所以cos α=277, ………………………………2分所以cos2α=2cos 2α-1=17. ………………………………4分(2)因为点Q 的纵坐标为3314,所以sin β=3314. ………………………………6分 又因为β为锐角,所以cos β=1314. ………………………………8分因为cos α=277,且α为锐角,所以sin α=217,因此sin2α=2sin αcos α=437, ……………………………10分所以sin(2α-β) =437×1314-17×3314=32. ……………………………12分 因为α为锐角,所以0<2α<π. 又cos2α>0,所以0<2α<π2,又β为锐角,所以-π2<2α-β<π2,所以2α-β=π3. …………………………………14分16.(本小题满分14分)(1)证明:如图1,连结PE .因为△PBC 的边长为2的正三角形,E 为BC 中点, 所以PE ⊥BC , ……………………2分 且PE =3,同理AE =3.因为P A =6,所以PE 2+AE 2=P A 2,所以PE ⊥AE .……4分 因为PE ⊥BC ,PE ⊥AE ,BC ∩AE =E ,AE ,BC ⊂平面ABC , 所以PE ⊥平面ABC . 因为PE ⊂平面PBC ,所以平面PBC ⊥平面ABC . ……………………7分 (2)解法一如图1,连接CD 交AE 于O ,连接OM .因为PD ∥平面AEM ,PD ⊂平面PDC ,平面AEM ∩平面PDC =OM ,所以PD ∥OM , ……………………………………9分 所以PM PC =DODC . ……………………………………11分因为D ,E 分别为AB ,BC 的中点,CD ∩AE =O , 所以O 为∆ABC 重心,所以DO DC =13, 所以PM =13PC =23. …………………………………14分解法二如图2,取BE 的中点N ,连接PN . 因为D ,N 分别为AB ,BE 的中点, 所以DN ∥AE .又DN ⊄平面AEM ,AE ⊂平面AEM , 所以DN ∥平面AEM .又因为PD ∥平面AEM ,DN ⊂平面PDN ,PD ⊂平面PDN ,DN ∩PD =D , 所以平面PDN ∥平面AEM . ………………………………9分 又因为平面AEM ∩平面PBC =ME ,平面PDN ∩平面PBC =PN ,所以ME ∥PN ,所以PM PC =NENC . ………………………………11分因为E ,N 分别为BC ,BE 的中点,所以NE NC =13,所以PM =13PC =23. ………………………………14分17.(本小题满分14分) 解:(1)连结DC .(图2)PAM DEC B N(图1)OB P ACMDE在△ABC 中,AC 为2百米,AC ⊥BC ,∠A 为π3,所以∠CBA =π6,AB =4,BC =23. ………………………………2分因为BC 为直径,所以∠BDC =π2,所以BD =BC cos θ=23cos θ. ………………………………4分 (2)在△BDF 中,∠DBF =θ+π6,∠BFD =π3,BD =23cos θ,所以DF sin(θ+π6)=BF sin(π2-θ)=BDsin ∠BFD ,所以DF =4cos θsin(π6+θ), ………………………………6分且BF =4cos 2θ,所以DE =AF =4-4cos 2θ, ………………………………8分 所以DE +DF =4-4cos 2θ+4 cos θsin(π6+θ)=3sin2θ-cos2θ+3=2 sin(2θ-π6)+3. …………………………………12分因为π3≤θ<π2,所以π2≤2θ-π6<5π6,所以当2θ-π6=π2,即θ=π3时,DE +DF 有最大值5,此时E 与C 重合. ……………13分答:当E 与C 重合时,两条栈道长度之和最大. …………………………………14分18.(本小题满分16分)解(1)离心率e =c a =32,所以c =32a ,b =a 2-c 2=12a , …………………………………2分所以椭圆C 的方程为x 24b 2+y 2b2=1.因为椭圆C 经过点P (85,35),所以1625b 2+925b 2=1,所以b 2=1,所以椭圆C 的方程为x 24+y 2=1. …………………………………4分(2)解法一设N (n ,0),当l 斜率不存在时,A (25,y ),B (25,-y ),则y 2=1-(25)24=2425,则NA →⋅NB →=(25-n )2-y 2=(25-n )2-2425=n 2-45n -45, …………………………………6分当l 经过左、右顶点时,NA →⋅NB →=(-2-n )(2-n )=n 2-4.令n 2-45n -45=n 2-4,得n =4. ……………………………………8分下面证明当N 为(4,0)时,对斜率为k 的直线l :y =k (x -25),恒有NA →⋅NB →=12.设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧x 24+y 2=1,y =k (x -25),消去y ,得(4k 2+1)x 2-165k 2x +1625k 2-4=0,所以x 1+x 2=165k 24k 2+1,x 1x 2=1625k 2-44k 2+1, …………………………………10分所以NA →⋅NB →=(x 1-4)(x 2-4)+y 1y 2=(x 1-4)(x 2-4)+k 2(x 1-25)(x 2-25)=(k 2+1)x 1x 2-(4+25k 2)(x 1+x 2)+16+425k 2 …………………………………12分=(k 2+1)1625k 2-44k 2+1-(4+25k 2)165k 24k 2+1+16+425k 2=(k 2+1)(1625k 2-4)-165k 2(4+25k 2)+425k 2(4k 2+1)4k 2+1+16=-16k 2-44k 2+1+16=12.所以在x 轴上存在定点N (4,0),使得NA →⋅NB →为定值. …………………………………16分 解法二设N (n ,0),当直线l 斜率存在时,设l :y =k (x -25),设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧x 24+y 2=1,y =k (x -25),消去y ,得(4k 2+1)x 2-165k 2x +1625k 2-4=0, 所以x 1+x 2=165k 24k 2+1,x 1x 2=1625k 2-44k 2+1, …………………………………6分所以NA →⋅NB →=(x 1-n )(x 2-n )+y 1y 2=(x 1-n )(x 2-n )+k 2(x 1-25)(x 2-25)=(k 2+1)x 1x 2-(n +25k 2)(x 1+x 2)+n 2+425k 2=(k 2+1)1625k 2-44k 2+1-(n +25k 2)165k 24k 2+1+n 2+425k 2 ……………………………………8分=(k 2+1)(1625k 2-4)-165k 2(n +25k 2)+425k 2(4k 2+1)4k 2+1+n 2=(-165n -165)k 2-44k 2+1+n 2. ……………………………………12分 若NA →⋅NB →为常数,则(-165n -165)k 2-44k 2+1为常数,设(-165n -165)k 2-44k 2+1=λ,λ为常数,则(-165n -165)k 2-4=4λk 2+λ对任意的实数k 恒成立,所以⎩⎪⎨⎪⎧-165n -165=4λ,-4=λ,所以n =4,λ=-4,此时NA →⋅NB →=12. ……………………………………14分 当直线l 斜率不存在时,A (25,y ),B (25,-y ),则y 2=1-(25)24=2425,所以NA →⋅NB →=(25-4)2-y 2=(25-4)2-2425=12,所以在x 轴上存在定点N (4,0),使得NA →⋅NB →为定值. ………………………………16分 19.(本小题满分16分)解:(1)因为f (x )=2x 3-3ax 2+3a -2(a >0),所以f'(x )=6x 2-6ax =6x (x -a ).令f'(x )=0,得x =0或a . ………………………………2分 当x ∈(-∞,0)时,f'(x )>0,f (x )单调递增;当x ∈(0,a )时,f'(x )<0,f (x )单调递减; 当x ∈(a ,+∞)时,f'(x )>0,f (x )单调递增.故f (x )极大值=f (0)=3a -2=0,解得a =23. ………………………………4分(2)g (x )=f (x )+6x =2x 3-3ax 2+6x +3a -2(a >0), 则g ′(x )=6x 2-6ax +6=6(x 2-ax +1),x ∈[0,1].①当0<a ≤2时,△=36(a 2-4)≤0,所以g ′(x )≥0恒成立,g (x )在[0,1]上单调递增,则g (x )取得最大值时x 的值为1. ……………………………6分②当a >2时,g ′(x )的对称轴x =a2>1,且△=36(a 2-4)>0,g ′(1)=6(2-a )<0,g ′(0)=6>0,所以g ′(x )在(0,1)上存在唯一零点x 0=a -a 2-42.当x ∈(0,x 0)时,g ′(x )>0,g (x )单调递增, 当x ∈(x 0,1)时,g ′(x )<0,g (x )单调递减,则g (x )取得最大值时x 的值为x 0=a -a 2-42. ………………………………8分综上,当0<a ≤2时,g (x )取得最大值时x 的值为1;当a >2时,g (x )取得最大值时x 的值为a -a 2-42. ……………………………9分(3)设h (x )=f (x )-f ′(x )=2x 3-3(a +2)x 2+6ax +3a -2,则h (x )≥0在[a 2,a +22]有解. ………………………………10分h ′(x )=6[x 2-(a +2)x +a ]=6[(x -a +22)2-a 2+44],因为h ′(x )在(a 2,a +22)上单调递减,所以h ′(x )<h ′(a 2)=-32a 2<0,所以h (x )在(a 2,a +22)上单调递减,所以h (a2)≥0,即a 3-3a 2-6a +4≤0. …………………………………12分设t (a )=a 3-3a 2-6a +4(a >0),则t ′ (a )=3a 2-6a -6, 当a ∈(0,1+2)时,t ′ (a )<0,t (a )单调递减; 当a ∈(1+2,+∞)时,t ′ (a )>0,t (a )单调递增.因为t (0)=4>0,t (1)=-4<0,所以t (a )存在一个零点m ∈(0,1), …………………14分 因为t (4)=-4<0,t (5)=24>0,所以t (a )存在一个零点n ∈(4,5), 所以t (a )≤0的解集为[m ,n ],故满足条件的正整数a 的集合为{1,2,3,4}. …………………………………16分20.(本小题满分16分)解:(1)当n ≥2时,a n =S n -S n -1=2n 2-2(n -1)2=4n -2,又a 1=S 1=2=4×1-2,所以a n =4n -2. …………………………………2分 所以a n +|a n +1-a n +2|=4n -2+4=4(n +1)-2为数列{a n }的第n +1项,因此数列{a n }为“T 数列”. …………………………………4分 (2)因为数列{a n }是公差为d 的等差数列, 所以a n +|a n +1-a n +2|=a 1+(n -1) d +|d |. 因为数列{a n }为“T 数列”,所以任意n ∈N *,存在m ∈N *,使得a 1+(n -1) d +|d |=a m ,即有(m -n ) d =|d |.…………6分 ①若d ≥0,则存在m =n +1∈N *,使得(m -n ) d =|d |, ②若d <0,则m =n -1.此时,当n =1时,m =0不为正整数,所以d <0不符合题意.综上,d ≥0. ……………………………………8分 (3)因为a n <a n +1,所以a n +|a n +1-a n +2|=a n +a n +2-a n +1.又因为a n <a n +a n +2-a n +1=a n +2-(a n +1-a n )<a n +2,且数列{a n }为“T 数列”, 所以a n +a n +2-a n +1=a n +1,即a n +a n +2=2a n +1,所以数列{a n }为等差数列. …………………………………10分 设数列{a n }的公差为t (t >0),则有a n =1+(n -1)t ,由a n <a 2n +1-a 2n <a n +1,得1+(n -1)t <t [2+(2n -1)t ]<1+nt ,………………………………12分整理得n (2t 2-t )>t 2-3t +1, ①n (t -2t 2)>2t -t 2-1. ②若2t 2-t <0,取正整数N 0>t 2-3t +12t 2-t,则当n >N 0时,n (2t 2-t )<(2t 2-t ) N 0<t 2-3t +1,与①式对于任意n ∈N *恒成立相矛盾, 因此2t 2-t ≥0.同样根据②式可得t -2t 2≥0, 所以2t 2-t =0.又t >0,所以t =12.经检验当t =12时,①②两式对于任意n ∈N *恒成立,所以数列{a n }的通项公式为a n =1+12(n -1)=n +12. ………………………………16分南京市2018届高三年级第三次模拟考试数学附加题参考答案及评分标准 2018.05说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答.卷卡指定区域......内.作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲证明:连结MN ,则∠BMN =∠BCA , ………………………………2分又∠MBN =∠CBA ,因此△MBN ∽△CBA . ………………………………4分 所以AB AC =BNMN . ………………………………6分又因为AC =12AB ,所以BNMN =2,即BN =2MN . ………………………………8分又因为BN =2AM ,所以AM =MN ,所以CM 是∠ACB 的平分线. ………………………………10分 B .选修4—2:矩阵与变换解:因为A =⎣⎢⎡⎦⎥⎤1 20 1,B =⎣⎢⎡⎦⎥⎤2 00 1,所以AB =⎣⎢⎡⎦⎥⎤2 20 1. ………………………………4分 设点P 0(x 0,y 0)是l 上任意一点,P 0在矩阵AB 对应的变换作用下得到P (x ,y ).因为P 0(x 0,y 0)在直线l : x -y +2=0上,所以x 0-y 0+2=0. ①由AB ⎣⎡⎦⎤x 0y 0=⎣⎡⎦⎤x y ,即⎣⎢⎡⎦⎥⎤2 20 1 ⎣⎡⎦⎤x 0y 0=⎣⎡⎦⎤x y , 得⎩⎨⎧2 x 0+2 y 0=x , y 0=y ,………………………………6分 即⎩⎪⎨⎪⎧x 0=12x -y ,y 0=y .② 将②代入①得x -4y +4=0,所以直线l 1的方程为x -4y +4=0. ………………………………10分C .选修4—4:坐标系与参数方程解:解法一在直线ρsin(θ-π3)=-3中,令θ=0,得ρ=2.所以圆C 的圆心坐标为C (2,0). ………………………………4分因为圆C 经过点P (2,π3),所以圆C 的半径PC =22+22-2×2×2×cos π3=2, ……………………………6分所以圆C 的极坐标方程ρ=4cos θ. ……………………………10分解法二以极点为坐标原点,极轴为x 轴建立平面直角坐标系,则直线方程为y =3x -23,P 的直角坐标为(1,3),令y =0,得x =2,所以C (2,0), ………………………………4分 所以圆C 的半径PC =(2-1)2+(0-3)2=2, ………………………………6分所以圆C 的方程为(x -2)2+(y -0)2=4,即x 2+y 2-4x =0, ………………………………8分所以圆C 的极坐标方程ρ=4cos θ. ……………………………10分D .选修4—5:不等式选讲解:因为(12+12+12)[(2a +b )2+(2b +c )2+(2c +a )2]≥(1·2a +b +1·2b +c +1·2c +a )2,即(2a +b +2b +c +2c +a )2≤9(a +b +c ). ……………………………4分因为a +b +c =1,所以(2a +b +2b +c +2c +a )2≤9, ……………………………6分所以2a +b +2b +c +2c +a ≤3,当且仅当2a +b =2b +c =2c +a ,即a =b =c =13时等号成立.所以2a +b +2b +c +2c +a 的最大值为3. ……………………………10分【必做题】第22题、第23题,每题10分,共计20分. 22.(本小题满分10分)解:(1)因为点A (1,a ) (a >0)是抛物线C 上一点,且AF =2,所以p2+1=2,所以p =2. ……………………………3分(2)解法一由(1)得抛物线方程为y 2=4x .因为点A (1,a ) (a >0)是抛物线C 上一点,所以a =2. ……………………………4分设直线AM 方程为x -1=m (y -2) (m ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎨⎧x -1=m (y -2),y 2=4x ,消去x ,得y 2-4m y +8m -4=0, 即(y -2)( y -4m +2)=0,所以y 1=4m -2. ……………………………6分 因为AM ⊥AN ,所以-1m 代m ,得y 2=-4m -2, ……………………………8分所以d 1d 2=|(y 1+2) (y 2+2)|=|4m ×(-4m )|=16. ……………………………10分解法二由(1)得抛物线方程为y 2=4x .因为点A (1,a ) (a >0)是抛物线C 上一点,所以a =2. ……………………………4分 设M (x 1,y 1),N (x 2,y 2),则AM →·AN →=(x 1-1)(x 2-1)+( y 1-2) (y 2-2)=0. ……6分 又因为M (x 1,y 1),N (x 2,y 2)在y 2=4x 上,所以(y 21-4) (y 22-4)+16( y 1-2) (y 2-2)=0,即[( y 1+2) (y 2+2)+16]( y 1-2) (y 2-2)=0.因为( y 1-2) (y 2-2)≠0,所以( y 1+2) (y 2+2)=-16, ……………………………8分所以d 1d 2=|(y 1+2) (y 2+2)|=16. ……………………………10分23.(本小题满分10分)解:(1)因为f n (x )=i =1∑n -1An -in x (x +1)…(x +i -1),所以f n (1)=i =1∑n -1An -i n ×1×…×i =i =1∑n -1n !=(n -1)×n !,g n (1)=A nn +1×2×…×n =2×n !,所以(n -1)×n !=14×n !,解得n =15. ……………………………3分 (2)因为f 2(x )+g 2(x )=2x +2+x (x +1)=(x +1)(x +2),f 3(x )+g 3(x )=6x +3x (x +1)+6+x (x +1)(x +2)=(x +1)(x +2)(x +3),猜想f n (x )+g n (x )=(x +1)(x +2)…(x +n ). ……………………………5分下面用数学归纳法证明: 当n =2时,命题成立;假设n =k (k ≥2,k ∈N *)时命题成立,即f k (x )+g k (x )=(x +1)(x +2)…(x +k ),因为f k +1(x )=i =1∑kAk +1-ik +1x (x +1)…(x +i -1)=i =1∑k -1(k +1)A k -ik x (x +1)…(x +i -1)+A 1k +1x (x +1)…(x +k -1)=(k +1) f k (x )+(k +1) x (x +1)…(x +k -1),所以f k +1(x )+g k +1(x )=(k +1) f k (x )+(k +1) x (x +1)…(x +k -1)+A k +1k +1+x (x +1)…(x +k )=(k +1)[ f k (x )+x (x +1)…(x +k -1)+A kk ]+x (x +1)…(x +k )=(k +1)[ f k (x )+g k (x )]+x (x +1)…(x +k )=(k +1)(x +1)(x +2)…(x +k )+x (x +1)…(x +k ) =(x +1)(x +2)…(x +k ) (x +k +1),即n =k +1时命题也成立.因此任意n ∈N *且n ≥2,有f n (x )+g n (x )=(x +1)(x +2)…(x +n ). …………………9分所以对于每一个给定的正整数n ,关于x 的方程f n (x )+g n (x )=0所有解的集合为{-1,-2,…,-n}.……………………………10分。
2018南京三模英语试卷及答案南京市2018届高三年级第三次模拟考试英语南京市2018届高三年级第三次模拟考试英语试卷第一部分听力(共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1Why does the man want to leave?A . The food is toobad.B The music is too loud C. The service is too slow.2What is the woman?A.A nurseB. A. teacherC. A clerk3.What does the man mean?A .He missed the endof the game.B. He got home a fewminutes late.c. He watched the gamefive minutes.4Where does the conversation probably take place?A.In a shop.B. At the cinema C .On a bus.5.How long did the woman stay in Chicago?A. 6 yearsB. I2 years.C.23 years第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
市2018届高三年级第三次模拟考试数 学 2018.05一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.集合A ={x| x 2+x -6=0},B ={x| x 2-4=0},则A ∪B =▲________.2.已知复数z 的共轭复数是-z .若z (2-i)=5,其中i 为虚数单位,则-z 的模为▲________.3.某学校为了了解住校学生每天在校平均开销情况,随机抽取了500名学生,他们的每天在校平均开销都不低于20元且不超过60元,其频率分布直方图如图所示,则其中每天在校平均开销在[50,60]元的学生人数为▲________.4.根据如图所示的伪代码,可知输出S 的值为▲________.5.已知A ,B ,C 三人分别在连续三天中值班,每人值班一天,那么A 与B 在相邻两天值班的概率为▲________.6.若实数x ,y 满足⎩⎪⎨⎪⎧x -y -3≤0,x +2y -5≥0,y -2≤0,则yx 的取值围为▲________.7. 已知α,β是两个不同的平面,l ,m 是两条不同的直线,有如下四个命题: ①若l ⊥α,l ⊥β,则α∥β; ②若l ⊥α,α⊥β,则l ∥β; ③若l ∥α,l ⊥β,则α⊥β; ④若l ∥α,α⊥β,则l ⊥β. 其中真命题为▲________(填所有真命题的序号).8.在平面直角坐标系xOy 中,若双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点到一条渐近线的距离为2a ,则该双曲线的离心率为▲________.9.若等比数列{a n }的前n 项和为S n ,n ∈N *,且a 1=1,S 6=3S 3,则a 7的值为▲________.10.若f (x )是定义在R 上的周期为3的函数,且f (x )=⎩⎨⎧x 2+x +a ,0≤x ≤2,-6x +18,2<x ≤3,则f (a+1)的值为▲________.S ←1 I ←1While I <8 S ←S +2 I ←I +3 End While Print S(第4题图)(第3题图)11.在平面直角坐标系xOy 中,圆M :x 2+y 2-6x -4y +8=0与x 轴的两个交点分别为A ,B ,其中A 在B 的右侧,以AB 为直径的圆记为圆N ,过点A 作直线l 与圆M ,圆N 分别交于C ,D 两点.若D 为线段AC 的中点,则直线l 的方程为▲________.12.在△ABC 中,AB =3,AC =2,D 为边BC 上一点.若AB →·AD →=5, AC →·AD →=-23,则AB →·AC →的值为▲________.13.若正数a ,b ,c 成等差数列,则c 2a +b +ba +2c的最小值为▲________.14.已知a ,b ∈R ,e 为自然对数的底数.若存在b ∈[-3e ,-e 2],使得函数f (x )=e x -ax -b 在[1,3]上存在零点,则a 的取值围为▲________.二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域) 15.(本小题满分14分)在平面直角坐标系xOy 中,锐角α,β的顶点为坐标原点O ,始边为x 轴的正半轴,终边与单位圆O 的交点分别为P ,Q .已知点P 的横坐标为277,点Q 的纵坐标为3314.(1)求cos2α的值; (2)求2α-β的值.16.(本小题满分14分)如图,在三棱锥P -ABC 中,PA =6,其余棱长均为2,M 是棱PC 上的一点,D ,E 分别为棱AB ,BC 的中点.(1)求证: 平面PBC ⊥平面ABC ; (2)若PD ∥平面AEM ,求PM 的长.POy(第15题图)Qx(第16题图)ABMDEP17.(本小题满分14分)如图,公园里有一湖泊,其边界由两条线段AB ,AC 和以BC 为直径的半圆弧BC ⌒组成,其中AC 为2百米,AC ⊥BC ,∠A 为π3.若在半圆弧BC ⌒,线段AC ,线段AB 上各建一个观赏亭D ,E ,F ,再修两条栈道DE ,DF ,使DE ∥AB ,DF ∥AC . 记∠CBD =θ(π3≤θ<π2).(1)试用θ表示BD 的长;(2)试确定点E 的位置,使两条栈道长度之和最大.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P (85,35),离心率为32. 已知过点M (25,0)的直线l 与椭圆C 交于A ,B 两点. (1)求椭圆C 的方程;(2)试问x 轴上是否存在定点N ,使得NA →·NB →为定值.若存在,求出点N 的坐标;若不存在,请说明理由.(第17题图)(第18题图)19.(本小题满分16分)已知函数f (x )=2x 3-3ax 2+3a -2(a >0),记f'(x )为f (x )的导函数. (1)若f (x )的极大值为0,数a 的值;(2)若函数g (x )=f (x )+6x ,求g (x )在[0,1]上取到最大值时x 的值;(3)若关于x 的不等式f (x )≥f'(x )在[a 2,a +22]上有解,求满足条件的正整数a 的集合.20.(本小题满分16分)若数列{a n }满足:对于任意n ∈N *,a n +|a n +1-a n +2|均为数列{a n }中的项,则称数列{a n }为“T 数列”. (1)若数列{a n }的前n 项和S n =2n 2,n ∈N *,求证:数列{a n }为“T 数列”; (2)若公差为d 的等差数列{a n }为“T 数列”,求d 的取值围;(3)若数列{a n }为“T 数列”,a 1=1,且对于任意n ∈N *,均有a n <a 2n +1-a 2n <a n +1,求数列{a n }的通项公式.市2018届高三年级第三次模拟考试数学附加题 2018.05B .选修4—2:矩阵与变换已知矩阵A =⎣⎢⎡⎦⎥⎤1 2 0 1 ,B =⎣⎢⎡⎦⎥⎤2 0 0 1 ,若直线l : x -y +2=0在矩阵AB 对应的变换作用下得到直线l 1,求直线l 1的方程.C .选修4—4:坐标系与参数方程在极坐标系中,已知圆C 经过点P (2,π3),圆心C 为直线ρsin(θ-π3)=-3与极轴的交点,求圆C 的极坐标方程.22.(本小题满分10分)在平面直角坐标系xOy 中,抛物线C :y 2=2px (p >0)的焦点为F ,点A (1,a ) (a >0)是抛物线C 上一点,且AF =2.(1)求p 的值;(2)若M ,N 为抛物线C 上异于A 的两点,且AM ⊥AN .记点M ,N 到直线y =-2的距离分别为d 1,d 2,求d 1d 2的值.23.(本小题满分10分) 已知f n (x )=i =1∑n -1An -i nx (x +1)…(x +i -1),g n (x )=A n n +x (x +1)…(x +n -1),其中x ∈R ,n ∈N *且n ≥2.(1)若f n (1)=7g n (1),求n 的值;(2)对于每一个给定的正整数n ,求关于x 的方程f n (x )+g n (x )=0所有解的集合.市2018届高三年级第三次模拟考试数学参考答案一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.{-3,-2,2} 2. 5 3.150 4.7 5.23 6.[211,2] 7. ①③8. 5 9.4 10.2 11.x +2y -4=0 12.-3 13.259 14.[e 2,4e]二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域) 15.(本小题满分14分)解:(1)因为点P 的横坐标为277,P 在单位圆上,α为锐角,所以cos α=277, ……2分所以cos2α=2cos 2α-1=17. ……4分(2)因为点Q 的纵坐标为3314,所以sin β=3314. ……6分又因为β为锐角,所以cos β=1314. ……8分因为cos α=277,且α为锐角,所以sin α=217,因此sin2α=2sin αcos α=437, …10分所以sin(2α-β) =437×1314-17×3314=32. …12分 因为α为锐角,所以0<2α<π.又cos2α>0,所以0<2α<π2,又β为锐角,所以-π2<2α-β<π2,所以2α-β=π3. ……14分16.(本小题满分14分)(1)证明:如图1,连结PE .因为△PBC 的边长为2的正三角形,E 为BC 中点,所以PE ⊥BC , ……2分 且PE =3,同理AE =3.P ACM因为PA =6,所以PE 2+AE 2=PA 2,所以PE ⊥AE .……4分 因为PE ⊥BC ,PE ⊥AE ,BC ∩AE =E ,AE ,BC ⊂平面ABC , 所以PE ⊥平面ABC .因为PE ⊂平面PBC ,所以平面PBC ⊥平面ABC . ……7分 (2)解法一如图1,连接CD 交AE 于O ,连接OM .因为PD ∥平面AEM ,PD ⊂平面PDC ,平面AEM ∩平面PDC =OM , 所以PD ∥OM , …………9分所以PM PC =DO DC. …………11分因为D ,E 分别为AB ,BC 的中点,CD ∩AE =O ,所以O 为∆ABC 重心,所以DO DC =13, 所以PM =13PC =23. ………14分解法二如图2,取BE 的中点N ,连接PN . 因为D ,N 分别为AB ,BE 的中点, 所以DN ∥AE .又DN ⊄平面AEM ,AE ⊂平面AEM , 所以DN ∥平面AEM .又因为PD ∥平面AEM ,DN ⊂平面PDN ,PD ⊂平面PDN ,DN ∩PD =D , 所以平面PDN ∥平面AEM . ………………………………9分 又因为平面AEM ∩平面PBC =ME ,平面PDN ∩平面PBC =PN , 所以ME ∥PN ,所以PM PC =NENC. ………………………………11分 因为E ,N 分别为BC ,BE 的中点,所以NE NC =13,所以PM =13PC =23. …………14分 17.(本小题满分14分) ………解:(1)连结DC .在△ABC 中,AC 为2百米,AC ⊥BC ,∠A 为π3,所以∠CBA =π6,AB =4,BC =23. ………2分因为BC 为直径,所以∠BDC =π2,所以BD =BC cos θ=23cos θ. …………4分(图2)P AMDECBN(2)在△BDF 中,∠DBF =θ+π6,∠BFD =π3,BD =23cos θ,所以DF sin(θ+π6)=BFsin(π2-θ)=BD sin ∠BFD , 所以DF =4cos θsin(π6+θ), ……………6分 且BF =4cos 2θ,所以DE =AF =4-4cos 2θ, …………8分所以DE +DF =4-4cos 2θ+4 cos θsin(π6+θ)=3sin2θ-cos2θ+3=2 sin(2θ-π6)+3. ………12分因为π3≤θ<π2,所以π2≤2θ-π6<5π6,所以当2θ-π6=π2,即θ=π3时,DE +DF 有最大值5,此时E 与C 重合. …13分答:当E 与C 重合时,两条栈道长度之和最大. …………14分 18.(本小题满分16分) 解(1)离心率e =ca =32,所以c =32a ,b =a 2-c 2=12a , ………………2分 所以椭圆C 的方程为x 24b 2+y 2b2=1.因为椭圆C 经过点P (85,35),所以1625b 2+925b 2=1,所以b 2=1,所以椭圆C 的方程为x 24+y 2=1. …………………………………4分(2)解法一设N (n ,0),当l 斜率不存在时,A (25,y ),B (25,-y ),则y 2=1-(25)24=2425,则NA →⋅NB →=(25-n )2-y 2=(25-n )2-2425=n 2-45n -45, …………6分当l 经过左、右顶点时,NA →⋅NB →=(-2-n )(2-n )=n 2-4. 令n 2-45n -45=n 2-4,得n =4. ………………8分下面证明当N 为(4,0)时,对斜率为k 的直线l :y =k (x -25),恒有NA →⋅NB →=12.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 2=1,y =k (x -25),消去y ,得(4k 2+1)x 2-165k 2x +1625k 2-4=0,所以x 1+x 2=165k 24k 2+1,x 1x 2=1625k 2-44k 2+1, ……………10分所以NA →⋅NB →=(x 1-4)(x 2-4)+y 1y 2=(x 1-4)(x 2-4)+k 2(x 1-25)(x 2-25)=(k 2+1)x 1x 2-(4+25k 2)(x 1+x 2)+16+425k 2 ……………12分=(k 2+1)1625k 2-44k 2+1-(4+25k 2)165k 24k 2+1+16+425k 2=(k 2+1)(1625k 2-4)-165k 2(4+25k 2)+425k 2(4k 2+1)4k 2+1+16=-16k 2-44k 2+1+16=12.所以在x 轴上存在定点N (4,0),使得NA →⋅NB →为定值. ………………16分 解法二设N (n ,0),当直线l 斜率存在时,设l :y =k (x -25),设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 2=1,y =k (x -25),消去y ,得(4k 2+1)x 2-165k 2x +1625k 2-4=0,所以x 1+x 2=165k 24k 2+1,x 1x 2=1625k 2-44k 2+1, ……………6分所以NA →⋅NB →=(x 1-n )(x 2-n )+y 1y 2=(x 1-n )(x 2-n )+k 2(x 1-25)(x 2-25)=(k 2+1)x 1x 2-(n +25k 2)(x 1+x 2)+n 2+425k 2=(k 2+1)1625k 2-44k 2+1-(n +25k 2)165k 24k 2+1+n 2+425k 2………………8分=(k 2+1)(1625k 2-4)-165k 2(n +25k 2)+425k 2(4k 2+1)4k 2+1+n 2 =(-165n -165)k 2-44k 2+1+n 2. ………………12分若NA →⋅NB →为常数,则(-165n -165)k 2-44k 2+1为常数,设(-165n -165)k 2-44k 2+1=λ,λ为常数, 则(-165n -165)k 2-4=4λk 2+λ对任意的实数k 恒成立, 所以⎩⎪⎨⎪⎧-165n -165=4λ,-4=λ,所以n =4,λ=-4, 此时NA →⋅NB →=12. …………14分 当直线l 斜率不存在时,A (25,y ),B (25,-y ),则y 2=1-(25)24=2425, 所以NA →⋅NB →=(25-4)2-y 2=(25-4)2-2425=12, 所以在x 轴上存在定点N (4,0),使得NA →⋅NB →为定值. ………………………………16分19.(本小题满分16分)解:(1)因为f (x )=2x 3-3ax 2+3a -2(a >0),所以f'(x )=6x 2-6ax =6x (x -a ).令f'(x )=0,得x =0或a . ………………2分当x ∈(-∞,0)时,f'(x )>0,f (x )单调递增;当x ∈(0,a )时,f'(x )<0,f (x )单调递减;当x ∈(a ,+∞)时,f'(x )>0,f (x )单调递增.故f (x )极大值=f (0)=3a -2=0,解得a =23. ………………4分 (2)g (x )=f (x )+6x =2x 3-3ax 2+6x +3a -2(a >0),则g ′(x )=6x 2-6ax +6=6(x 2-ax +1),x ∈[0,1].①当0<a ≤2时,△=36(a 2-4)≤0,所以g ′(x )≥0恒成立,g (x )在[0,1]上单调递增,则g (x )取得最大值时x 的值为1. ……………………………6分②当a >2时,g ′(x )的对称轴x =a 2>1,且△=36(a 2-4)>0,g ′(1)=6(2-a )<0,g ′(0)=6>0, 所以g ′(x )在(0,1)上存在唯一零点x 0=a -a 2-42.当x ∈(0,x 0)时,g ′(x )>0,g (x )单调递增,当x ∈(x 0,1)时,g ′(x )<0,g (x )单调递减,则g (x )取得最大值时x 的值为x 0=a -a 2-42. ………………………………8分综上,当0<a ≤2时,g (x )取得最大值时x 的值为1;当a >2时,g (x )取得最大值时x 的值为a -a 2-42. ……………………………9分(3)设h (x )=f (x )-f ′(x )=2x 3-3(a +2)x 2+6ax +3a -2,则h (x )≥0在[a 2,a +22]有解. ………………………………10分 h ′(x )=6[x 2-(a +2)x +a ]=6[(x -a +22)2-a 2+44], 因为h ′(x )在(a 2,a +22)上单调递减,所以h ′(x )<h ′(a 2)=-32a 2<0, 所以h (x )在(a 2,a +22)上单调递减, 所以h (a 2)≥0,即a 3-3a 2-6a +4≤0. …………………………………12分 设t (a )=a 3-3a 2-6a +4(a >0),则t ′ (a )=3a 2-6a -6,当a ∈(0,1+2)时,t ′ (a )<0,t (a )单调递减;当a ∈(1+2,+∞)时,t ′ (a )>0,t (a )单调递增.因为t (0)=4>0,t (1)=-4<0,所以t (a )存在一个零点m ∈(0,1), …………………14分 因为t (4)=-4<0,t (5)=24>0,所以t (a )存在一个零点n ∈(4,5),所以t (a )≤0的解集为[m ,n ],故满足条件的正整数a 的集合为{1,2,3,4}. …………………………………16分20.(本小题满分16分)解:(1)当n ≥2时,a n =S n -S n -1=2n 2-2(n -1)2=4n -2,又a 1=S 1=2=4×1-2,所以a n =4n -2. …………………………………2分 所以a n +|a n +1-a n +2|=4n -2+4=4(n +1)-2为数列{a n }的第n +1项,因此数列{a n }为“T 数列”. …………………………………4分(2)因为数列{a n }是公差为d 的等差数列,所以a n +|a n +1-a n +2|=a 1+(n -1) d +|d |.因为数列{a n }为“T 数列”,所以任意n ∈N *,存在m ∈N *,使得a 1+(n -1) d +|d |=a m ,即有(m -n ) d =|d |.…………6分 ①若d ≥0,则存在m =n +1∈N *,使得(m -n ) d =|d |,②若d <0,则m =n -1.此时,当n =1时,m =0不为正整数,所以d <0不符合题意.综上,d ≥0. ……………………………………8分(3)因为a n <a n +1,所以a n +|a n +1-a n +2|=a n +a n +2-a n +1.又因为a n <a n +a n +2-a n +1=a n +2-(a n +1-a n )<a n +2,且数列{a n }为“T 数列”,所以a n +a n +2-a n +1=a n +1,即a n +a n +2=2a n +1,所以数列{a n }为等差数列. …………………………………10分 设数列{a n }的公差为t (t >0),则有a n =1+(n -1)t ,由a n <a 2n +1-a 2n <a n +1,得1+(n -1)t <t [2+(2n -1)t ]<1+nt ,………………………………12分整理得n (2t 2-t )>t 2-3t +1, ①n (t -2t 2)>2t -t 2-1. ②若2t 2-t <0,取正整数N 0>t 2-3t +1 2t 2-t, 则当n >N 0时,n (2t 2-t )<(2t 2-t ) N 0<t 2-3t +1,与①式对于任意n ∈N *恒成立相矛盾, 因此2t 2-t ≥0.同样根据②式可得t -2t 2≥0,所以2t 2-t =0.又t >0,所以t =12. 经检验当t =12时,①②两式对于任意n ∈N *恒成立, 所以数列{a n }的通项公式为a n =1+12(n -1)=n +12. ………………………………16分 B .选修4—2:矩阵与变换解:因为A =⎣⎢⎡⎦⎥⎤1 20 1,B =⎣⎢⎡⎦⎥⎤2 00 1,所以AB =⎣⎢⎡⎦⎥⎤2 20 1. ………………………………4分 设点P 0(x 0,y 0)是l 上任意一点,P 0在矩阵AB 对应的变换作用下得到P (x ,y ).因为P 0(x 0,y 0)在直线l : x -y +2=0上,所以x 0-y 0+2=0. ①由AB ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,即⎣⎢⎡⎦⎥⎤2 20 1 ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y , 得⎩⎪⎨⎪⎧2 x 0+2 y 0=x , y 0=y , ………………6分即⎩⎪⎨⎪⎧x 0=12x -y , y 0=y .② 将②代入①得x -4y +4=0,所以直线l 1的方程为x -4y +4=0. ……………10分C .选修4—4:坐标系与参数方程解:解法一在直线ρsin(θ-π3)=-3中,令θ=0,得ρ=2. 所以圆C 的圆心坐标为C (2,0). …………4分因为圆C 经过点P (2,π3),所以圆C 的半径PC =22+22-2×2×2×cos π3=2, ………………6分所以圆C 的极坐标方程ρ=4cos θ. ……10分解法二以极点为坐标原点,极轴为x 轴建立平面直角坐标系,则直线方程为y =3x -23,P 的直角坐标为(1,3),令y =0,得x =2,所以C (2,0), ………………………………4分 所以圆C 的半径PC =(2-1)2+(0-3)2=2, ………………………………6分 所以圆C 的方程为(x -2)2+(y -0)2=4,即x 2+y 2-4x =0, ………………………………8分所以圆C 的极坐标方程ρ=4cos θ. ……………………………10分【必做题】第22题、第23题,每题10分,共计20分. 22.(本小题满分10分)解:(1)因为点A (1,a ) (a >0)是抛物线C 上一点,且AF =2,所以p 2+1=2,所以p =2. …………3分 (2)解法一由(1)得抛物线方程为y 2=4x .因为点A (1,a ) (a >0)是抛物线C 上一点,所以a =2. …………4分设直线AM 方程为x -1=m (y -2) (m ≠0),M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧x -1=m (y -2),y 2=4x ,消去x ,得y 2-4m y +8m -4=0, 即(y -2)( y -4m +2)=0,所以y 1=4m -2. ……………………………6分 因为AM ⊥AN ,所以-1m 代m ,得y 2=-4m-2, ……………………………8分 所以d 1d 2=|(y 1+2) (y 2+2)|=|4m ×(-4m)|=16. ……………………………10分 解法二由(1)得抛物线方程为y 2=4x .因为点A (1,a ) (a >0)是抛物线C 上一点,所以a =2. ……………………………4分设M (x 1,y 1),N (x 2,y 2),则AM →·AN →=(x 1-1)(x 2-1)+( y 1-2) (y 2-2)=0. ……6分 又因为M (x 1,y 1),N (x 2,y 2)在y 2=4x 上,所以(y 21-4) (y 22-4)+16( y 1-2) (y 2-2)=0,即[( y 1+2) (y 2+2)+16]( y 1-2) (y 2-2)=0.因为( y 1-2) (y 2-2)≠0,所以( y 1+2) (y 2+2)=-16, ……………………………8分 所以d 1d 2=|(y 1+2) (y 2+2)|=16. ……………………………10分23.(本小题满分10分)解:(1)因为f n (x )=i =1∑n -1A n -i n x (x +1)…(x +i -1),所以f n (1)=i =1∑n -1A n -i n ×1×…×i =i =1∑n -1n !=(n -1)×n !,g n (1)=A n n +1×2×…×n =2×n !,所以(n -1)×n !=14×n !,解得n =15. ……………………………3分(2)因为f 2(x )+g 2(x )=2x +2+x (x +1)=(x +1)(x +2),f 3(x )+g 3(x )=6x +3x (x +1)+6+x (x +1)(x +2)=(x +1)(x +2)(x +3),猜想f n (x )+g n (x )=(x +1)(x +2)…(x +n ). ……………………………5分 下面用数学归纳法证明:当n =2时,命题成立;假设n =k (k ≥2,k ∈N *)时命题成立,即f k (x )+g k (x )=(x +1)(x +2)…(x +k ),因为f k +1(x )=i =1∑k A k +1-i k +1x (x +1)…(x +i -1) =i =1∑k -1(k +1)Ak -i k x (x +1)…(x +i -1)+A 1k +1x (x +1)…(x +k -1) =(k +1) f k (x )+(k +1) x (x +1)…(x +k -1),所以f k +1(x )+g k +1(x )=(k +1) f k (x )+(k +1) x (x +1)…(x +k -1)+A k +1k +1+x (x +1)…(x +k ) =(k +1)[ f k (x )+x (x +1)…(x +k -1)+A k k ]+x (x +1)…(x +k ) =(k +1)[ f k (x )+g k (x )]+x (x +1)…(x +k )=(k +1)(x +1)(x +2)…(x +k )+x (x +1)…(x +k )=(x +1)(x +2)…(x +k ) (x +k +1),即n =k +1时命题也成立.因此任意n ∈N *且n ≥2,有f n (x )+g n (x )=(x +1)(x +2)…(x +n ). …………………9分 所以对于每一个给定的正整数n ,关于x 的方程f n (x )+g n (x )=0所有解的集合为{-1,-2,…,-n }. ……………………………10分。