一年级不等式
- 格式:doc
- 大小:51.50 KB
- 文档页数:2
小学一年级方程与不等式练习题请按照以下格式进行练习题和试卷的设计:小学一年级数学练习题一、填空题(每空1分,共10分)1. 3 + 4 = ______2. 6 - 2 = ______3. 5 + ______ = 94. 8 - ______ = 35. 2 + 3 + 4 = ______6. 7 - 2 - 1 = ______7. 6 + ______ = 10 - 38. ______ - 5 = 2 + 19. 4 + 5 + ______ = 1410. ______ - 4 - 3 = 1二、选择题(每题2分,共20分)从每题的四个选项中选择一个正确的答案填入题前的括号内。
1. ( ) 7 + 3 =A. 10B. 14C. 17D. 132. ( ) 8 - 5 =A. 2B. 1C. 3D. 43. ( ) 2 + 6 =A. 6B. 7C. 10D. 84. ( ) 9 - 4 =A. 3B. 4C. 5D. 65. ( ) 3 + 2 + 1 =A. 6B. 5C. 4D. 96. ( ) 6 - 2 - 1 =A. 2B. 3C. 4D. 57. ( ) 6 + 1 =A. 10B. 7C. 11D. 58. ( ) 6 - 3 =A. 1B. 2C. 3D. 49. ( ) 5 + 5 + 2 =A. 13B. 12C. 14D. 1510. ( ) 9 - 3 - 2 =A. 4B. 3C. 2D. 1三、应用题(共10分)1. 小明有6颗苹果,他给了小王2颗苹果,还剩下多少颗苹果?2. 爸爸去年有8元钱,他买了一本书,花了5元钱,还剩下多少钱?3. 在教室里有8个学生,其中5个坐在前排,剩下几个学生坐在后排?4. 小红有5个鸡蛋,她煮了2个,还剩下几个鸡蛋?5. 书架上有7本书,小明买了3本书,还剩下几本书?四、解答题(共20分)1. 用数字填空:1 + __ = 5 - 22. 填入适当的符号:7 __ 5 - 33. 填入适当的数字:8 - __ = 3 + 24. 将下面的等式变成不等式:5 + 3 = 105. 用数字填空:10 + 2 - __ = 8试卷结束。
2023学年上海市重点高中高一年级数学专项(基本不等式求最值)好题练习题型一:基本不等式‐运用凑配法求最值一.选择题(共4小题)1.(2022秋•金水区校级期末)若a>2,则a+有( )A.最小值为4 B.最大值为4 C.最小值为0 D.最大值为02.(2019秋•徐汇区校级期中)设x>0,y>0,下列不等式中等号能成立的有( )①;②;③;④;A.1个 B.2个 C.3个 D.4个3.(2022秋•广州期末)已知x<0,则的最小值为( )A. B.4 C. D.4.(2022秋•九龙坡区校级期中)若a>﹣3,则的最小值为( )A.2 B.4 C.5 D.6二.填空题(共9小题)5.(2022春•甘州区校级月考)函数的最小值是. 6.(2022秋•徐汇区校级期中)若x>1,则的最小值为.7.(2018秋•浦东新区校级期中)已知正实数x,y满足x+y=1,则﹣的最小值是 8.(2016秋•黄浦区校级期末)若x>1,则的最小值为.9.(2017春•浦东新区校级期末)函数y=4x+(x>5)的最小值是.10.(2022秋•天津期末)若x>﹣1,则的最小值为.11.(2022秋•西城区校级月考)函数y=x+(x>﹣1)的最小值是,此时x的值.12.(2022秋•渝北区校级期中)已知正实数x,y满足,则的最小值为.13.(2022秋•北碚区校级月考)已知正实数a,b,c,满足a+b+c=1,则的最大值为.三.答案解答题(共5小题)14.(2022秋•秀峰区校级月考)(1)已知x>0,求函数的最小值;(2)已知,求的最大值.15.(2022秋•长春期中)(1)已知x>3,求的最小值;(2)已知x,y是正实数,且x+y=4,求:①的最小值;②的最小值.16.(2022秋•连云港月考)(1)已知a>0,b>0,且4a+b=1,求ab的最大值;(2)若正数x,y满足x+3y=5xy,求3x+4y的最小值;(3)已知x<,求f(x)=4x﹣2+的最大值.17.(2022秋•靖江市校级期中)(1)当x>3时,求函数的最小值;(2)若正数a,b满足2a+b=6,求的最小值.18.(2022秋•海沧区校级月考)如图,某人计划用篱笆围成一个一边靠墙(墙足够长)的矩形菜园,设菜园的长为x米,宽为y米.(1)若菜园面积为36平方米,则x,y为何值时,所用篱笆总长最小?(2)若使用的篱笆总长为30米,求+的最小值.题型二:基本不等式‐运用1的代换求最值一.选择题(共2小题)1.(2022秋•郫都区校级期中)已知0<x<4,则的最小值为( )A.2 B.3 C.4 D.82.(2022秋•北海期中)已知正实数a,b满足a+b=3,则的最小值是( )A. B.4 C.1 D.二.填空题(共13小题)3.(2022秋•黄浦区校级期中)若正数x,y满足=1,则x+y的最小值为.4.(2018秋•宝山区校级期末)已知x,y∈R+,且满足xy﹣x﹣2y=0,则x+y的最小值为. 5.(2022秋•金山区期末)设a、b为正数,且a+b=1,则的最小值为.6.(2018秋•浦东新区校级期中)已知正实数x,y满足x+y=1,则﹣的最小值是 7.(2022秋•庐江县期末)设a>0,b>2,且a+b=3,则的最小值是. 8.(2022秋•越秀区期末)函数y=a x﹣1+1(a>0,a≠1)的图象恒过定点P,则点P的坐标是;若点P在直线mx+ny=1(m>0,n>0上,则的最小值为.9.(2022秋•松江区校级期末)设x>0,y>1,且,若x+y的最小值为4,则实数a的值为.10.(2022秋•宝山区校级期中)a>0,b>0,a+2b=2,则的最小值为.11.(2022秋•朝阳区校级期末)若函数f(x)=﹣2x+3经过点(a,b),a>0且b>0,则的最小值为.12.(2022秋•南开区校级期末)已知a>1,b>2,a+b=5,则的最小值为. 13.(2023春•安徽月考)已知正数a,b满足ln=2a+2b﹣4,则的最小值为. 14.(2018秋•青浦区期末)设实数x>0,y<0,且,则2x+y的取值范围是. 15.(2022秋•和平区期末)已知函数,正实数a,b满足f(2a﹣4)+f(b)+2=0,则的最小值为.三.答案解答题(共9小题)16.(2022秋•桂林月考)已知a,b为正数,且满足a+b=1,求的最小值.17.(2021秋•滨海新区校级月考)已知a>0,b>0,满足a+9b=1.(1)求ab的最大值;(2)求的最小值.18.(2021秋•丹阳市校级月考)(1)已知,求函数的最小值;(2)已知a,b>0.则,求a+b的最小值.19.(2022秋•武进区校级月考)(1)设0<x<2,求y=的最大值;(2)已知a>0,b>0,若a+b=2,求的最小值.20.(2022秋•武清区校级月考)(1)已知x,y为正数,且=1,求x+y的最小值;(2)已知0<x<,求x(3﹣2x)的最大值.21.(2022秋•徐州期中)设函数f(x)=|x﹣a|.(1)当a=2时,解不等式f(x)≥7﹣|x﹣1|;(2)若f(x)≤2的解集为[﹣1,3],=a(m>0,n>0),求m+4n的最小值.22.(2021秋•泗阳县校级月考)已知命题P:两个正实数x,y满足,且x+2y>m2+2m恒成立,命题Q:“∃x∈{x|1≤x≤2},使x+2+m≥0”,若命题P,命题Q都为真命题,求实数m的取值范围.23.(2021秋•东海县期中)已知正实数x,y满足x+2y﹣xy=0.(1)求xy的最小值;(2)若关于x的方程有解,求实数m的取值范围.24.在“基本不等式”应用探究课中,甲和乙探讨了下面两个问题:(1)已知正实数x、y满足2x+y=1,求+的最小值.甲给出的解法:由1=2x+y≥2,得≤,所以+≥2=≥4,所以+的最小值为4.而乙却说甲的解法是错的,请你指出其中的问题,并给出正确的解法;(2)结合上述问题(1)的结构形式,试求函数y=+(0<x<)的最小值.参考答案题型一:基本不等式‐运用凑配法求最值一.选择题(共4小题)1.(2022秋•金水区校级期末)若a>2,则a+有( )A.最小值为4 B.最大值为4 C.最小值为0 D.最大值为0【详细分析】利用配凑法运用基本不等式求最值.【答案解答】解:a>2,则a+=a﹣2++2≥2+2=4,当且仅当a=3取等号,则a+有最小值4.故选:A.【名师点评】本题考查基本不等式的运用,属于基础题.2.(2019秋•徐汇区校级期中)设x>0,y>0,下列不等式中等号能成立的有( )①;②;③;④;A.1个 B.2个 C.3个 D.4个【详细分析】设x>0,y>0,x+,所以①成立,利用基本不等式可知②成立,=,不成立,,当x=y时成立,得出结论. 【答案解答】解:设x>0,y>0,x+,所以①成立,因为x>0,y>0,所以=,当且仅当x=y=1时取等号,故②成立,=,运用基本不等式不能取等号,此时x2+5=4,显然不成立,,当x=y时成立,故正确的有三个,故选:C.【名师点评】考查基本不等式的应用,注意一正二定三相等,条件是否成立,基础题.3.(2022秋•广州期末)已知x<0,则的最小值为( )A. B.4 C. D.【详细分析】利用配凑法求的最小值即可.【答案解答】解:=+(1﹣x)﹣1≥2﹣1=2﹣1,当且仅当=1﹣x,即x =1﹣时取等号,所以的最小值为2﹣1.故选:D.【名师点评】本题考查基本不等式的应用,属于基础题.4.(2022秋•九龙坡区校级期中)若a>﹣3,则的最小值为( )A.2 B.4 C.5 D.6【详细分析】把常数分离后即可利用基本不等式求最值.【答案解答】解:a>﹣3,=≥2=4,当且仅当a+3=,即a=﹣1取等号.故选:B.【名师点评】本题考查基本不等式的应用,属于基础题.二.填空题(共9小题)5.(2022春•甘州区校级月考)函数的最小值是2. 【详细分析】可以通过配凑法使得两式的积出现定值,再利用基本不等式求最小值.【答案解答】解:∵x>1,∴x﹣1>0.∴≥2=.当且仅当时,f(x)取得最小值2.故答案为:2.【名师点评】本题主要考查利用配凑法解决基本不等式的最值问题,属于基础题.6.(2022秋•徐汇区校级期中)若x>1,则的最小值为4.【详细分析】由题意可得:=x﹣1+1+=,然后结合基本不等式求解即可. 【答案解答】解:x>1,则=x﹣1+1+=,当且仅当,即x=2时取等号,故答案为:4.【名师点评】本题考查了基本不等式,属基础题.7.(2018秋•浦东新区校级期中)已知正实数x,y满足x+y=1,则﹣的最小值是 【详细分析】由已知分离﹣==,然后进行1的代换后利用基本不等式即可求解. 【答案解答】解:正实数x,y满足x+y=1,则﹣===()[x+(y+1)]﹣4=(5+)﹣4=当且仅当且x+y=1即y=,x=时取得最小值是/故答案为:【名师点评】本题主要考查了利用基本不等式求解最值,解题的关键是进行分离后利用1的代换8.(2016秋•黄浦区校级期末)若x>1,则的最小值为5.【详细分析】原式变形得,,由x>1得出x﹣1>0,从而,即得出最小值.【答案解答】解:=;∵x>1;∴x﹣1>0;∴;∴;∴最小值为5.故答案为:5.【名师点评】考查函数最值的定义及求法,以及基本不等式求最值的方法.9.(2017春•浦东新区校级期末)函数y=4x+(x>5)的最小值是32.【详细分析】先进行换元t=x﹣5,则t>0,可得y=4x+=4t++20,然后利用基本不等式即可求解. 【答案解答】解:由x>5可得x﹣5>0,令t=x﹣5,则t>0,则y=4x+=4t++20=32,当且仅当4t=即t=时取得最小值32,此时x=.故答案为:32【名师点评】本题主要考查了利用基本不等式求解函数的最值,属于基础试卷.10.(2022秋•天津期末)若x>﹣1,则的最小值为.【详细分析】利用配凑法求函数最值即可.【答案解答】解:若x>﹣1,则=2(x+1)+﹣2≥2﹣2=2﹣2,当且仅当2(x+1)=,x=﹣1,取等号.故答案为2﹣2.【名师点评】本题考查基本不等式的应用,属于基础题.11.(2022秋•西城区校级月考)函数y=x+(x>﹣1)的最小值是,此时x的值. 【详细分析】因为x>﹣1,即x+1>0,则,然后即可得解. 【答案解答】解:因为x>﹣1,即x+1>0,则=,当且仅当,即时取等号, 故答案为:;.【名师点评】本题考查了基本不等式,属基础题.12.(2022秋•渝北区校级期中)已知正实数x,y满足,则的最小值为. 【详细分析】将化为24﹣3x+4﹣3x=2y+1+y+1,利用函数y=2x+x为增函数,得到4﹣3x=y+1,即3x+y=3,在利用基本不等式求出结论的最小值即可.【答案解答】解:因为x,y>0,且,可化为24﹣3x+4﹣3x=2y+1+y+1,因为函数y=2x+x显然为增函数,故4﹣3x=y+1,即3x+y=3,所以===2,(当且仅当和3x+y=3同时成立即:,时取等号). 故答案为:2.【名师点评】本题考查基本不等式的应用,函数的性质等,属于中档题.13.(2022秋•北碚区校级月考)已知正实数a,b,c,满足a+b+c=1,则的最大值为+.【详细分析】利用均值不等式可得:b+≥,c+=c++≥3=,进而得出结论.【答案解答】解:∵b+≥,c+=c++≥3=,∴≤a+b++c+=+,当且仅当a=﹣,b=,c=时取“=”,∴的最大值为=+,故答案为:+.【名师点评】本题考查了基本不等式的应用、配凑转化方法,考查了推理能力与计算能力,属于中档题. 三.答案解答题(共5小题)14.(2022秋•秀峰区校级月考)(1)已知x>0,求函数的最小值;(2)已知,求的最大值.【详细分析】(1)变形,再利用基本不等式求解,注意等号成立的条件.(2)根据0<x<,将函数y配凑系数,再利用基本不等式求解.注意等号成立的条件.【答案解答】解:(1)∵=x++5≥2+5=9,当且仅当x=,即x=2时等号成立;故的最小值为9;(2)∵,∴1﹣2x>0,∴y=×2x(1﹣2x)≤()2=×=.当且仅当2x=1﹣2x(),即x=时,y max=.【名师点评】本题考查基本不等式求最值,还考查了变形转化的能力,属于基础题.15.(2022秋•长春期中)(1)已知x>3,求的最小值;(2)已知x,y是正实数,且x+y=4,求:①的最小值;②的最小值.【详细分析】(1)由,利用基本不等式即可求解最小值;(2)利用“乘1法”与基本不等式的性质即可得出.【答案解答】解:(1)∵x>3,∴x﹣3>0,∴,当且仅当,即x=5时取等号,∴的最小值为7;(2)①∵x,y∈R+,x+y=4,可得,∴.当且仅当,即,时取“=”号.即的最小值为1+;②,当且仅当即时取号,即的最小值为.【名师点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.16.(2022秋•连云港月考)(1)已知a>0,b>0,且4a+b=1,求ab的最大值;(2)若正数x,y满足x+3y=5xy,求3x+4y的最小值;(3)已知x<,求f(x)=4x﹣2+的最大值.【详细分析】利用基本不等式逐项求解即可.【答案解答】解:(1)因为a>0,b>0,且4a+b=1,所以1=4a+b=4,当且仅当4a=b=时取等号,故ab,即ab的最大值为;(2)由正数x,y满足x+3y=5xy,得=1,故3x+4y=(3x+4y)()==5,当且仅当x=2y=1时取等号, 故3x+4y的最小值为5;(3)因为,故4x﹣2+=≤=1,当且仅当x=1时取等号, 故f(x)的最大值为1.【名师点评】本题考查基本不等式的应用,要注意适用条件是否满足,属于中档题.17.(2022秋•靖江市校级期中)(1)当x>3时,求函数的最小值;(2)若正数a,b满足2a+b=6,求的最小值.【详细分析】(1)=2(x﹣3)++6,利用基本不等式,即可得出答案;(2)由a>0,b>0,且满足2a+b=6,则有2(a+1)+b=8,即,则,利用基本不等式“1”的应用,即可得出答案. 【答案解答】解(1)=2(x﹣3)++6,∵x>3,∴2(x﹣3)+≥2=8,当且仅当2(x﹣3)=,即x=5时等号成立,∴y=2(x﹣3)++6≥8+6=14,∴当x=5时,函数的最小值为14;(2)由a>0,b>0,且满足2a+b=6,则有2(a+1)+b=8,即,∴当且仅当,即时,有最小值.【名师点评】本题考查基本不等式的应用,考查转化思想,考查构造法,考查逻辑推理能力和运算能力,属于中档题.18.(2022秋•海沧区校级月考)如图,某人计划用篱笆围成一个一边靠墙(墙足够长)的矩形菜园,设菜园的长为x米,宽为y米.(1)若菜园面积为36平方米,则x,y为何值时,所用篱笆总长最小?(2)若使用的篱笆总长为30米,求+的最小值.【详细分析】(1)由题意得xy=36,利用基本不等式,即可得出答案;(2)由题意得x+2y=30,利用基本不等式的配凑法可得+=(x+2y)(+),即可得出答案. 【答案解答】解:(1)由题意得xy=36,且x>0,y>0∴篱笆总长x+2y≥2=2=12,当且仅当x=2y,即x=6,y=3时,等号成立, 故x=6米,y=3米时,所用篱笆总长最小;(2)由题意得x+2y=30,且x>0,y>0,则+=(x+2y)(+)=(5++)≥(5+2)=,当且仅当=,即x =y=10时,等号成立,∴+的最小值为.【名师点评】本题考查基本不等式的应用,考查逻辑推理能力和运算能力,属于中档题.题型二:基本不等式‐运用1的代换求最值一.选择题(共2小题)1.(2022秋•郫都区校级期中)已知0<x<4,则的最小值为( )A.2 B.3 C.4 D.8【详细分析】可利用“1”的代换,根据x+(4﹣x)=4配凑应用基本不等式.【答案解答】解:∵0<x<4,则=[x+(4﹣x)]()=(10++)≥(10+2)=4, 当且仅当,即x=1时取等号.故选:C.【名师点评】本题考查基本不等式的应用,属于基础题.2.(2022秋•北海期中)已知正实数a,b满足a+b=3,则的最小值是( ) A. B.4 C.1 D.【详细分析】根据给定的条件,利用“1”的妙用及均值不等式可得代数式的最小值.【答案解答】解:因正实数a,b满足a+b=3,可得=1,所以=()•1=()•=(2++)≥(2+2)=,当且仅当a=b=时取等号,所以的最小值是.故选:A.【名师点评】本题考查“1”的活用及基本不等式的应用,属于基础题.二.填空题(共13小题)3.(2022秋•黄浦区校级期中)若正数x,y满足=1,则x+y的最小值为16. 【详细分析】由题意知正数x,y满足=1,则x+y=()(x+y)展开即为基本不等式应用. 【答案解答】解:由题意知正数x,y满足=1,则x+y=()(x+y)=10++≥16,当x=4,y=12时取到等号.故答案为:16.【名师点评】本题考查基本不等式的应用,属于简单题.4.(2018秋•宝山区校级期末)已知x,y∈R+,且满足xy﹣x﹣2y=0,则x+y的最小值为. 【详细分析】由题知x,y,满足xy﹣x﹣2y=0,则xy=x+2y,同除xy,得=1,借助基本不等式得最小值. 【答案解答】解:由题知x,y,满足xy﹣x﹣2y=0,则xy=x+2y,同除xy,得=1,x+y=(x+y)()=3+≥3+2,当且仅当x=2+,y=+1时取到等号.故答案为:3+2.【名师点评】本题考查了基本不等式求最小值,属于简单题.5.(2022秋•金山区期末)设a、b为正数,且a+b=1,则的最小值为4.【详细分析】利用“1”的代换求最值即可.【答案解答】解:a、b为正数,且a+b=1,则=()(a+b)=2++≥2+2=4,当且仅当=,即a=b=时取等号.则的最小值为4.故答案为:4.【名师点评】本题考查基本不等式中的“1”的代换,属于基础题.6.(2018秋•浦东新区校级期中)已知正实数x,y满足x+y=1,则﹣的最小值是 【详细分析】由已知分离﹣==,然后进行1的代换后利用基本不等式即可求解. 【答案解答】解:正实数x,y满足x+y=1,则﹣===()[x+(y+1)]﹣4=(5+)﹣4=当且仅当且x+y=1即y=,x=时取得最小值是/故答案为:【名师点评】本题主要考查了利用基本不等式求解最值,解题的关键是进行分离后利用1的代换7.(2022秋•庐江县期末)设a>0,b>2,且a+b=3,则的最小值是3+2. 【详细分析】运用“1“的配凑,结合基本不等式求出最小值.【答案解答】解:∵a+b=3,∴a+(b﹣2)=1,且a>0,b﹣2>0,则+=(+)[a+(b﹣2)]=2+++1≥3+2=3+2,当且仅当a2=2(b﹣2)2时取等号,又a+b=3,即a=2﹣,b=+1时取等号.故答案为:3+2.【名师点评】本题考查基本不等式求最值,考查配凑法的应用,属于基础题.8.(2022秋•越秀区期末)函数y=a x﹣1+1(a>0,a≠1)的图象恒过定点P,则点P的坐标是(1,2) ;若点P在直线mx+ny=1(m>0,n>0上,则的最小值为8.【详细分析】利用指数函数恒过点(0,1)来判断函数y=a x﹣1+1(a>0,a≠1)过哪个定点;利用1的代换求的最小值.【答案解答】解:函数y=a x﹣1+1(a>0,a≠1),令x=1,y=2,则函数恒过点(1,2),则点P的坐标是(1,2);若点P在直线mx+ny=1(m>0,n>0上,则m+2n=1,则=()(m+2n)=4++≥2+4=8,当且仅当=,即m=,n=取等号,则的最小值为8.故答案为:(1,2);8.【名师点评】本题考查函数恒过定点,考查基本不等式的应用,属于基础题.9.(2022秋•松江区校级期末)设x>0,y>1,且,若x+y的最小值为4,则实数a的值为. 【详细分析】利用“1”的代换思想,求x+y的最小值,并验证等号成立的条件,即可求a.【答案解答】解:∵x>0,y>1,且,∴y﹣1>0,a>0,∴x+y=x+y﹣1+1=•a(x+y﹣1)+1=•(+)(x+y﹣1)+1=(2++)+1≥(2+2)+1=+1,当且仅当=,又,即x=,y=+1取等号,此时x+y的最小值为+1=4,则a=.故答案为:.【名师点评】本题考查基本不等式“1”的代换思想,属于基础题.10.(2022秋•宝山区校级期中)a>0,b>0,a+2b=2,则的最小值为.【详细分析】利用“乘1法”和基本不等式的性质即可得出.【答案解答】解:a>0,b>0,a+2b=2,则=()(a+2b)=(3++)≥(3+2)=+,当且仅当a=2﹣2,b=2﹣取等号,故答案为:+【名师点评】本题考查了“乘1法”和基本不等式的性质,属于基础题.11.(2022秋•朝阳区校级期末)若函数f(x)=﹣2x+3经过点(a,b),a>0且b>0,则的最小值为. 【详细分析】由题意可得2a+b=3,运用基本不等式,即可得到所求最小值.【答案解答】解:a>0,b>0,函数f(x)=﹣2x+3的图象经过点(a,b),可得﹣2a+3=b,即2a+b=3, 可得=•(2a+b)()=•(2+2++)≥+•=,当且仅当=,即a=,b=时取得等号,则的最小值为.故答案为:.【名师点评】本题考查基本不等式的运用,求最值,属于中档题.12.(2022秋•南开区校级期末)已知a>1,b>2,a+b=5,则的最小值为. 【详细分析】将a+b=5变形a﹣1+b﹣2=2,利用“1”的代换思想即可得.【答案解答】解:∵a>1,b>2,a+b=5,则a﹣1+b﹣2=2,=(a﹣1+b﹣2)()=[1+4++]≥(5+2)=,当且仅当=,即a=,b=时取等号.故答案为:.【名师点评】本题考查了基本不等式的性质、考查了“1”的代换思想,属于基础题.13.(2023春•安徽月考)已知正数a,b满足ln=2a+2b﹣4,则的最小值为. 【详细分析】根据式子结构特征构造函数,利用函数的单调性得到a+b=2,再利用基本不等式求解最小值. 【答案解答】解:因为正数a,b满足,所以ln(2﹣b)+2(2﹣b)=lna+2a,设f(x)=lnx+2x,则,所以函数f(x)=lnx+2x在(0,+∞)上单调递增,因为f(2﹣b)=f(a),所以2﹣b=a,即a+b=2,所以, 当且仅当即时,等号成立.故答案为:.【名师点评】本题考查基本不等式的应用,属于中档题.14.(2018秋•青浦区期末)设实数x>0,y<0,且,则2x+y的取值范围是(﹣. 【详细分析】先由得出,并可结合已知条件求出x的取值范围,然后将关系式代入2x+y转化为x的代数式,利用基本不等式可求出2x+y的取值范围.【答案解答】解:由,可得,∵x>0,y<0,由,可得0<x<1,则0<1﹣x<1, 所以,=,当且仅当,即当时,等号成立,所以,2x+y的取值范围是.故答案为:.【名师点评】本题考查利用基本不等式求代数式的取值范围,解决本题的关键在于将代数式进行转化,并进行灵活配凑,考查计算能力与化简变形能力,属于中等题.15.(2022秋•和平区期末)已知函数,正实数a,b满足f(2a﹣4)+f(b)+2=0,则的最小值为.【详细分析】先根据函数的解析式代入化简,再构造函数,由单调性得到a,b的关系,代入目标式化简之后,利用基本不等式求解即可.【答案解答】解:由于,f(2a﹣4)+f(b)+2=0,则,即,即, 令,则g(x)在(0,+∞)上单调递增,g(2a﹣4)=g(﹣b),故2a﹣4=﹣b,即2a+b =4,=,当且仅当,即a=b时取等号,故的最小值为,故答案为:.【名师点评】本题考查函数的基本性质,以及利用基本不等式求最值,属于中档题.三.答案解答题(共9小题)16.(2022秋•桂林月考)已知a,b为正数,且满足a+b=1,求的最小值.【详细分析】利用“1”的代换,基本不等式即可求的最小值.【答案解答】解:因为a,b为正数,且满足a+b=1,所以:,当且仅当=,即取等号,有最小值9.【名师点评】本题考查基本不等式,属于基础题.17.(2021秋•滨海新区校级月考)已知a>0,b>0,满足a+9b=1.(1)求ab的最大值;(2)求的最小值.【详细分析】(1)直接运用基本不等式求解即可;(2)利用=()(a+9b),进而利用基本不等式求解即可.【答案解答】解:(1)∵a>0,b>0,满足a+9b=1,∴1=a+9b≥,即6≤1,∴0<ab≤,当且仅当a=9b,即a=,b=时,等号成立,∴ab的最大值;(2)∵a>0,b>0,满足a+9b=1,∴=()(a+9b)=10+≥10+2=16,当且仅当,即a=,b=时,等号成立,∴的最小值是16.【名师点评】本题主要考查基本不等式在最值求解中的应用,要注意应用条件的检验及配凑,属于基础题. 18.(2021秋•丹阳市校级月考)(1)已知,求函数的最小值;(2)已知a,b>0.则,求a+b的最小值.【详细分析】(1)由,得4x﹣5>0,=4x﹣5++3,再利用基本不等式可求得y的最小值;(2)由a,b>0.,得a+b=(+)(a+b),展开此式后利用基本不等式可求得a+b最小值. 【答案解答】解:(1)由,得4x﹣5>0,=4x﹣5++3≥2+3=5,当且仅当4x﹣5=,即x=时,y取最小值5;(2)由a,b>0,,得a+b=(+)(a+b)=++5≥2+5=9,当且仅当+=1且=,即a=3,b=6时,a+b的最小值9.【名师点评】本题考查基本不等式应用,考查数学运算能力,属于基础题.19.(2022秋•武进区校级月考)(1)设0<x<2,求y=的最大值;(2)已知a>0,b>0,若a+b=2,求的最小值.【详细分析】(1)由0<x<2,得0<4﹣2x<4,由基本不等式可得y==•≤•,即可得出答案.(2)由a+b=2,得(a+1)+(b+1)=4,即[(a+1)+(b+1)]=1,进而可得+=(+)•1=•(+)•[(a+1)+(b+1)],由基本不等式,即可得出答案.【答案解答】解:(1)由0<x<2,得0<4﹣2x<4,y==•≤•=,当且仅当2x=4﹣2x,即x=1取等号,所以函数y=的最大值为.(2)因为a+b=2,所以(a+1)+(b+1)=4,所以[(a+1)+(b+1)]=1,所以+=(+)•1=•(+)•[(a+1)+(b+1)]=[1+4++]≥[5+2]=(5+4)=,(当且仅当=,即a=b时,取等号),所以+的最小值为.【名师点评】本题考查基本不等式的应用,解题中需要理清思路,属于中档题.20.(2022秋•武清区校级月考)(1)已知x,y为正数,且=1,求x+y的最小值;(2)已知0<x<,求x(3﹣2x)的最大值.【详细分析】(1)变形利用“1”的代换可得x+y=(2+x+y)()﹣2,展开利用基本不等式x+y的最小值.(2)变形x(3﹣2x)=2x(﹣x),利用基本不等式即可得出x(3﹣2x)的最大值.【答案解答】解:(1)∵x,y为正数,且=1,∴x+y=(2+x+y)()﹣2=++3≥2+3=7,当且仅当=,=1,解得x=1,y=6时取等号.∴x+y的最小值为7.(2)∵0<x<,∴x(3﹣2x)=2x(﹣x)≤2×=,当且仅当x=﹣x,即x=时取等号.∴x(3﹣2x)的最大值是.【名师点评】本题考查了基本不等式的应用、转化方法,考查了推理能力与计算能力,属于中档题. 21.(2022秋•徐州期中)设函数f(x)=|x﹣a|.(1)当a=2时,解不等式f(x)≥7﹣|x﹣1|;(2)若f(x)≤2的解集为[﹣1,3],=a(m>0,n>0),求m+4n的最小值.【详细分析】(1)题意即为解不等式|x﹣2|+|x﹣1|≥7,分类讨论x<1,1≤x≤2,x>2,去绝对值符号,即可得出答案;(2)表示出不等式|x﹣a|≤2的解集﹣2+a≤x≤2+a,结合题意得出,求出a,利用基本不等式,即可得出答案.【答案解答】解:(1)当a=2时,f(x)=|x﹣2|,由题意得|x﹣2|+|x﹣1|≥7,∴①或②或③,解①得x≥5,解②得x≤﹣2,解③得x无解,故原不等式的解集为(﹣∞,﹣2]∪[5,+∞);(2)由题意得|x﹣a|≤2,解得﹣2+a≤x≤2+a,∵f(x)≤2的解集为[﹣1,3],∴,解得a=1,则+=1,∵m>0,n>0,∴m+4n=(m+4n)(+)=3++≥3+2=3+2,当且仅当=,即m=+1,n=,等号成立,故m+4n的最小值为3+2.【名师点评】本题考查绝对值不等式的解法和基本不等式的应用,考查分类讨论思想和转化思想,考查逻辑推理能力和运算能力,属于中档题.22.(2021秋•泗阳县校级月考)已知命题P:两个正实数x,y满足,且x+2y>m2+2m恒成立,命题Q:“∃x∈{x|1≤x≤2},使x+2+m≥0”,若命题P,命题Q都为真命题,求实数m的取值范围.【详细分析】利用“1”的巧用求出最值,处理恒成立问题;利用一次函数的最值,处理不等式有解问题,从而得到结果.【答案解答】解:∵x>0,y>0,,∴x+2y==(当且仅当x=4,y=2时取等号),∴命题P为真命题时,m2+2m<8,可得﹣4<m<2,∴命题Q为真命题时,2+2+m≥0⇒m≥﹣4,∴命题P,命题Q都为真命题时,﹣4<m<2,即实数m的取值范围为(﹣4,2).【名师点评】本题考查了利用基本不等式求最值和不等式恒成立问题,考查了转化思想,属中档题. 23.(2021秋•东海县期中)已知正实数x,y满足x+2y﹣xy=0.(1)求xy的最小值;(2)若关于x的方程有解,求实数m的取值范围.【详细分析】(1)直接根据基本不等式即可求出;(2)利用乘“1”法可得x(y+1)﹣4的最小值,再得到关于m的不等式,解得即可.【答案解答】解:(1)因为x,y为正实数,x+2y﹣xy=0,所以,解得:xy≥8,当且仅当x=2y,即x=4,y=2时,等号成立,则xy的最小值为8;(2)由x+2y﹣xy=0得:x+2y=xy,则,所以x(y+1)﹣4===6(当且仅当,即,时,等号成立),所以m2﹣m≥6,解得:m≥3或m≤﹣2,故m的取值范围为{m|m≥3或m≤﹣2}.【名师点评】本题考查了基本不等式的应用,考查了运算求解能力,属于中档题.24.在“基本不等式”应用探究课中,甲和乙探讨了下面两个问题:(1)已知正实数x、y满足2x+y=1,求+的最小值.甲给出的解法:由1=2x+y≥2,得≤,所以+≥2=≥4,所以+的最小值为4.而乙却说甲的解法是错的,请你指出其中的问题,并给出正确的解法;(2)结合上述问题(1)的结构形式,试求函数y=+(0<x<)的最小值.【详细分析】(1)判断基本不等式成立的条件,即可得到甲的解法错误;+=(2x+y)(+)通过变形,再利用基本不等式即可得出答案;(2)因为0<x<,所以0<2﹣3x<2,通过变形y=+=[3x+(2﹣3x)][+],展开后利用基本不等式即可求解.【答案解答】解:(1)甲的解法中两次用到基本不等式,取到等号的条件分别是2x=y和x=2y,显然不能同时成立,故甲的解法是错的.正确的解法如下:因为x>0,y>0,且2x+y=1,所以+=(2x+y)(+)=++≥+2=,当且仅当=,即x=y=时等号成立,所以+的最小值为;(2)因为0<x<,所以0<2﹣3x<2,所以y=+=[3x+(2﹣3x)][+]=(4++)≥(4+)=2+, 当且仅当=,即x=1﹣∈(0,)时等号成立,所以y=+(0<x<)的最小值为2+.【名师点评】本题主要考查了基本不等式求解最值及基本不等式的应用条件的检验,属于中档题.。
初中一年级代数式讲解
代数式是由数字、字母和运算符号组成的式子,用来表示数与数之间的关系。
初中一年级的代数式主要涉及到一元一次方程、一元一次不等式等。
1. 一元一次方程:
一元一次方程是指只有一个未知数的一次方程,其一般形式为:ax + b = 0,其中a和b为已知数,x为未知数。
解一元一次方程的步骤如下:
- 将方程中的常数项移到等号的另一边,得到ax = -b;
- 通过除以a,将未知数的系数变为1;
- 解得未知数的值x = -b/a。
例如,解方程2x + 3 = 0:
首先将常数项3移到等号的另一边,得到2x = -3;
然后除以2,得到x = -3/2。
2. 一元一次不等式:
一元一次不等式是指只有一个未知数的一次不等式,其一般形式为:ax + b > 0或ax + b < 0,其中a和b为已知数,x为未知数。
解一元一次不等式的步骤如下:
- 将不等式中的常数项移到等号的另一边,得到ax > -b或ax < -b;
- 通过除以a,将未知数的系数变为1;
- 根据不等式的符号,确定未知数的取值范围。
例如,解不等式2x + 3 > 0:
首先将常数项3移到等号的另一边,得到2x > -3;
然后除以2,得到x > -3/2。
以上就是初中一年级代数式的讲解,希望对你有帮助!。
初中一年级代数式讲解初中一年级的代数式主要包括一元一次方程和一元一次不等式。
下面我将分别对这两个内容进行讲解。
一、一元一次方程一元一次方程是指只含有一个未知数且未知数的最高次数为1的方程。
一般的一元一次方程的形式为:ax + b = c,其中a、b、c都是已知常数,x是未知数。
解一元一次方程的步骤如下:1. 将方程中的常数项移到等号的右边,使得方程变为ax = c - b;2. 如果a不等于0,就将等号两边的方程都除以a,得到x = (c -b)/a。
例如,解方程3x + 2 = 8:首先将常数项2移到等号右边,得到3x = 8 - 2 = 6;然后将等号两边的方程都除以3,得到x = 6/3 = 2。
所以,方程3x + 2 = 8的解为x = 2。
二、一元一次不等式一元一次不等式是指只含有一个未知数且未知数的最高次数为1的不等式。
一般的一元一次不等式的形式为:ax + b < c,其中a、b、c都是已知常数,x是未知数。
解一元一次不等式的步骤如下:1. 将不等式中的常数项移到不等号的右边,使得不等式变为ax < c -b;2. 如果a大于0,则不等号方向不变;如果a小于0,则不等号方向反向;3. 如果不等式中的未知数系数不为1,就将不等式两边都除以该系数,得到x < (c - b)/a。
例如,解不等式2x + 3 > 7:首先将常数项3移到不等号右边,得到2x > 7 - 3 = 4;然后将不等号方向保持不变;最后将不等式两边都除以2,得到x > 4/2 = 2。
所以,不等式2x + 3 > 7的解为x > 2。
希望以上的讲解对你有帮助!。
作为小学一年级下册数学中的重要一环,学习不等式以及大小比较可谓是培养健康数学思想的必修课。
通过学习,孩子们可以了解数值的关系、掌握数字排序的方法,还能进一步激发他们对数学的学习兴趣。
我们该如何教授小学生不等式以及大小比较呢?一、教学目标1.能够正确使用不等式符号,如“<”、“>”、“≤”、“≥”,并掌握数字的大小关系。
2.能够比较两个数的大小,并根据大小确定大小关系。
3.能够掌握大小比较的基本思路和方法,并能在数学应用题中正确运用。
二、教学内容一、认识不等式符号我们需要教授孩子们四种不等式符号。
在学习的过程中,也应该引导孩子们了解符号的含义和使用方法。
1.“<” 表示小于。
2.“>” 表示大于。
3.“≤” 表示小于等于。
4.“≥” 表示大于等于。
二、认识数字的大小关系在掌握不等式符号后,我们需要引入数字的大小比较,让孩子们了解哪些数字是大的,哪些数字是小的,并且掌握数字大小之间的关系。
例如,让孩子们比较 5 和 3 的大小。
让孩子们看一下这两个数字,问他们哪一个数字更大。
当孩子们给出答案时,让他们解释答案的依据,并且检查答案是否正确。
三、学习大小比较的方法当孩子能够正确地比较两个数字的大小后,我们需要引导他们理解大小比较的基本思路和方法。
孩子们需要掌握数字的基本大小关系,例如:1.对于任何的整数 n,n + 1 都是比 n 大的。
2.当 n 越大,n² 也越大。
3.首位数相同的两个数字,百位上数字越大,这个数就越大。
与此同时,我们还应该将大小比较融入到数学应用题中。
例如,让孩子们解决如下问题:1.班级里有 34 个男生和 28 个女生,男生人数是女生人数的 __%。
2.请你根据题目所给的条件,判断“小明比小李大”这个说法是否正确,并说明原因。
通过训练,孩子们可以掌握大小比较的基本思路和方法,并能通过解题训练提高运用能力。
四、教学方法教学方法包括讲述、示范法、探究式教学、练习巩固等多种方式。
第二章《不等式》§2.1不等式的性质与证明一、高考要求:掌握不等式的性质、简单不等式的证明和重要不等式及其应用. 二、知识要点:1. 实数大小的基本性质: a-b >0⇔a >b; a-b =0⇔a =b; a-b <0⇔a <b.2. 不等式的性质:(1)传递性:如果a >b,b >c,则a >c;如果a <b,b <c,则a <c; (2)加法法则:如果a >b,则a+c >b+c;如果a >b,则a-c >b-c; (3)乘法法则:如果a >b,c >0,则ac >b c;如果a >b,c <0,则ac <b c; (4)移项法则:如果a+b >c ,则a >c-b;(5)同向不等式的加法法则:如果a >b 且c >d,则a+c >b+d;如果a <b 且c <d,则a+c <b+d; (6)两边都是正数的同向不等式的乘法法则:如果a >b >0,且c >d >0,则ac >b d. 3. 几个拓展的性质: a >b >0⇒a n >b n (n ∈N,n >1); a >b >0⇒n a >n b (n ∈N,n >1); a >b 且c >d ⇒a-d >b-c ; a >b >0,且c >d >0⇒cb d a >; a >b >0(或0>a >b)⇒ba 11<; 4. 重要不等式:(1) 整式形式: a 2+b 2≥2a b (a 、b ∈R ); a 2+b 2+c 2≥3a bc (a 、b 、c ∈R +);ab ≤22⎪⎭⎫ ⎝⎛+b a (a 、b ∈R); abc ≤33⎪⎭⎫ ⎝⎛++c b a (a 、b 、c ∈R +);(2) 根式形式:2b a +≥ab (a 、b ∈R +); 3c b a ++≥3abc (a 、b 、c ∈R +); (3) 分式形式:b a a b +≥2(a 、b 同号); c ab c a b ++≥3(a 、b 、c 同号);(4) 倒数形式:a a 1+≥2(a ∈R +); aa 1+≤-2(a ∈R -). 三、典型例题:例1:已知a >b,则不等式①a 2>b 2;②b a 11<;③ab a 11>-中不能成立的个数是( ) A.0个 B.1个 C.2个 D.3个 例2:证明不等式:(1)对∀实数a 、b,求证:22⎪⎭⎫⎝⎛+b a ≤222b a +; (2)求证:对∀正实数a 、b 、c,a+b+c ≥ca bc ab ++;(3)若p >0,q >0,p 3+q 3=2,试用反证法证明p+q ≤2; (4)对∀实数x 、y,求证:x 2+xy+y 2≥0; (5)对∀实数a 、b ∈R +,且a+b=1,求证:)11)(11(ba ++≥9.四、归纳小结:1.实数大小的基本性质反映了实数运算的性质和实数大小顺序之间的关系,是不等式证明和解不等式的主要依据.2.不等式证明的常用方法:(1)比较法常和配方法结合使用.用比较法证明的一般步骤是:作差→变形→判断符号;(2)综合法和分析法常结合使用.综合法就是“由因导果”,使用不等式的性质和已证明的不等式去直接推证;分析法就是“执果索因”,叙述的形式是:要证A,只要证B; (3)反证法的步骤:假设→推理→矛盾→原命题成立;3.在利用不等式求最大值或最小值时,要注意变量是否为正,和或积是否为定值,等号是否能成立.通过变形,使和或积为定值,是用不等式求最值的基本技巧. 五、基础知识训练: (一)选择题:1. (96高职-2)在下列命题中,是真命题的是( )A.x >y 和|x|>|y|互为充要条件B.x >y 和x 2>y 2互为充要条件C.a 2>b 2 (b ≠0)和2211ba >互为充要条件 D.b a 4131-<-和4a >3b 互为充要条件 2. (98高职-2)已知a >b,c ∈R,由此能推出下列不等式成立的是( )A.a+c >b-cB.ac >bcC.ac 2>bc 2D.a c2⋅>b c2⋅ 3. (99高职-2)如果ab >0且a >b,则有( )A.a 1>b 1 B.a 1<b1C.a 2>b 2D.a 2<b 2 4. (2001高职-4)“a <b <0”是“a 1>b1”成立的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.既不充分又不必要条件5. 不等式2>+abb a 成立的充要条件是( ) A.ab >0且a ≠b B.ab ≠0且a ≠b C.a >0,b >0且a ≠b D.a ≠1且b ≠1 6. (2003高职-2)已知x >2,则函数21-+=x x y 的最小值是( ) A.4 B.3 C.2 D.17. 不等式①a 2+2>2a;②a 2+b 2>2(a-b-1);③(a 2+b 2)(c 2+d 2)>(ac+bd)2中,恒成立的个数是( )A.0个B.1个C.2个D.3个 8. 若实数a 、b 、c 满足b+c=3a 2-4a+6,b-c=a 2-4a+4,则a 、b 、c 的大小关系是( ) A.b ≥c >a B.b >c >a C.b <c <a D.b <c ≤a 9. 若f(x)=3x 2-x+1,g(x)=2x 2+x-1,则f(x)与g(x)的大小关系是( )A.f(x)>g(x)B.f(x)=g(x)C.f(x)<g(x)D.随x 值变化而变化 10. 若a ≠2或b ≠-1,则M=a 2+b 2-4a+2b 的值与-5的大小关系是( )A.M >-5B.M <-5C.M=-5D.不能确定 11. 已知0<a <1,则aa 1、aa -、aa 的大小关系是( )A.aa 1>aa >aa- B.aa ->aa >aa 1 C.aa >aa 1>aa- D.aa->aa 1>a a12. 已知a <b <0,则下列不等式中不能成立的是( ) A.a 2>b 2 B.b a > C. b a 11> D. ab a 11>- 13. 设a 、b 是不相等的正数,则( )A.2222b a ab ba +<<+ B.2222b a b a ab +<+< C.2222b a b a ab +<+< D.2222ba ab b a +<<+ 14. 若0<x <1,0<y <1,且x ≠y,而x 2+y 2,x+y,2xy,xy 2中最大的一个是( ) A.2xy B.x+y C.xy 2 D.x 2+y 215. 若a 、b 为非零实数,则在①222b a +≥ab ;②22⎪⎭⎫⎝⎛+b a ≤222b a +;③2b a +≥b a ab +;④baa b +≥2中,恒成立的个数是( ) A.4个 B.3个 C.2个 D.1个 16. 设正数a,b 满足ab=4,则2a+3b 的最小值是( )A.12B.10C.64D.3417. 设a,b ∈R 且a+b=3,则b a 22+的最小值是( )A.6B.8C.24D.22 18. 若实数x,y 满足方程x+y-4=0,则x 2+y 2的最小值是( )A.4B.6C.8D.10 19. 令0<a <b,且a+b=1,则下列四数中最大的是( ) A.21B.aC.2abD.a 2+b 2 20. 设a 、b 是两实数,给出下列条件:①a+b >1;②a+b=2;③a+b >2;④a 2+b 2>2;⑤ab >1.其中能推出“a 、b 中至少有一个数大于1”的条件是( )A.②③B.①②③C.③④⑤D.③21. 下列命题中,(1)x x 1+的最小值是2;(2)1222++x x 的最小值是2;(3)4522++x x 的最小值是2;(4)xx 432--的最小值是2.正确命题的个数是( ) A.1个 B.2个 C.3个 D.4个 (二)填空题:22. 若x >y 且a >b,则在“①a-x >b-y ; ②a+x >b+y ; ③ax >by ;④x-b >y-a ; ⑤xby a >”这五个式子中恒成立的不等式的序号是 . 23. 已知三个不等式: ①ab >0;②bda c -<-;③bc >ad.以其中两个作为条件,余下的一个作为结论,则可以组成 个正确的命题.24. 以下四个不等式: ①a <0<b ;②b <a <0;③b <0<a ;④0<b <a.其中使ba 11<成立的充分条件有 .25. (99高职-17)已知x >0,函数xx y 432--=的最大值是 . 26. (2002高职-16)已知函数xx y 22+=,(x >0),则y 的最小值是 . (三)解答题: 27. (1)已知:1>x ,求294x x +的最小值;(2)已知:0<x ,求3364xx y +=的最大值.28. 已知:a 、b ∈R +,求证:2ba +≥ab .(要求用比较法、综合法、分析法、反证法分别证明)29. 若a 、b 、c ∈R +,且a+b+c=1,求证:(a 1-1)(b 1-1)(c1-1)≥8.六、综合能力提高: 30. 函数116-+=x x y (x >1)的最小值是 .31. 已知:R x ∈,求2322++=x x y 的最小值.§2.2一次不等式和不等式组的解法一、高考要求:熟练求不等式组的解集. 二、知识要点:1. 能直接表明未知数的取值范围的不等式叫做最简不等式,解集相等的不等式叫做同解不等式,一个不等式变为它的同解不等式的过程叫做同解变形.2. 一次不等式ax >b(a ≠0)的解法:当a >0时,解集是{a b x x >},用区间表示为(a b,+∞); 当a <0时,解集是{a b x x <},用区间表示为(-∞,ab).3. 不等式组的解集就是构成不等式组的各不等式解集的交集. 三、典型例题: 例1:解下列不等式(组):(1) (x-3)2(x-4)≥0. (2) ⎩⎨⎧-<+<-+65430)3)(1(2x x x x .四、归纳小结:一次不等式和不等式组的解法是解各种不等式(组)的基础.解不等式实际上就是利用数与式的运算法则,以及不等式的性质,对所给不等式进行同解变形,直到变形为最简不等式为止.五、基础知识训练: (一)选择题:1. 已知方程x 2+(m+2)x+m+5=0有两个正根,则实数m 的取值范围是( )A.m <-2B.m ≤-4C.m >-5D.-5<m ≤-4 2. 已知方程mx 2+(2m+1)x+m=0有两个不相等的实根,则实数m 的取值范围是( ) A.m <41-B.m >41-C.m ≥41-D.m >41-且m ≠0 (二)填空题: 3. 若关于x 的不等式组⎩⎨⎧>+->01a x ax 的解集不是空集,则实数a 的取值范围是 . (三)解答题: 4. 解不等式(组): (1)52(x-2)≤x-52 ⎪⎩⎪⎨⎧<->+<-06305201)2(x x x§2.3分式不等式的解法一、高考要求:会解线性分式不等式:0>++d cx b ax 或)0(0≠<++c dcx bax .二、知识要点:在分式的分母中含有未知数的不等式叫做分式不等式.线性分式不等式的一般形式为:0>++d cx b ax 或)0(0≠<++c dcx bax ,不等号也可以是“≥”或“≤”.三、典型例题: 例:解不等式:1523-+>-+x x x x .四、归纳小结:1. 分式不等式的求解可应用同解原理转化为整式不等式求解,常用的解法有: (1)转化为一次不等式组;(2)区间分析法.2. 解分式不等式的关键是利用除法运算的符号法则化成不等式组或用区间分析法. 注意:①不能按解分式方程的方法去分母;②不能忘记分母不能为零的限制. 五、基础知识训练: (一)选择题:1. 满足21<x 与31->x 的x 适合的条件是( ) A.2131<<x B. 21>x C. 31-<x D. 3121-<>x x 或2. 下列不等式中与xx --34≥0同解的是( )A.(x-4)(3-x)≥0B.43--x x≥0 C.)3(-x Ig ≤0 D.(x-4)(3-x)>03. 不等式1212>-+x x 的解集是( )A.{x|0≤x <3}B.{x|-2<x <3}C.{x|-6≤x <3}D.{x|x <-3或x >2} 4. 不等式1232+--x x x <0的解集是( ) A.{x|x <3} B.{x|1<x <3} C.{x|x <3或x ≠1} D.{x|x <3且x ≠1}5. 不等式2)1()3(2--+x x x ≤0的解集是( )A.{x|1≤x <2}B.{x|1<x <2或x=-3}C.{x|1≤x <2或x =-3}D.{x|1≤x ≤2或x=-3}6. 设a >b >c,则不等式cx b x a x ---))((≥0的解集是( )A.(-∞,c )∪[b,a )B.(c,b ]∪[a,+∞)C.(c,b]∪(b,a]D.(c,a]∪[b,+∞) (二)填空题: 7. 不等式1312>+-x x 的解集是 . 8. 不等式)3)(4()2()1(22x x x x --+-≥0的解集是 .9. 若不等式342+++x x ax ≥0的解集为{x|-3<x <-1或x ≥2},则a= . 10. b 克糖水中有a 克糖(b >a >0),若再添上m 克糖(m >0),则糖水就变甜了,试根据这个事实提炼一个不等式 .11. 设关于x 的不等式ax+b >0的解区间为(1,+∞),则关于x 的不等式0652<+--bax x x 的解区间为 . (三)解答题: 12. 解下列不等式: (1) 12+<x x (2) 110<-<xx六、综合能力提高: 13. 若不等式x 2+px+q <0的解集是{x|1<x <2},则不等式06522>--++x x qpx x 的解集是( ) A.(1,2) B.(-∞,-1)∪(6,+∞) C.(-1,1)∪(2,6) D.(-∞,-1)∪(1,2)∪(6,+∞)§2.4含有绝对值的不等式一、高考要求:熟练求绝对值不等式的解集. 二、知识要点:1. |x-a|(a ≥0)的几何意义是x 在数轴上的对应点到a 的对应点之间的距离.2. 不等式|x|≤a(a >0)的解集是{x|-a ≤x ≤a};不等式|x|>a(a >0)的解集是{x|x <-a 或x >a}.3. 不等式|ax+b|<c(c >0)的解集是{x|-c <ax+b <c},然后解这个一次不等式,求出原不等式的解集;不等式|ax+b|>c(c >0)的解集是{x|ax+b <-c 或ax+b >c},然后解这个一次不等式,求出原不等式的解集,即这两个一次不等式的解集的并集为原不等式的解集. 三、典型例题: 例:解下列不等式:(1) |x 2-3x|>4 (2) 1≤|2x-1|<5 (3) x+|x-1|<2四、归纳小结:解绝对值不等式时,应先了解基本绝对值不等式|x|<a 、|x|>a (a >0)的解法,并把含有绝对值的不等式转化为不含绝对值的不等式. 五、基础知识训练: (一)选择题:1. (2002高职-2)不等式|x-2|>1的解集是( )A.(1,3)B.(3,+∞)C.(-∞,1)D.(-∞,1)∪(3,+∞) 2. 不等式|2-3x|>5的解集是( )A.(-1,37) B.(37,+∞) C.(-1,+∞) D.(-∞,-1)∪(37,+∞) 3. 不等式|2-3x|≤21的解集是( )A.{x|21<x <65}B. {x|x <21或x >65}C. {x|x ≤21或x ≥65}D. {x|21≤x ≤65}4. 已知A={x 2+x ≥5},B={x x -3<2},则A ∪B 等于( )A.{x|x ≤7或x >1}B.{x| -7≤x <1}C.{x|x ∈R}D.{x|x ≤7或x ≥3} 5. 已知A={x 2-x <3},B={x 1-x >1},则A ∩B 等于( )A.{x|x <0或x >2}B.{x| -1<x <5}C.{x|-1<x <0}D.{x|-1<x <0或2<x <5} 6. 设ab >0,下面四个不等式①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a-b|;④|a+b|>|a|-|b|中,正确的是( )A.①和②B.①和③C.①和④D.②和④7. 下面四个式子①|a-b|=|b-a|;②|a+b|+|a-b|≥2|a|;③a a =-2)(;④()b a +21>ab 中,成立的有( )A.①、②B.①、②、④C.①、②、③D.①、②、③、④ (二)填空题:8. (2001高职-14)若不等式|x-a|<b 的解集为{x|-3<x <9},则ba2log = . 9. 若{x||a-2x|>b,b >0}={x|x <-5或x >4},则a 2+b= . 10. 若x ∈Z,则不等式382<-x 的解集是 . (三)解答题:11. 设集合A={x||2x-1|≤3},B={x||x+2|<1},求集合C,使其同时满足下列三条件: (1)C ⊆[(A ∪B)∩Z];(2)C 中有三个元素;(3)C ∪B ≠Φ.12. 解下列不等式: (1) 3<322-x ≤7 (2)123-+x x ≥1六、综合能力提高: 13. 解下列不等式:(1) |3x-1|>x+3 (2) 42>++x x§2.5一元二次不等式的解法一、高考要求:熟练求一元二次不等式的解集.二、知识要点:三、典型例题:例1:求下列不等式的解集:(1)2x+3-x 2>0;(2)x(x+2)-1≥x(3-x);(3)x 2-32x+3>0;(4)x 2+6(x+3)>3;(5)3x 2+5≤3x.例2:m 是什么实数时,方程(m-1)x 2-mx+m=0有两个不相等的实数根?例3:已知ax 2+2x+c >0的解集为2131<<-x ,试求a 、c 的值,并解不等式-cx 2+2x-a >0.四、归纳小结:解一元二次不等式的方法主要有:(1)转化为一次不等式组;(2)区间分析法;(3)配方法;(4)利用二次函数的图象.五、基础知识训练:(一)选择题:1. (97高职-1)不等式x 2+2x+1>0的解集是( )A.ΦB.RC.{x|x= -1}D.{x|x ≠-1,x ∈R}2. 不等式(x 2-4x-5)(x 2+8)<0的解集是( )A.{x|-1<x <5}B.{x|x <-1或x >5}C.{x|0<x <5}D.{x|-1<x <0}3. 不等式ax 2+2x+c >0(a ≠0)的解集是空集的充要条件是( )A.a <0且b 2-4ac >0B.a <0且b 2-4ac <0C.a <0且b 2-4ac ≥0D.a <0且b 2-4ac ≤04. 下列不等式中,解集是空集的不等式是( )A.4x 2-20x+25>0B.2x 2-34x+6≤0C.3x 2-3x+1>0D.2x 2-2x+1<05. 若x 2-mx+1<0,则实系数m 的取值范围为( )A.m >2或m <-2B.-2<m <2C.m ≠±2D.m ∈R6. 若ax 2+5x+c >0的解集是}2131{<<x x ,则a+c 的值为( ) A.7 B.5 C.-5 D.-7(二)填空题:7. 已知不等式x 2+bx+c >0的解集为{x|x <3-或x >2},则b= ,c= .8. 已知(m+3)x 2+(2m-1)x+2(m-1)<0对任意x ∈R 都成立,则实系数m 的取值范围为 .(三)解答题:9. 设集合A={x|x 2-2x-8≥0, x ∈R},B={x|1-|x-a|>0, x,a ∈R},A ∩B=Φ,求a 的取值范围.10. 不等式(a 2-1)x 2-(a-1)x-1<0的解是全体实数,求实数a 的取值范围.11. 若函数y=x 2-(1+k)x-k+2的值域为非负实数,求实数k 的取值范围.12.若关于x的方程x2+(a2-9)x+a2-5a+6=0的一根小于0,另一根大于2,求实数a的取值范围.六、综合能力提高:13.已知不等式:①x2-4x+3<0;②x2-6x+8<0;③2x2-9x+m<0.要使同时满足①、②的x也满足③,则有( )A.m>9B.m=9C.m≤9D.0<m≤914.若关于x的方程3x2-5x+a=0的一根大于-2而小于0,另一根大于1而小于3,求实数a的取值范围.15.已知不等式ax2+bx+c>0的解集为0<α<x<β,求不等式cx2-bx+a>0的解集.§2.6不等式的应用一、高考要求:了解不等式或不等式组在解决实际问题中的应用,会列不等式或不等式组解简单的实际问题.二、知识要点:列不等式解应用题的主要步骤是:(1)设未知数;(2)根据题意,列出不等式(或不等式组);(3)解不等式(或不等式组);(4)检验结果是否符合实际,并作答.三、典型例题:例1:某渔业公司年初用98万元购进一艘渔船,用于捕捞,第一年需各种费用12万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的总收入为50万元.(1) 该船捕捞几年开始盈利(即总收入减去总成本及所有费用为正值)?(2) 该船捕捞若干年后,处理方案有两种:①当年平均盈利达到最大值时,以26万元的价格卖出;②当盈利总额达到最大值时,以8万元的价格卖出,问哪一种方案较为合算?请说明理由.例2:某种商品,现在定价每件p 元,每月售货卖出n 件,因而现在每月售货总金额为np 元.设定价上涨x 成,卖出数量减少y 成,售货总金额变成现在的z 倍.(1) 用x 和y 表示z;(2) 设y=kx,其中k 是满足0<k <1的常数,利用k 来表示当售货总金额最大时的x 值;(3) 若x y 32,求使售货总金额有所增加时的x 的范围.四、归纳小结:应用不等式知识解应用题的关键是建立不等量关系.五、基础知识训练:(一)选择题:1. 某工厂第一年年产量为A,第二年的增长率为a,第三年的增长率为b,这两年的平均增长率为x,则( )A.x=2b a +B.x ≤2b a +C.x >2b a +D.x ≥2b a + (二)填空题:2. (97高职-19)设某型号的汽车在普通路面上的刹车距离S(米)与汽车车速x(千米/时)之间的关系是20005.02x x S +=,为了避免交通事故,规定该车的刹车距离不大于10米,则该车的车速不得超过 (千米/时).3. (98高职-23)1998年世界杯足球赛组委会决定以每张25美元的单价发行普通入场券,预计可发行80万张,如果定价每张提高1美元,发行量就减少2万张,欲使门票收入不低于2000万美元,则入场券的最高定价不超过 .(三)解答题:4. (2003高职-21)(本小题满分12分)某厂若以50元的价格销售一种产品,则可以销售8000件.如果这种产品的单价每增加1元,则销售量就将减少100件.为了使这种产品的销售收入不低于420000元,那么单价的取值范围应为多少?5. 工厂生产某种产品,每月固定成本10万元,而每件产品的变动成本为25元,产品销售单价为60元,若每月要获得最低利润3万元,求每月最少要销售多少件产品?6. 某地方政府为保护地方电子工业发展,决定对某一进口电子产品征收附加税,已知这种电子产品国内市场零售价每件250元,每年可销售40万件,若政府征收附加税率为每百元t 元时,则每年销售将减少58t 万件. (1) 将税金收入表示为征收附加税率的函数;(2) 若在该项经营中每年征收附加税金不低于600万元,那么政府征收附加税率应控制在什么范围内?。
课 题:1.5一元二次不等式(二)――高次不等式、分式不等式解法教学目的:1.巩固一元二次方程、一元二次不等式与二次函数的关系,掌握掌握简单的分式不等式和特殊的高次不等式的解法;2.培养数形结合的能力,一题多解的能力,培养抽象概括能力和逻辑思维能力; 3.激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会从不同侧面观察同一事物思想教学重点:简单的分式不等式和特殊的高次不等式的解法教学难点:正确串根(根轴法的使用)授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪 容分析:1.本小节首先对照学生已经了解的一元二次方程、一元二次不等式与二次函数的图象,找出一元二次方程、一元二次不等式与二次函数的关系,进而得到利用二次函数图象求解一元二次不等式的方法说明一元二次不等式可以转化为一元一次不等式组,由此引出简单的分式不等式的解法 2.本节课学习简单的分式不等式和特殊的高次不等式的解法,这是这小节的重点,关键是弄清简单的分式不等式和特殊的高次不等式解法的根轴法的使用 教学过程:一、复习引入:1.一元二次方程、一元二次不等式与二次函数的关系2.一元二次不等式的解法步骤一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:(课本第19页)一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x < 有两相等实根ab x x 221-==无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax{}21x x xx <<∅∅引言:今天我们来研究一元二次不等式的另外解法,以及特殊的高次不等式、分式不等式的解法二、讲解新课:⒈ 一元二次不等式与特殊的高次不等式解法 例1 解不等式0)1)(4(<-+x x . 分析一:利用前节的方法求解;分析二:由乘法运算的符号法则可知,若原不等式成立,则左边两个因式必须异号,∴原不等式的解集是下面两个不等式组:⎩⎨⎧<+>-0401x x 与⎩⎨⎧>+<-0401x x 的解集的并集,即{x|⎩⎨⎧<+>-0401x x }∪⎩⎨⎧>+<-0401|{x x x }=φ∪{x|-4<x<1}={x|-4<x<1}.书写时可按下列格式:解二:∵(x-1)(x+4)<0⇔⎩⎨⎧<+>-0401x x 或⎩⎨⎧>+<-0401x x⇔x ∈φ或-4<x<1⇔-4<x<1,∴原不等式的解集是{x|-4<x<1}. 小结:一元二次不等式)0()0(022≠<++>++a c bx ax c bx ax 或的代数解法:设一元二次不等式)0(02≠>++a c bx ax 相应的方程)0(02≠=++a c bx ax 的两根为2121x x x x ≤且、,则0))((0212>--⇔>++x x x x a c bx ax ; ①若⎩⎨⎧>>⎩⎨⎧<<⇒⎩⎨⎧>->-⎩⎨⎧<-<->.,,,.0,0,0,0,021212121x x x x x x x x x x x x x x x x a 或或则得 当21x x <时,得1x x <或2x x >;当21x x =时,得1,x x R x ≠∈且.②若⎩⎨⎧><⎩⎨⎧><⇒⎩⎨⎧>-<-⎩⎨⎧>-<-<.,,,.0,0,0,0,021212121x x x x x x x x x x x x x x x x a 或或则得 当21x x <时,得21x x x <<;当21x x =时,得∅∈x .分析三:由于不等式的解与相应方程的根有关系,因此可求其根并由相应的函数值的符号表示出来即可求出不等式的解集.解:①求根:令(x-1)(x+4)=0,解得x (从小到大排列)分别为-4,1,这两根将x 轴分为三部分:(-∞,-4)(-4,1)(1,+∞); ②分析这三部分中原不等式左边各因式的符号③由上表可知,原不等式的解集是{x|-4<x<1}.例2:解不等式:(x-1)(x+2)(x-3)>0; 解:①检查各因式中x 的符号均正; ②求得相应方程的根为:-2,1,3; ③列表如下:④由上表可知,原不等式的解集为:{x|-2<x<1或x>3}. 小结:此法叫列表法,解题步骤是:例2图练习图①将不等式化为(x-x1)(x-x2)…(x-xn)>0(<0)形式(各项x的符号化“+”),令(x-x1)(x-x2)…(x-xn)=0,求出各根,不妨称之为分界点,一个分界点把(实数)数轴分成两部分,n个分界点把数轴分成n+1部分……;②按各根把实数分成的n+1部分,由小到大横向排列,相应各因式纵向排列(由对应较小根的因式开始依次自上而下排列);③计算各区间各因式的符号,下面是乘积的符号;④看下面积的符号写出不等式的解集.练习:解不等式:x(x-3)(2-x)(x+1)>0. {x|-1<x<0或2<x<3}.思考:由函数、方程、不等式的关系,能否作出函数图像求解直接写出解集:{x|-2<x<1或x>3}. {x|-1<x<0或2<x<3}在没有技术的情况下:可大致画出函数图形求解,称之为根轴法(零点分段法)①将不等式化为(x-x1)(x-x2)…(x-xn)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.注意:奇过偶不过例3解不等式:(x-2)2(x-3)3(x+1)<0.解:①检查各因式中x的符号均正;②求得相应方程的根为:-1,2,3(注意:2是二重根,3是三重根);③在数轴上表示各根并穿线,每个根穿一次(自右上方开始奇过偶不过),如下图:④∴原不等式的解集为:{x|-1<x<2或2<x<3}.说明:∵3是三重根,∴在C处过三次,2是二重根,∴在B处过两次,结果相当于没过.由此看出,当左侧f(x)有相同因式(x-x1)n时,n为奇数时,曲线在x1点处穿过数轴;n为偶数时,曲线在x1点处不穿过数轴,不妨归纳为“奇过偶不过”.练习:解不等式:(x-3)(x+1)(x2+4x+4)≤0.解:①将原不等式化为:(x-3)(x+1)(x+2)2≤0;②求得相应方程的根为:-2(二重),-1,3; ③在数轴上表示各根并穿线,如图:④∴原不等式的解集是{x|-1≤x ≤3或x=-2}.说明:注意不等式若带“=”号,点画为实心,解集边界处应有等号;另外,线虽不穿过-2点,但x=-2满足“=”的条件,不能漏掉. 2.分式不等式的解法例4 解不等式:073<+-x x . 错解:去分母得03<-x ∴原不等式的解集是{}3|<x x .解法1:化为两个不等式组来解: ∵073<+-x x ⇔⎩⎨⎧>+<-⎩⎨⎧<+>-07030703x x x x 或⇔x ∈φ或37<<-x ⇔37<<-x , ∴原不等式的解集是{}37|<<-x x . 解法2:化为二次不等式来解:∵073<+-x x ⇔⎩⎨⎧≠+<+-070)7)(3(x x x ⇔37<<-x , ∴原不等式的解集是{}37|<<-x x说明:若本题带“=”,即(x-3)(x+7)≤0,则不等式解集中应注意x ≠-7的条件,解集应是{x| -7<x ≤3}.小结:由不等式的性质易知:不等式两边同乘以正数,不等号方向不变;不等式两边同乘以负数,不等号方向要变;分母中有未知数x ,不等式两边同乘以一个含x 的式子,它的正负不知,不等号方向无法确定,无从解起,若讨论分母的正负,再解也可以,但太复杂.因此,解分式不等式,切忌去分母. 解法是:移项,通分,右边化为0,左边化为)()(x g x f 的形式. 例5 解不等式:0322322≤--+-x x x x . 解法1:化为不等式组来解较繁.解法2:∵0322322≤--+-x x x x ⇔⎪⎩⎪⎨⎧≠--≤--+-0320)32)(23(222x x x x x x ⇔⎩⎨⎧≠+-≤+---0)1)(3(0)1)(3)(2)(1(x x x x x x ,∴原不等式的解集为{x| -1<x ≤1或2≤x<3}.也可以直接用根轴法(零点分段法)求解:练习:1.课本P21练习:3⑴⑵;2.解不等式253>+-x x . 答案:1.⑴{x|-5<x<8};⑵{x|x<-4,或x>-1/2};2.{x|-13<x<-5}.2解不等式:123422+≥+--x x x x.(答:{x|x ≤0或1<x<2})三、小结:1.特殊的高次不等式即右边化为0,左边可分解为一次或二次式的因式的形式不等式,一般用区间法解,注意:①左边各因式中x 的系数化为“+”,若有因式为二次的(不能再分解了)二次项系数也化为“+”,再按我们总结的规律作;②注意边界点(数轴上表示时是“0”还是“.”).2.分式不等式,切忌去分母,一律移项通分化为)()(x g x f >0(或)()(x g x f <0)的形式,转化为:)0)(0)()((0)(0)()(⎩⎨⎧≠<⎩⎨⎧≠>x g x g x f x g x g x f 或,即转化为一次、二次或特殊高次不等式形式 . 也可以直接用根轴法(零点分段法)求解3.一次不等式,二次不等式,特殊的高次不等式及分式不等式,我们称之为有理不等式.4.注意必要的讨论.5.一次、二次不等式组成的不等式组仍要借助于数轴. 四、、布置作业 五、思考题:1. 解关于x 的不等式:(x-x 2+12)(x+a)<0. 解:①将二次项系数化“+”为:(x 2-x-12)(x+a)>0,②相应方程的根为:-3,4,-a ,现a 的位置不定,应如何解? ③讨论:ⅰ当-a>4,即a<-4时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| -3<x<4或x>-a}.ⅱ当-3<-a<4,即-4<a<3时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| -3<x<-a 或x>4}.ⅲ当-a<-3,即a>3时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| -a<x<-3或x>4}.ⅳ当-a=4,即a=-4时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| x>-3}.ⅴ当-a=-3,即a=3时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| x>4}.2.若不等式13642222<++++x x kkx x 对于x 取任何实数均成立,求k 的取值围.(提示:4x 2+6x+3恒正)(答:1<k<3) 六、板书设计(略) 七、课后记:。
基本不等式三角换元法
基本不等式是初中数学中的重要知识点,它在解决不等式问题时
有着广泛的应用。
而三角换元法则是利用三角函数的性质来简化不等
式的一种方法。
本文将介绍基本不等式和三角换元法的相关知识。
首先,基本不等式是指当a和b均为正实数时,有a²+b²≥2ab。
该不等式也称为平均值不小于几何平均值不等式。
这个不等式是初中
一年级的学生必须要掌握的基本知识点。
在解决各种不等式问题时,
这个不等式可以用来确定不等式中各个参数间的关系。
其次,三角换元法也是解决不等式问题的重要方法。
它利用三角
函数的诸多性质来变换不等式的形式,以便更方便地求解。
三角换元
法的一般步骤是先将不等式中的常数项用三角函数表示出来,再将不
等式中的各个参数用三角函数变换成一个角度,并利用三角函数间的
相互关系来化简不等式。
需要注意的是,在利用三角换元法解决一个不等式问题时,我们
一定要仔细检查变换后的不等式是否仍然满足基本不等式。
因为基本
不等式是不等式理论的基础,只有基于这个不等式的推导才是可靠的。
综上所述,基本不等式和三角换元法是不等式研究的重要知识点。
希望读者能够在学习这些知识点时,认真掌握它们的基本概念、含义
和用法,并在解决不等式问题时融会贯通,做好思路分析和推理证明。
一年级数学测题简单的相等和不等式一年级数学测题简单的相等和不等式在一年级的数学学习中,相等和不等式是一个重要的概念。
通过比较数值大小和判断数值是否相等或不相等,帮助孩子们培养数学思维和逻辑能力。
以下是一些简单的相等和不等式测题,供一年级的小朋友练习。
一、相等表达式1. 3 + 4 = 7,将正确的符号填入“=”,使等式成立。
答案:=2. 5 - 2 □ 3,将正确的运算符号填入□,使等式成立。
答案:=3. 8 □ 2 + 2,将正确的运算符号填入□,使等式成立。
答案:=4. 9 □ 3 + 5,将正确的运算符号填入□,使等式成立。
答案:=二、不等表达式1. 7 □ 9,将正确的符号填入□,使不等式成立。
答案:<2. 4 □ 3,将正确的符号填入□,使不等式成立。
答案:>3. 2 + 3 □ 7,将正确的符号填入□,使不等式成立。
答案:<4. 8 □ 4 + 3,将正确的符号填入□,使不等式成立。
答案:>三、填空练习根据相等和不等式的概念,填入正确的数字或符号。
1. 6 + 2 _ 8答案:=2. 5 + 3 _ 7答案:<3. 9 _ 4 + 5答案:>4. 2 + 4 _ 7答案:<四、选出符合条件的等式或不等式在以下每组数中,选择一个符合条件的等式或不等式。
1. 3 _ 4a) = b) > c) <答案:<2. 5 _ 2a) > b) < c) =答案:=3. 6 _ 9a) > b) = c) <答案:<4. 7 _ 4a) > b) < c) =答案:>总结:通过这些简单的数学测题,一年级的小朋友们可以巩固相等和不等式的概念,并提高数值的比较和判断能力。
相等和不等式是数学学习的基础,也是培养孩子们逻辑思维和数学思维的重要内容。
希望小朋友们能够通过积极参与练习,逐渐掌握这些概念,为今后的数学学习打下坚实的基础。