几类常见不等式-简单完美总结
- 格式:pdf
- 大小:187.57 KB
- 文档页数:4
27种不等式在北京这地界儿,咱们得讲究个严谨和精炼,不整那些花里胡哨的。
今天咱就聊聊数学里的不等式,具体来说就是27种不等式。
1. 算数平均与几何平均,那可是不等式里的基础,两者之间总有差距,算数平均总比几何平均要大。
2. 柯西-施瓦茨不等式,它可是在向量运算中起着大作用,告诉你两个向量的点积跟它们的模长的关系。
3. 均值不等式,那更是常见,平均值、几何平均值、调和平均值,它们之间的大小关系可是清清楚楚。
4. 伯努利不等式,告诉你一加一减的式子在啥情况下能取到等号。
5. 赫尔德不等式,那更是泛函分析里的利器,处理范数问题得靠它。
6. 琴生不等式,凸函数里的宝贝,能帮你估计函数的平均值。
7. 排序不等式,给你一组数,告诉你怎么排序能让式子取到最大或最小值。
8. 切比雪夫不等式,概率论里的好帮手,帮你估计随机变量的概率分布。
9. 闵可夫斯基不等式,范数空间里的重要不等式,揭示了不同范数之间的关系。
10. 柯西不等式,别跟柯西-施瓦茨搞混了,它可是在复数、向量、矩阵上都能用的。
11. 三角不等式,那更是在几何、三角函数中随处可见,告诉你三角形两边之和大于第三边。
12. 杨氏不等式,那也是在范数空间里用的,跟赫尔德不等式有点类似。
13. 幂平均不等式,告诉你不同幂次的平均值之间的大小关系。
14. 加权算数平均与加权几何平均不等式,那就是带权重的算数平均和几何平均之间的比较。
15. 霍尔德不等式,它可是积分形式的不等式,告诉你函数积分的性质。
16. 闵可夫斯基-霍尔德不等式,那就是把闵可夫斯基和霍尔德结合起来的版本。
17. 卡普兰不等式,在概率论里,它可是用来估计随机变量和的分布的。
18. 琴生-卡普兰不等式,那就是琴生不等式在概率论里的应用。
19. 范德蒙德不等式,告诉你行列式与它的子式之间的关系。
20. 斯特林不等式,它在数学分析里可是常用来估计阶乘和幂的关系的。
21. 赫尔-布拉施克不等式,复分析里的重要不等式,跟复数的模有关。
复习重点:不等式的解法,主要有一元一次、一元二次、一元高次不等式,分式不等式,无理不等式,指数、对数不等式及含绝对值的不等式的解法;在复习中强调基本方法及易错点。
复习难点:含字母系数的二次型不等式,无理不等式解法,数形结合的方法解不等式,及不等式变形的等价性问题。
(一)各种类型不等式基本解法中的易错点:1.二次型不等式:ax2+bx+c>0(<0)易错点:<1>是否为二次不等式;<2>含字母表示的二根的大小。
2.一元高次不等式:a(x-x1)(x-x2)……(x-x n)>0。
易错点:<1>a>0时,从右上方开始穿线;<2>奇穿偶切,如(x-2)2(x+1)3>0.各因式的幂指数为奇数时穿过ox轴,若幂指数为偶数时,与ox轴相切不穿过;<3>孤立点容易遗漏。
如:(x-3)(x+2)2(x-1)≥0(x-3)(x-1)≥0或x=-2。
3.分式不等式:,易错点:<1>方法的规范,化为(1)的形式;<2>等价性;如(2)。
4.无理不等式<1>易错点:①遗漏情况(2);②不等式组(1),省略f(x)≥0,可简化运算。
<2>注:g(x)=0为孤立点,易遗漏。
5.含绝对值不等式:注意:<1>方法的选择:分段去绝对值号;用等价不等式解或数形结合方法解决。
<2>形如的基本解法:<i>分段讨论;<ii>数形结合。
6.指数不等式及对数不等式基本类型:<1>同底型;<2>a f(x)<b、log a f(x)<b型用定义;<3>换元法解。
易错点:<1>定义域:对数式中底数、真数的限制条件;<2>利用函数单调性,要分成底数大于1还是在0与1之间考虑。
解不等式问题重点注意:i.等价变形;ii.数形结合的方法。
常用的不等式摘要:一、不等式的基本概念1.不等式的定义2.不等式的分类a.一元不等式b.二元不等式c.多元不等式二、常见的不等式类型1.基本不等式2.柯西-施瓦茨不等式3.排序不等式4.均值不等式5.切比雪夫不等式6.赫尔德不等式7.闵可夫斯基不等式三、不等式的应用1.数学问题中的应用2.物理问题中的应用3.工程问题中的应用四、不等式的求解方法1.解析法2.图形法3.代数法4.特殊值法5.放缩法正文:一、不等式的基本概念不等式是数学中一个重要的概念,它用来表示两个数或者多个数之间的大小关系。
不等式的定义是:用“>”、“<”、“≥”、“≤”等不等号表示大小关系的式子。
不等式的分类有很多种,根据不等式的变量个数,可以分为一元不等式、二元不等式和多元不等式等。
二、常见的不等式类型在数学中,有许多常见的不等式类型,它们各有特点和应用场景。
例如,基本不等式是用来求解两个数的算术平均数与几何平均数之间的大小关系;柯西-施瓦茨不等式则用来求解多元不等式中的柯西不等式问题;排序不等式可以用来求解一组数的排序问题;均值不等式则可以用来求解一组数的平均值问题;切比雪夫不等式、赫尔德不等式和闵可夫斯基不等式等,则分别在不同的问题中发挥着重要的作用。
三、不等式的应用不等式的应用十分广泛,不仅可以用于解决数学问题,如求解最值问题、证明问题等,还可以用于解决物理问题、工程问题等。
例如,在物理中,不等式可以用来描述物体运动的速度与加速度之间的关系;在工程中,不等式可以用来描述工程问题的最优解等。
四、不等式的求解方法求解不等式是数学中的一项基本技能,有许多方法可以用来求解不等式,如解析法、图形法、代数法、特殊值法和放缩法等。
这些方法各有特点,适用于不同类型和难度的不等式求解。
基本不等式题型20种不等式是数学中重要的概念,它描述了数之间的大小关系。
在解决实际问题和推导数学推论中,不等式起着非常重要的作用。
本文将介绍20种常见的基本不等式题型。
一、一元一次不等式一元一次不等式是最简单的不等式类型。
例如:解不等式3x+4>10。
解:首先将不等式转化为等式:3x+4=10;然后解方程:3x=6;得到解:x=2。
二、一元二次不等式一元二次不等式是一元二次函数的不等式形式。
例如:解不等式x^2-5x+6>0。
解:首先求出一元二次函数的根:(x-2)(x-3)>0;然后画出函数的图像或根据韦达定理判断函数的正负;得到解:x<2或x>3。
三、绝对值不等式绝对值不等式是含有绝对值符号的不等式。
例如:解不等式|2x-3|≥5。
解:将含有绝对值的不等式拆分为两个不等式:2x-3≥5或2x-3≤-5;然后求解这两个不等式得到:x≥4或x≤-1。
四、分式不等式分式不等式是含有分式的不等式。
例如:解不等式(3x-2)/(2x+1)≤1。
解:首先将不等式化简:3x-2≤2x+1;然后解方程:x≤3。
五、根式不等式根式不等式是含有根式的不等式。
例如:解不等式√(x-4)≥2。
解:将不等式平方得:x-4≥4;然后解方程:x≥8。
六、乘法不等式乘法不等式是含有乘法的不等式。
例如:解不等式2x(x-1)≤0。
解:将不等式化简:2x(x-1)≤0;然后求解这个不等式得到:0≤x≤1。
七、除法不等式除法不等式是含有除法的不等式。
例如:解不等式(3x+6)/(x+2)≤4。
解:首先将不等式转化为等式:(3x+6)/(x+2)=4;然后解方程:x=-5;由于分母不能为0,所以解为x<-2或x>-5。
八、加法不等式加法不等式是含有加法的不等式。
例如:解不等式x+2>5。
解:将不等式化简:x>3。
九、减法不等式减法不等式是含有减法的不等式。
例如:解不等式2x-5≥1。
专题3 均值不等式基础方法15类总结目录一、热点题型归纳【题型一】对勾型 (2)【题型二】添加常数构造“对勾型” (3)【题型三】“和定求积”型 (4)【题型四】“积定求和”型 (6)【题型五】单元(单变量)分离常数型 (7)【题型六】“常数”因子法: (8)【题型七】“单分母”构造因子法 (9)【题型八】“双分母”构造法 (11)【题型九】有和有积无常数型 (12)【题型十】有和有积有常数型:求“积”型 (14)【题型十一】有和有积有常数型:求“和”型 (15)【题型十二】多元分离型 (16)【题型十三】反解消元型 (18)【题型十四】换元型 (19)【题型十五】较简单的三元均值 (21)培优第一阶——基础过关练 (23)培优第二阶——能力提升练 (27)培优第三阶——培优拔尖练 (31)知识点综述:1.基本不等式::a2+b2≥ 2ab(a,b∈R);2.常用不等式:ab ≤a +b2; (1) 基本不等式成立的条件:a >0,b >0;(2)等号成立的条件:当且仅当a =b .简称为““一正”“二定”“三相等”,三个条件缺一不可. 3.基本不等式的变形:①a +b ≥2ab ,常用于求和的最小值;②ab ≤⎝⎛⎭⎫a +b 22,常用于求积的最大值;4.重要不等式链:a 2+b 22≥ a +b 2≥ab ≥2aba +b;【题型一】对勾型【典例分析】(2021·江苏·高一专题练习)不等式(x -2y )+12x y -≥2成立的前提条件为( ) A .x ≥2y B .x >2yC .x ≤2yD .x <2y【答案】B【分析】由均值不等式成立的前提条件是“一正、二定,三相等”,结合此条件即可得解. 【详解】解:由均值不等式的条件“一正、二定,三相等”,即均值不等式成立的前提条件是各项均为正数,所以不等式()1222x y x y-+≥-成立的前提条件为20x y ->,即2x y >. 故选:B.【提分秘籍】 基本规律对勾型:1t t +,bat t+ 容易出问题的地方,在于能否“取等”,如1.2sin sin θθθ+,其中锐角(第五章会学习到)2.221x 5x 5+++1.(2022·全国·高一专题练习)若0x >,0y >,则1122x y x y+++的最小值是( ) A .32B .42C .4D .2【答案】A【分析】利用基本不等式可求出12x x+和12y y +的最小值,相加可得出结果.【详解】由基本不等式得111122222223222x y x y x y x y +++≥⋅⋅ 当且仅当2x =,2y =时等号成立,因此,1122x y x y +++的最小值为32故选A.2.(2022·河南驻马店·高一期末)已知a >0,则当19a a+取得最小值时,a 的值为( )A .19B .16C .13 D .3【答案】C【分析】利用基本不等式求最值即可.【详解】∵a >0,∵19296a a +≥,当且仅当19a a =,即13a =时,等号成立,故选:C【题型二】 添加常数构造“对勾型”【典例分析】(2022·吉林延边·高一期末)已知2x >,则函数()1222y x x =+--的最小值是( )A .22B .222C .2D 2【答案】D【分析】应用基本不等式求函数的最小值,注意等号成立的条件. 【详解】由题设,20x ->, ∵()()11(2)2(2)22222y x x x x =-+≥-⋅=--22x =时等号成立,∵2故选:D.【提分秘籍】 基本规律 对于形如1cx+d ax b ++,则把cx+d 转化为分母的线性关系:c 1ax+b)ax b cd a a ++-+(可消去。
常用的不等式(原创实用版)目录1.不等式的基本概念2.常见不等式的分类3.如何解不等式4.实际应用案例正文一、不等式的基本概念不等式是数学中一种表达大小关系的方式,通常用符号“<”、“>”、“≤”、“≥”表示。
在代数中,不等式是两个数或表达式之间的比较,它可以帮助我们了解它们之间的关系。
二、常见不等式的分类常见的不等式可以分为以下几类:1.线性不等式:这是最简单的一类不等式,如 x < 3、2x + 1 > 5 等。
2.二次不等式:涉及二次方程的不等式,如 x^2 - 3x + 2 < 0 等。
3.绝对值不等式:涉及绝对值的不等式,如|x - 2| > 3 等。
4.复合不等式:涉及多个不等式的组合,如 (x - 2)(x - 3) > 0 等。
5.含有参数的不等式:涉及变量参数的不等式,如 x - a > 0(其中a 为参数)等。
三、如何解不等式解不等式的方法有很多,下面介绍几种常用的方法:1.移项法:将所有项移到同一侧,以便比较。
2.消元法:通过乘以或除以某个数,消去其中一个未知数。
3.图形法:通过画出函数图像,观察图像与坐标轴的交点,了解不等式的解集。
4.符号法:通过分析各个符号的变化,判断不等式的解集。
四、实际应用案例不等式在实际生活中有很多应用,如:1.经济学中的成本与收益分析:通过建立不等式模型,分析企业的生产成本与收益之间的关系。
2.物理学中的运动学:利用不等式描述物体的速度、加速度等物理量之间的关系。
3.社会学中的人口统计:通过建立不等式模型,分析人口数量、年龄结构等之间的关系。
总之,不等式作为数学中的一种基本概念,它在各个领域都有广泛的应用。
不等式的类型及解法一、一元一次不等式一元一次不等式是指只含有一个未知数的一次方程,形如ax+b>0或ax+b<0的不等式,其中a和b为已知实数,且a≠0。
解法:1. 将不等式转化为等式,即ax+b=0,求得方程的解x0。
2. 根据a的正负性,将解x0进行分类讨论:- 当a>0时,若x>x0,则ax+b>0;若x<x0,则ax+b<0。
- 当a<0时,若x>x0,则ax+b<0;若x<x0,则ax+b>0。
二、一元二次不等式一元二次不等式是指含有一个未知数的二次方程,形如ax^2+bx+c>0或ax^2+bx+c<0的不等式,其中a、b和c为已知实数,且a≠0。
解法:1. 将不等式转化为等式,即ax^2+bx+c=0,求得方程的解x1和x2。
2. 根据a的正负性和二次函数的凸凹性,将解x1和x2进行分类讨论:- 当a>0时,若x1<x<x2,则ax^2+bx+c>0;若x<x1或x>x2,则ax^2+bx+c<0。
- 当a<0时,若x<x1或x>x2,则ax^2+bx+c>0;若x1<x<x2,则ax^2+bx+c<0。
三、绝对值不等式绝对值不等式是指含有绝对值符号的不等式,形如|f(x)|>g(x)或|f(x)|<g(x),其中f(x)和g(x)为已知函数。
解法:1. 对于|f(x)|>g(x),将不等式拆分为两个不等式:f(x)>g(x)和f(x)<-g(x)。
2. 分别解出这两个不等式的解集,然后求并集即为原不等式的解集。
四、分式不等式分式不等式是指含有分式的不等式,形如f(x)/g(x)>0或f(x)/g(x)<0,其中f(x)和g(x)为已知函数。
解法:1. 将分式不等式转化为分子和分母的符号相同的不等式:f(x)g(x)>0或f(x)g(x)<0。
经典不等式23种不等式1、大于等式:若x>y,则x≥y。
2、小于等式:若x<y,则x≤y。
3、不等式:若x≠y,则x≠y。
4、加法不等式:若a+b>c,则a+b≥c。
5、减法不等式:若a-b<c,则a-b≤c。
6、乘法不等式:若ab>c,则ab≥c。
7、除法不等式:若a/b<c,则a/b≤c。
8、比较不等式:若x>y,则x·z>y·z。
9、一次不等式:若ax+b>0,则x>-b/a。
10、二次不等式:若ax2+bx+c>0,则x>-b/2a-√(b2-4ac)/2a。
11、立方不等式:若ax3+bx2+cx+d>0,则x>-b/3a-∛(b3-3abc+2d)/3a。
12、指数不等式:若a·cn>0,则n>lg a。
13、对数不等式:若a>b,则ln a>ln b。
14、平方根不等式:若a2>b,则a>√b。
15、立方根不等式:若a3>b,则a>∛b。
16、反比例不等式:若1/x>y,则x<1/y。
17、正比例不等式:若x>y,则kx>ky。
18、极限不等式:若limx→∞f(x)>L,则f(x)>L,对任意的x均成立。
19、重组不等式:若a+b>c+d,则a>d或b>c。
20、多项式不等式:若p(x)>q(x),则有关x的多项式p(x)-q(x)的系数均大于0。
21、三角不等式:若a>b,则sin a > sin b。
22、函数不等式:若f(x)>g(x),则f(x+h)>g(x+h),其中h为任意实数。
23、条件不等式:若A>B且C>D,则AC>BD。
专题:基本不等式求最值的类型及方法一、几个重要的基本不等式:①,、)(222222R b a ba ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a b+≤≤≤222b a +。
二、函数()(0)bf x ax a b x=+>、图象及性质 (1)函数()0)(>+=b a xb ax x f 、图象如图: (2)函数()0)(>+=b a xbax x f 、性质:①值域:),2[]2,(+∞--∞ab ab ;②单调递增区间:(,-∞,)+∞;单调递减区间:(0,,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。
例1、求函数21(1)2(1)y x x x =+>-的最小值。
解析:21(1)2(1)y x x x =+>-21(1)1(1)2(1)x x x =-++>-21111(1)222(1)x x x x --=+++>-1≥312≥+52=, 当且仅当211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。
评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。
通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。